Raster
Algorithms
and Software

11.1 INTRODUCTION

We now turn our attention away from classical vector graphics and toward the new
- and rapidly expanding area of raster graphics. The growth of raster graphics has -
* been driven by the microelectronics revolution, which allows processors and large
amounts of random-access memory to be manufactured on small silicon chips. The
processor and a few memory chips are used.for the image creation system, which
" scan-converts output primitives such as lines, characters, polygons, etc. Many more
- memory chips are used for the refresh buffer, from which the image is displayed,
" one scan line at a time. Chapter 1 gave some background on the '_g_royythf of raster
. graphics, while Chapter 3 outlined the basic structure of a typical raster display. In
~ the first part of this chapter we present some of the many scan-conversion al-
~ gorithms, and in the second part we discuss capabilities which are useful in a raster.
.- graphics subroutine package. The next chapter is a detailed discussion of raster
-, graphics hardware. T s e T
.- The scan-conversion algorithms used in a raster display will be invoked quite
- often—typically hundreds or even thousands of times each time an image is created
* . ormodified, Hence, they must not only create visually satisfactory images, but must_
“*_also execute as rapidly as possible. Indeed, speed versus image quality is the basic
trade-off in selecting scan-conversion algorithms: some are fast and’ give jagged
edges, while others are slower but give smoother edges. However, whichever way the
trade-off is re¢clved, faster is better. Thus, the algorithms use incremental methods -
which minimize the number of calculations (especially multiplies ‘and divides) per-
formed during each iteration. Speed can be increased even further by using multiple:

processors, all simultaneously scan-converting output primitives into a multiported

Vgefrgish buffer. .~ . .

- 11.2 SCAN-CONVERTING LINES

~ The basic task of a scan-conversion algorithm for lines is to compute the coordinates
- of the pixels which lie near the line on a two-dimensional raster grid. In discussing
~ this task we assume that the starting and ending points for the line have integer coor-
. dinates (the generalization is left as an exercise). The basic strategy used by the line
. scan-conversion algorithm in Chapter 3 is to increment x, calculate y = mx + b,
- and intensify the pixel at (x, ROUND(y)). This calculation of m times x takes time,

however, and slows the scan-conversion process. Furthermore, floating-point (or
- binary-fraction) data representatlon must be used to ensure suf ficient accuracy.

11.2.1 The Basic lncremental Algorithm

We can eliminate the multiplication by noting that if Ax = I, then m= A y/Axre-
~ducestom = Ay, that is, a unit change in x changes y by m, which is the slope of the
line. Thus for all points (x;, ;) on the line we know that if x;, , = x; + 1, then
Yi+1=Yi+ m, that is, the next values of x and y are defined in terms of their pre-
vious values, as shown in Fig. 11.1. If m > 1, then a step in x will create a step in y
_ that is greater than 1. Thus we must reverse the roles of x and », by assigning a unit
step to y and incrementing x by Ax = Ay/m = 1/m. This is what is meant by an in-
cremental algorithm: at each step we make incremental calculations based on the
- preceding step. The procedure LINE to implement the technique, limited to the case
~of =1 < m < 1, appears below. The procedure WRITE_PIXEL, used by LINE,
places a value into the refresh buffer pixel whosc coordmates are glven as the f' rst f
‘ ,two arguments : e : ‘

procedure LINE(T A {assumes slope bctween + l ané - 1}

dy:= y2-yl;
Cdxi= x2-xl; -
om= dy/dx' :
e I’orx = xltoxldo
g begin S R T S Y
" WRITE PlXEL(x. ROUND(y). va!ue). _ (scts plxel to va/ue; S
y = y-t—m £ {stepy by slope m} -
”"~en¢i_' ST

E xlyt, _ {start point}

L X2,y2, .- o0 {end pomt}

‘valye:integer); - . {value to p!ace in plxcls near lme}
var dy, dx, y, m: real; B T . :

. begin

itxl <>x2 -

" then begin

3

{lf "lme" really a pomt plot n' else,» crror}
_ else ll yI = y2 then WRITE, PIXEL(xI y})
: | else ERROR ‘

- end '{LINE}

e

N
3/
Fany
N

(_x,+l.v,-+m)

(X,. V;l

/

Fig. 11.1 Incremental calculation of y by
rounding y to select pixel (designated by
black circle).

Fan)

D ‘ .

11.2.2 Bresenham’s Line Algorithm

The difficulties with LINE are that rounding y to an integer takes time, and the vari-
ables y and m must be real or fractional binary rather than integer, because the slope
 is a fraction. Bresenham’s algorithm [BRES65]) is attractive because it uses only in-
“ teger arithmetic. No real variables are used, and hence rounding is not needed. We

assume, for simplicity, that the slope of the line is between 0 and 1. The algorithm

" ‘uses a decision variable d; which at each step is proportional to the difference be--
" tween s and ¢ shown in Fig. 11.2. The figure depicts the ith step, at which the pixel
p; _ y has been determined to be closest to the actual line being drawn, and we now'
.- want to decide whether the next pixel to be set should be T;or Si. If 5. < ¢4, then S;is
. closer to the desired line and should be set; else T; is closer and should be set. Said
. differently, we choose S; if s—t < 0, otherwise we choose Tj. - EENR AT

'] i : Deslrcd
‘linc--' :

- Fig.' 11.2 Geometry for Bresenham’s algo-
- rithm. Black circles are pixels selected by
Bresenham's algoithy, .~ = ©

LoD NN

b

f‘-JAddmg 1 to each mdex glves' 8

Subtractmg d, from d” 1 we get ST R

The line being drawn is from (xZ, yI) to (x2, y2). Assummg that the first pomt is

- nearer the origin, we translate both points by T{ —xI, -yl), so it becomes the line

t'rom (0, 0) to (dx, dy), where dx = x2 — xI and dy = y2 - yl. The equation of the
lineisnow y = (dy/dx)x. Referring to Fig. 11.2, we represent the coordinates (after

* the translation) of P,_ as (s, ¢). Then S; = (r+ 1, g)and T;=(r + 1, ¢ + 1).

' From the examination of Fig. 11.2 we can write

_dy e+ 1o
,s_dvx(rfl) q, t=qg+1 dx(r+l).

" “Therefore

dy :
=22 —-2g - 1. . 11.1
s _t-2,(r+l) 2g — 1 , (11.1)

When s — ¢ < 0, we choose S;. Manipulatihg (11.1), we have
dx(s-t)=2(r-dy—q'dx)+2dy—dx'

Now dx is positive, so we can use dx(s — - 1) <0Oas the test for choosmg S;. We define
" this as d,. then ‘

-A-2(r dy a dx)+2dy dx.f’_

Wlthr x,_..andq y,_,.thlsls

B d, Zx,_,dy 2yt-:a’x +2dy dx.; i e (i12)

dH-l'-ZX,' dy 2y, dx+2dy—dx e

’d.“ zay(x, x,-.) 2dx<y, y._.)

du 1= da‘ + 2")’ 2430’4

)’l-n)

Hence we have an iterative way to calculate -dH ; from the previous d; and to make |
the selection between S; and T}. The initial starting value d, is found by evaluatmg
(ll 2)fori=1, knowmg that (xa. yo) (0 0) Then '

d,_zdy-dx. E L (P) |

" The arithmetic needed to evaluate (ll 3), (ll 4). and (11.5) is mxmmal it m-'
'volves addition, subtraction and left shift (to multiply by 2). This is important, be--
cause time-consuming multiplication is avoided. Further, the actual inner loop is
quite simple, as seen in the following Bresenham’s algorithm (note that this version
works only for lines with slope between 0 and 1 generahzmg the algonthm is left as
an exercise for the reader):

procedure BRESENHAM(x1, yl, x2, y2, value: integer);
var dx, dy, incrl, incr2, d, x, y, xend: integer;

begin :

dx := ABS(xZ xl).

dy := ABS(y2 - yl);

d:i=2sdy—-dx; : {initial value for d from (11.5)}
incrl := 2 » dy; {constant used for increment if d < 0}
Cincr2: = 2 = (dy — dx); _ {constant used for increment if d = 0}
it xI > x2 , R S
then begin _ s - {start at point with smaller x}
Coxi=x2 T e AN L -
yi=ynoooo

- xend :=xt .
~ end
~ else begin
- x=xl;
S yi=yh
- xend : =-x2
S end o : Fh)
" WRITE PIXEL(x. y. value). T
'f while x < xend do begiu

- {fiest point,bn'li'ne};

thend := d+mcrl
< elsebegim - -

hows which pnxels are st and the ideal path of the lme -

4. and‘z F‘gure 11.3 s

12

1
. 10 .
9 9 :

a1

7-

¥y v 1r F T T b 1}
345678910

3' Fig. 113 Line from point (5, 8) to point {9, 11) drawn with Bresenham’s algorithm.

The Ime appears Jagged in part because of the enlarged scale of the drawing and in
‘part due to the approximations involved in attempting to draw a line on a discrete

. grid of points.

1

e

11 4 SCAN CONVERTING CIRCLES

There are several very easy but ineffi cxent ways to scan-convert a clrcle. Consxder,
for sxmphcnty, the circle centered at the ongm, t'or whlch e T

x -a-,v2 R
: So!vmg for y, we get ; :
= i\'R‘-x. SR

. 'l'o draw a quarter circle, we can mcrement x from 0 to R in unit st
i? for +y at each step (the other quarters are drawn by symmetry). This wo!
. inefficient because of the multiply and square-root ‘operations. Furthe
Zﬁ> wnll belarge gap&m the circle for values of x close to R because the slope of the cu'cle
- becomes infinite as x approaches R (see Fig. 11.10). A similag inefficient method,”

whxch does avond the large gaps. is to p!ot R cosé or R sin@ by st pb g from 0 to.

I B T 0 s o ¥

JERTR T W W

- L
rryrrrrrrrrryrrrrorror

Fig. 11.10 A quarter-circle generated with unit steps in x
and with y calculated and then rounded.

11.4.1 Eight-Way Symmetry

This process can be improved somewhat by taking greater advantage of the
symmetry in a circle. Consider first a circle at the origin. If the point (x, y) is on the

- circle, then we can trivially compute seven other points on the circle, as shown in
Fig. 11.11. Therefore if we use Eq. (11.10) or some other more efficient mechanism

~ to compute y for values of x between 0 and R/VZ (the point at which x = y), seven

- additional points on the circle are also available; this range of x corresponds to the

~ 45° segment of the circle in the figure. For a circle centered at the origin, the points -

" ¢an be displayed with procedure CIRCLE_POINTS (the procedure is easily.

generalizgd to tfw case of gi;cle_s’ with arbitrary origins): cL |
procedure CIRCLE_POINTS(x, y, value: integery; .

" WRITE_PIXEL(x, y, value); TR
- WRITE_PIXEL(y, x, valuey; .~ .
R WRITE_PIXEL(y, ~x, value); = -
¢ . WRITE_PIXEL(x, -y, value); , :
. WRITE_PIXEL(~x, -y, value); % -
- WRITE_PIXEL(-y, ~x, value); .~
- . WRITE_PIXEL(-y, X, value); .. -
oo WRITE_PIXEL(~x, y, value)
' {CIRCLE_POINTS) -

S IR

- Bresenham [BRES’I'?Ihasdevelopedan incremental circle generator which is more -
- cfficient than cither of the above methods. Conceived for use with pen plotters, the
» algorithm generates all points on a circle centered at the origin by incrementing . -

R Sy “-

. ' B
(=, yt x.y)
(v, x) '_‘5‘ {y, x)
: T >
(—v. —x} RlE ly. —x)
—x,—y) tx, —y)

Fig. 11.11 Eight symmetrical points on a-circle,

360° around the circle. We present an adaptation of the algorithm which incre-
- ments through only 45° of a circle, from x=0 to x = R/\2, and uses the
CIRCLE_POINTS procedure to display points on the entire circle.
At each step, the algorithm selects the point P, (x;, ;) which is closest to the true
circle and which therefore makes the error term

DP)=(x}+yH) - R?

* closest to zero; that is, ID(P,)l is minimized at each step. As with Bresenham s line- .
. drawing algorithm, the fundamental strategy is to select the nearest point by using
- decision variables whose values can be incrementally calculated with only a few -
_“adds, subtracts, and shifts. The signs of the variables are used to make the decisions. "
~."+ What decisions are to be made? Consider Fig. 11, 12 which shows a small part

- of the pixel grid and the various possible ways (A to G) that the true circle might cut -
- through the grid.* Assume that the point P;_ y has been determined to be the closest

- tothecircle for x = x; _ ;. Now forx x, -1 +1we must determme whether 7} or S,
is closer to the circle.. : : o = : :

’ Let usdef‘ne :
"-’-QD(S; = [(xi 1+ l)z + (J’:-)z] Rz
D(T) [(x;-. + n’ + (y,- =1y - R*

(11 l2)

'These are the drffercnces between the squared dtstances from the ongm (the center
-, of the circle) to S (or to 7;) and to the actual circle. IfIDES)] = ID(T)I, then T; is .
. closer (or equidistant) to the actual circle than is S;. Conversely, if |D(S)] < [D(T)I o
“ then S, is closer to the actual errcle than is Ty

'— ff.f :
:;:.“Bresenham s original circle algorithm was not limited to the 45° segment ‘being exammeci

..here and therel‘ore considers cases F and G, for whlch the' ‘om(drrectly below Pp_imi
?:"'selectcd. - S

Piyisy, ¥icg)

Siliy ¥ V.¥icg)

F

) _ G | £ o .
Fig. 11.12 Dacision points for Bresenham's circle generator.

Now if we define
d; = |D(S)| - |D(T),

then the point T; is selected when d; = 0; otherwise the point S; is selected.
In case C, we have D(S;) > 0, because S; lies outside the cnrcle, and D(T) <0,
because T7; lies inside the circle, so

di= D(S)+D(T) B o (L13)

' Now ifd;, = 0 then T} is selected° otherwnse. d; < 0 so S is selected
. Consider now cases A and B and the correspondmg value of d; from (1L l3) It
is clear that XT) <0, because T; is inside of the true circle. Slmljarly, DS)=0 (the -
-equality occurs in case B; the mequal:ty in case A). Therefore, d; < 0forcases Aand
'B. The same selection rules applied to the preceding dlscussxon of case C will there- _
3 _fore pr0perly lead to the choice of S,, using (1. 13). R
“+ . Finally, consxder cases D and E. First, D(s) > 0 bffcause Si ls outsnde the true .
', cnrcle Similarly, DT)=0 (the equahty is for case D; the mequahty for case E).
_Therefore, d; = 0 for cases D and E, so the declsmn rules developed above for case C-
“apply here also: if d; = 0, choose T o0 '
©~ Weare not fi mshed yet: calculatmg the declsmn vanable (!l 13) as it is cur-
rently expressed requires several mulnpltcanons. However. a senes of algebrale'ff
, mampulatxons shows that "~ . , : S ‘

- N

v
These specific algebraic results and consequent algorithm were derived by J.
Michener by applying Bresenham’s methodology. Expression (11.13) for d; is ex-
panded by using (11.11) and (11.12). By substituting / — 1 for /, an expression for
d, -, is found; then the difference d; - d;_ , is formed and evaluated for each of the
two possible moves. The following procedure is based on these results:* -

procedure MICH_CIRCLE(radius, value: integer);
~ {assumes center of circle is at origin}
" var x, y, d: integer; '
begin
x:=0;
y: = radius;
d:= 3 — 2 » radius;
while x < y do begin
CIRCLE_POINTS (x, y, value);
itd<0
thend:=d+4+x+6 {select S}
else begin : {select T— decrement y}
d:=d+4+(x-y)+10;
yr=y-1
end
x:=x+1
end {while}
if x = y then CIRCLE_POINTS (x.p,value);
end- {MICH_CIRCLE} »

[f CIRCLE_POINTS is called when either x =y or r = 1, then each of four..

L4

~ pixels is set twice. On a raster display, this is no problem. I f the algorithm were used

 with a film recorder, however, double exposure of these points to the light sohrce '

would cause their intensity to be greater than that of the other points. Figure 11.13
shows one octant of a circle of radius 17 generated with the algorithm (compare the .

. results to Fig. 11.10). -

"~ Other techniques

have been d_eveldpcd: for drawing circles [BADL‘77, DORO79, -

 HORN?6, SUEN?79] and for more general curves than circles, Jordan, Lennon, and '

Holm {JORD73b] developed a general and efficient method for most curves which

* can be expressed as f{x, y) = 0 and have continuous derivatives. The method was -

v fm:‘ TIEE A

 tion for 360°.gircles, and equivalent work for the 45° formulation given here..

" later shown to have a few limitations [BELS76, RAMO76]. Special cases of such -
" curves include conic sections (particularly the circle) and straight lines. While the al- -

gorithm can be simplified in these special cases, there is still slightly more work per

iteration involved than for Bresenham’s line and circle algorithms. This is important
- 'because of the stringent speed requirements for our scan-conversion algorithms. On :

the other hand, the algorithm of Pitteway [PITT67], while more complicated to de- -
rive, requires even less work per iteration than does Bresenham’s general formula-

ity

PRI WS T N WO N I |

U I R N |

I's

Fig. 11.13 Octant of circle generated with Bresenham’s
- algorithm; second octant generated by symmetry.

.

