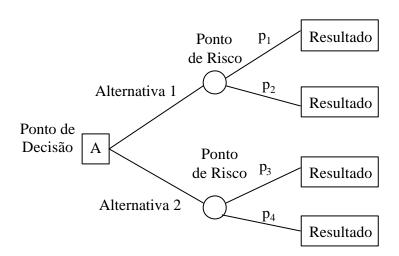
Árvores de Decisão

Árvores de decisão fornecem uma representação gráfica para um processo de decisão. Elas permitem mostrar quais são as possíveis consequências e os resultados esperados a partir de uma decisão que foi tomada.

Uma árvore de decisão é composta pelos seguintes elementos (veja figura 1):

1. Pontos de decisão


Num ponto de decisão (ou vértice de decisão), geralmente representado por um quadrado, deve-se selecionar uma alternativa dentre um conjunto finito de ações disponíveis. Essas alternativas são representadas pelas arestas da árvore. Quando há um custo associado à alternativa, a aresta recebe um *label* que irá representar o custo. Cada aresta deve estar conectada a um ponto de decisão, a um ponto de risco ou a um resultado.

2. Pontos de risco

Um ponto de risco, representado por um círculo, é um vértice que indica que um evento é esperado. Eventos são descritos nas arestas que saem dos pontos de risco e a cada uma delas é associada uma probabilidade de ocorrência.

3. Resultados

São vértices, representados por um retângulo, que indicam os ganhos ou perdas resultantes das alternativas escolhidas e dos eventos ocorridos.

P_k = probabilidade de ocorrência

Figura 1 – Elementos de uma árvore de decisão

Exemplo de tomada de decisão utilizando uma árvore de decisão (período simples)

Deseja-se fazer uma escolha de qual é a melhor alternativa de investimento, dentre aplicação em títulos públicos, ações ou poupança. O resultado esperado para cada alternativa de investimento depende da ocorrência de um de três cenários possíveis: crescimento econômico, estagnação ou um ambiente inflacionário. A figura 2 apresenta a árvore de decisão correspondente ao problema.

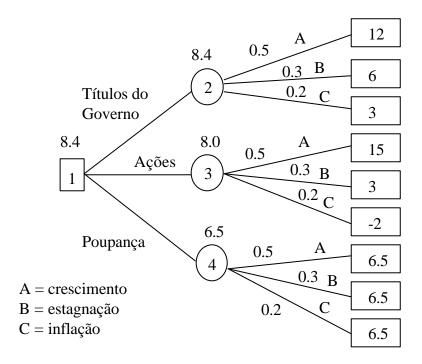


Figura 2 – Decisão sobre o melhor investimento a fazer

Para a tomada de decisão, deve-se seguir os seguintes passos:

1. Calcula-se o valor esperado para cada ponto de risco. O valor esperado (EMV = expected monetary value) é calculado multiplicando-se o resultado obtido com a ocorrência do evento pela sua probabilidade de ocorrência. Assim, para os pontos de risco tem-se:

Ponto 2: EMV = 12(0.5) + 6(0.3) + 3(0.2) = 8.4Ponto 3: EMV = 15(0.5) + 3(0.3) - 2(0.2) = 8.0Ponto 4: EMV = 6.5(0.5) + 6.5(0.3) + 6.5(0.2) = 6.5

2. No ponto de decisão 1, todas as alternativas são comparadas utilizando-se os valores esperados (EMVs) para cada ação. Neste problema, deve-se escolher a alternativa que apresenta o maior valor EMV, que é a alternativa de aplicar em títulos públicos.

O exemplo apresentado refere-se a um problema de tomada de decisão considerando-se um período simples (um ano, por exemplo). Entretanto, árvores de decisão são úteis em situações em que haja necessidade de se considerar mais que um período.

Exemplo de tomada de decisão para períodos múltiplos

Uma empresa tem uma expectativa de aumento da venda de seus produtos. A fábrica existente no momento está trabalhando com sua capacidade máxima, utilizando apenas o turno normal de trabalho. A empresa tem duas opções para atender à demanda crescente: instala uma nova máquina (esta alternativa custa \$20.000) ou institui o turno extra (esta alternativa custa \$2.000). A escolha entre essas duas alternativas dependerá principalmente do que irá acontecer nos próximos dois anos. Durante o primeiro ano, a direção da empresa estima que haverá 70% de chance de aumento nas vendas e 30% de chance de queda. No segundo ano, a direção da empresa terá que tomar uma nova decisão, que também dependerá do comportamento futuro das vendas. A figura 3 ilustra a árvore de decisão a ser utilizada para resolver o problema.

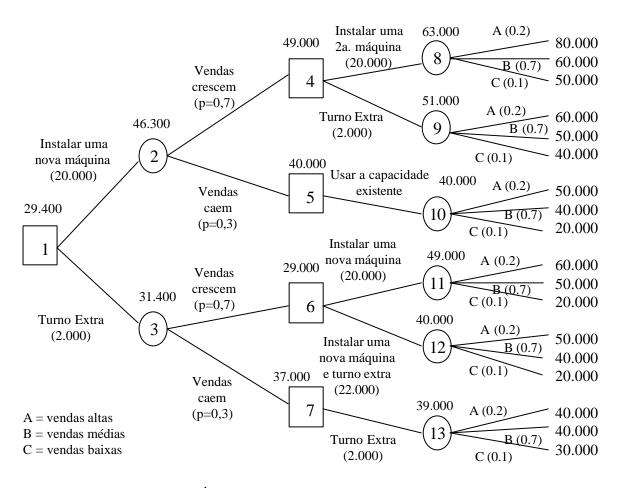


Figura 3 – Árvore de decisão para períodos múltiplos

Neste problema assume-se a premissa de que os valores monetários estão ajustados para valores presentes, de forma que eles poderão ser utilizados para comparações.

A árvore de decisão é construída considerando-se as diversas alternativas e eventos que podem acontecer. Por exemplo, se no ponto 1 for tomada a decisão de se instalar uma nova máquina e, após isso, as vendas crescerem, a direção da empresa poderá optar

entre instalar uma segunda máquina ou instituir o turno extra. Se no ponto de decisão 4 for escolhida a alternativa de se instalar uma segunda máquina e, após isso, as vendas crescerem, o resultado esperado será de faturamento de \$80.000. O mesmo raciocínio vale para as demais alternativas.

A tomada de decisão é feita executando-se os seguintes passos:

1. Cálculo dos valores esperados (EMVs) para os pontos de risco 8 a 13:

```
Ponto 8: EMV = 80.000(0.2) + 60.000(0.7) + 50.000(0.1) = 63.000

Ponto 9: EMV = 60.000(0.2) + 50.000(0.7) + 40.000(0.1) = 51.000

Ponto 10: EMV = 40.000

Ponto 11: EMV = 49.000

Ponto 12: EMV = 40.000

Ponto 13: EMV = 39.000
```

2. Para o ponto de decisão 4, a alternativa de instalar uma segunda máquina significará um ganho de \$43.000 (\$63.000 - \$20.000) e a alternativa de se instituir um turno extra representará um ganho de \$49.000 (\$51.000 - \$2.000). Assim, a alternativa que deve ser escolhida é instituir um turno extra, que corresponde ao ganho maior de \$49.000.

Da mesma maneira, as escolhas nos pontos de decisão 5, 6 e 7 serão usar a capacidade existente (ganho de \$40.000), instalar uma nova máquina (ganho de \$29.000) e instituir o turno extra (ganho de \$37.000), respectivamente.

3. Agora é possível calcular os valores esperados para os pontos de risco 2 e 3:

```
Ponto 2: EMV = 49.000(0.7) + 40.000(0.3) = 46.300
Ponto 3: EMV = 29.000(0.7) + 37.000(0.3) = 31.400
```

4. Para o ponto de decisão 1, a alternativa a ser escolhida será instituir o turno extra, que dá um ganho de \$29.400 (\$31.400 - \$2.000).

Exercício – Árvores de Decisão

Um consultor deseja trabalhar na Brasil, onde a taxa de câmbio é de 100 reais para cada \$1. Ele planeja ficar no país por vários meses e as suas despesas estimadas para o período totalizam 250.000 reais. Devido à instabilidade econômica, caso o governo brasileiro consiga um empréstimo externo, a taxa de câmbio cairá 10% (\$1 = 90 reais) caso contrário subirá 20% (\$1 = 120 reais). Supondo que a probabilidade do governo receber um empréstimo seja de 80%, o consultor deseja considerar as seguintes alternativas:

1. Converter imediatamente todos os dólares em reais, para atender às despesas no período de permanência no país.

- 2. Aguardar que o empréstimo seja concedido ou recusado. Nesse meio tempo, ele não troca os dólares.
- 3. Converte dólares suficientes para obter 125.000 reais agora e mantém o restante dos dólares até que o empréstimo seja concedido ou recusado. Após isso, ele irá converter o restante dos dólares para obter os 125.000 reais restantes.

Assuma que a decisão sobre o empréstimo será feita antes da chegada do consultor ao país. Assuma também que após a mudança da taxa de câmbio, o valor das despesas do consultor será ainda de 250.000 reais.

Se o consultor quiser minimizar seu gasto em dólares, qual é a alternativa que ele deve escolher?