PCS2215 Fundamentos de Engenharia de Computação II Linguagens, Gramáticas e Autômatos AnnaHelena Reali Costa ProfessoraResponsável versão:1.6(outubro 2002)

Conteúdo 1. CircuitosSeqüenciais e Máquinas de EstadoFinito . 2. AutômatosFinitos . 3. Linguagens e Gramáticas. 4. AutômatosFinitosnãoDeterminísticos . 5. RelaçãoentreLinguagens e Autômatos. 6. Autômatos de Pilha. 7. Máquinas deTuring. 8. LinguagensFormais e DispositivosComputacionais .

PCS2215 - Fund.Eng.Comp.II

1. CircuitosSeqüenciais e Máquinas de EstadoFinito

- Circuitosseqüenciais :
 - sãoaquelesnosquaissuasaídadependenão somente das entradas, mastambém de seu estado no instante em que as entradasforam introduzidas (têmmemória).
- Máquina de estadofinito :
 - éum modeloabstrato de umamáquinaque possuaumamemóriaprimitiva .

© Gomi, Reali,SatoeSichman,2002

© Gomi, Reali,SatoeSichman,2002

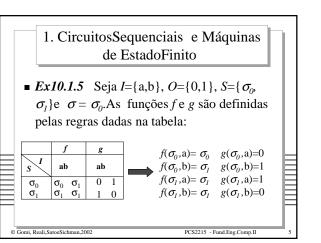
PCS2215 - Fund.Eng.Comp.II

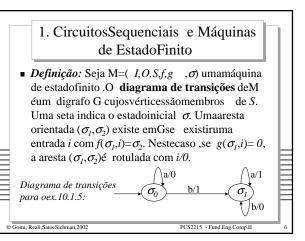
PCS2215 - Fund.Eng.Comp.II

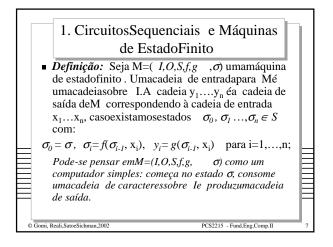
1. CircuitosSequenciais e Máquinas de EstadoFinito

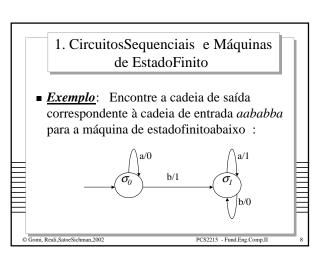
- *Definição*: Umamáquina de estadofinito $M=(I,O,S,f,g,\sigma)$ consiste de:
 - Um conjuntofinito *I* de símbolos de entrada
 - Um conjuntofinito O de símbolos de saída
 - Um conjuntofinito S de estados
 - Umafunçãopróximoestado $f: S \times I \rightarrow S$
 - Umafunção de saída $g:S \times I \rightarrow O$
 - Um estadoinicial $\sigma \in S$

© Gomi, Reali,SatoeSichman,2002









1. CircuitosSequenciais e Máquinas de EstadoFinito

■ Exercício:

 projetarumamáquina de estadofinitoque forneça 1 comosaídacaso um número parde 1's sejafornecidonumacadeia debitsde entrada e queforneça 0,no casocontrário.

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

2. AutômatoFinito

■ Definição:

Um **autômatofinito** Af = (I,O,S,f,g,σ) é uma máquina de estadofinitoonde :

- o conjunto de símbolos de saída é{0,1}e
- o estadocorrentedetermina a últimasaída.
- Aquelesestadosparaosquais a últimasaída é1 sãochamados estados de aceitação.
- Diagramas de transições deumAF: osestados de aceitaçãosãorepresentadosporcírculosduplos e ossímbolos de saídasãoomitidos.

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

2. AutômatoFinito

■ <u>Exemplo</u>: Desenhe o diagrama de transições damáquina de estadofinito At definida abaixo.O estadoinicial é σ_0 . Mostreque At é um autômatofinito edetermineo conjunto de estados de aceitação.

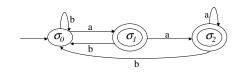
	f	g
SI	ab	ab
σ_0	$\sigma_1 \sigma_0$	1 0
σ_0 σ_1 σ_2	$\begin{bmatrix} \sigma_1 & \sigma_0 \\ \sigma_2 & \sigma_0 \\ \sigma_2 & \sigma_0 \end{bmatrix}$	1 0
σ_2	$\sigma_2 = \sigma_0$	1 0

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

2. AutômatoFinito

Resposta do exemplo: A máquina de estadofinito At é umAF umavezqueseuconjunto de símbolos de saída é $\{0,1\}$ e, paracadaestado σ , todas as arestas quechegam em σ têm o mesmorótulo de saída.



© Gomi, Reali,SatoeSichman,2002

2. AutômatoFinito

■ Definiçãoalternativa deumAF:

Um autômatofinito Af é definidopor :

- Um conjuntofinito *I* de símbolos de entrada
- Um conjuntofinito *S* de estados
- Umafunçãopróximoestado $f: S \times I \rightarrow S$
- Um subconjunto A de S de estados de aceitação
- Um estadoinicial $\sigma \in S$

Af =(
$$I$$
, S , f , A , σ)

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

2. AutômatoFinito

- *Definição:* Seja Af = (*I,S,f,A*, σ) um autômatofinito . Seja α = x_1 ... x_n umacadeia sobre *I*. Casoexistamosestados σ_0 , ..., σ_n satisfazendo:
 - (a) $\sigma_0 = \sigma$
 - (b) $\sigma_i = f(\sigma_{i-1}, x_i)$ para i=1,...,n;
 - (c) $\sigma_n \in A$

dizemosque α é aceita por Af.

A cadeiavazia (ou nula) λ é aceitapor Af see somente se $\sigma \in A$.

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

2. AutômatoFinito

- Seja Ac(Af)o conjunto de cadeiasaceitopor Af. Dizemos queAfaceita Ac(Af).
- Seja $\alpha = x_1...x_n$ umacadeiasobre *I.*Os estados $\sigma_0, ..., \sigma_n$ sãodefinidospelascondi ções (a)e (b) dadefini ção anterior.O caminho $(\sigma_0, ..., \sigma_n)$ é um *caminhorepresentando* α em *Af*.
 - Seo caminho P representa a cadeia α em Af, então Afaceita α see somente seP terminar em um estado de aceitação.

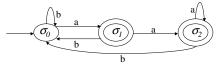
© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

2. AutômatoFinito

Exercícios:

- 1.A cadeia *abaa* é aceitapelo AF abaixo?
- 2.A cadeia *abab* é aceitapelo AF abaixo?



© Gomi, Reali,SatoeSichman,2002

2. AutômatoFinito

■ Respostas:

- 1.O caminho P=($\sigma_0, \sigma_1, \sigma_0, \sigma_1, \sigma_2$) representa a cadeia *abaa*. Comoo estado final σ_2 é um estado de aceitação, a cadeia é aceita pelo AFdado.
- 2.O caminho P= $(\sigma_0, \sigma_1, \sigma_0, \sigma_1, \sigma_0)$ representa a cadeia *abab*. Comoo estado final σ_0 não é um estado de aceitação, a cadeia não é aceitapelo AFdado.

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

2. AutômatoFinito

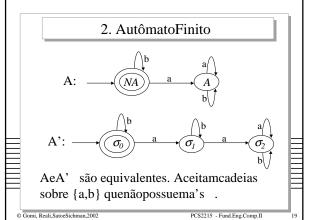
■ Definição:

Os autômatosfinitos AeA' são equivalentes seAc(A)=Ac(A').

■ Se definirmos a relação Rnum conjunto de AF's pelaregra ARA',seAeA' forem equivalentes,Ré umarelação de equivalência. Cadaclasse de equivalência consiste deum conjunto deAF's mutuamenteequivalentes.

@ C D . . I' C C' . L 2002

PCS2215 - Fund.Eng.Comp.II



3. Linguagens e Gramáticas

- *Definição:* Seja A um conjuntofinito de símbolos. Umalinguagem (formal) L sobre A éum subconjunto de A*.
 - <u>Ex</u>:DadoA={ a,b}.O conjunto Lde todas as cadeiassobre A quecont êm um número ímpar de a's é umalinguagemsobre A.

© Gomi, Reali,SatoeSichman,2002

- Como podemosdescreverumalinguagem L, isto é, especificarexatamentequaiscadeias pertencem aL?
 - SeLfor finita, pode-se simplesmenteenumerar seuselementos;
 - Pode-se descrever um algoritmoparadeterminar (reconhecer)se cadacadeiapertence aL;
 - Pode-se descrever um procedimentoquepermita gerar (produzir) apenaselementos deL, através do estabelecimento de uma gramática.

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

3. Linguagens e Gramáticas

■ Definição:

Uma **gramática** $G=(N,T,P, \sigma)$ consiste de:

- um conjuntofinito Nde símbolosnãoterminais ;
- um conjuntofinito Tde símbolosterminais, onde N∩T= \emptyset ;
- um subconjunto Pde[$(N \cup T)^*$ T^*] $x(N \cup T)^*$, chamadoconjunto de *produções*;
- um símboloinicial $\sigma \in \mathbb{N}$.

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

3. Linguagens e Gramáticas

- Umaprodução $(A,B) \in P$ é escrita $A \rightarrow B$, onde $A \in [(N \cup T)^* T^*]eB \in (N \cup T)^*$.
 - Assim,A deveconterpelomenos um símbolonão terminaleB podeconter qualquercombinação de símbolos terminais e nãoterminais.

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

3. Linguagens e Gramáticas

■ *Exemplos*:

Seja a gramática $G=(N,T,P, \sigma)$,com:

a)N={ σ },T={a,b}, P={ $\sigma \rightarrow \sigma a, \sigma \rightarrow b$ }

 $\begin{array}{ll} b)N=\{ \ \sigma,S\},T=\{0,1\},P=\{ \ \sigma {\longrightarrow} \lambda,\ \sigma {\longrightarrow} S,\\ S{\longrightarrow}1S,S\ {\longrightarrow}0S,S\ {\longrightarrow}1,S\ {\longrightarrow}0\} \end{array}$

© Gomi, Reali,SatoeSichman,2002

■ Definição:

Seja a gramática $G=(N,T,P, \sigma)$. Se $\alpha \rightarrow \beta$ é umaprodu ção e $x\alpha y \in (N \cup T)^*$, dizemosque $x\beta y$ é **diretamentederiv ável** de $x\alpha y$ e escrevemos: $x\alpha y \Rightarrow x\beta y$.

Se $\alpha_i \in (N \cup T)^*$ para i=1,...,n e α_{i+1} é diretamentederiv ável de α_i para i=1,...,n-1, dizemosque α_n é derivável de α_1 : $\alpha_1 \Rightarrow \alpha_n$

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

3. Linguagens e Gramáticas

 \blacksquare Derivação de α_n (a partir de α_1): $\alpha_1 \Rightarrow \alpha_2 \Rightarrow ... \Rightarrow \alpha_n$

Porconven ção, qualquerelemento de $(N \cup T)^*$ é derivável de simesmo.

■ A linguagem L(G) geradapor G consiste de todas as cadeiassobre T derivadas de σ.

@ C - - : P - : !! C - - - : C - ! - - - - 2002

PCS2215 - Fund.Eng.Comp.II

3. Linguagens e Gramáticas

■ \underline{ex} : Seja a gramática G=(N,T,P, σ), comN={ σ ,S},T={a,b},

 $P = {\sigma \rightarrow b\sigma, \sigma \rightarrow aS, S \rightarrow bS, S \rightarrow b}$

- (a)A cadeiaabSbb é diretamentederiv ável de aSbb, escritacomoaSbb ⇒ abSbb, usando a produção S→bS.
- (b)A cadeiabbab é derivável de σ, escrita σ⇒bbab.A derivação é: σ⇒bσ⇒bbσ⇒bbaS⇒bbab

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

3. Linguagens e Gramáticas

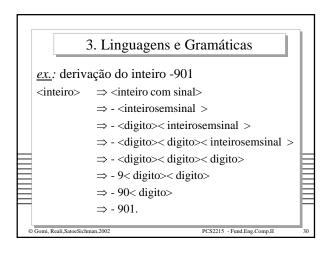
- **BNF** ("Backusnormalform" ou "Backus-Naur form"): modoalternativo de descreverumagramática G.
 - símbolosnãoterminais : inclusos em<..>
 - produção S→T, escrita:S::=T
 - produçõesda forma: $S::=T_1,S::=T_2,...,$ $S::=T_n$ podem ser combinadas em $S::=T_1|T_2|...|T_n$. (lê-se "ou" para "/")

© Gomi, Reali,SatoeSichman,2002

3. Linguagens e Gramáticas Ex.: umagramáticaparainteiros - um inteiro é definidocomoumacadeiacontendo um sinal opcional (+ ou -), seguidoporumacadeia de dígitos (0a9). Símboloinicial: <inteiro> <digito>::=0|1|2|3|4|5|6|7|8|9 <inteiro>::=< inteiro com sinal>|< inteirosemsinal >| - <inteiro com sinal>::=+< inteirosemsinal >| - <inteirosemsinal >| <digito>< inteirosemsinal >| <digito>< inteirosemsinal >|

PCS2215 - Fund.Eng.Comp.II

© Gomi, Reali,SatoeSichman,2002



3. Linguagens e Gramáticas Notaçãoequivalente: $G=(N,T,P,\sigma)$ N={<digito>,<inteiro>,<inteiro com sinal>,<inteirosem sinal>}, $T=\{0,1,2,3,4,5,6,7,8,9,+,-\}$ P={< digito> $\to 0$, <digito> $\to 1$, ..., <digito> $\to 9$, <inteiro> $\to <$ inteiro com sinal>, <inteiro> $\to <$ inteiro com sinal>, <inteiro com sinal> $\to <$ <inteiro com sinal> $\to <$ <inteiro semsinal >, <inteiro semsinal >> \to <digito>, <inteiro semsinal >> \to <digito>, <inteiro semsinal >> \to <digito>, <inteiro semsinal >> \to <digito><inteiro semsinal >> \to <digito><inteiro semsinal >> \to <digito>

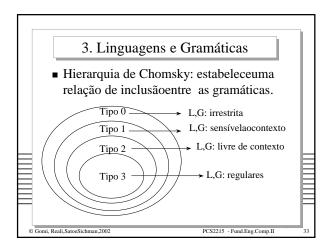
3. Linguagens e Gramáticas Conforme as restriçõesimpostasao formato das produções de umagramática, varia-se corrrepondentemente a classe de linguagensquetalgramáticagera A teoriamostraqueháquatro classesde gramáticas, capazes de gerarquatro classes correspondentes de linguagens, de acordo coma denominada hierarquia de

PCS2215 - Fund.Eng.Comp.II

© Gomi, Reali,SatoeSichman,2002

Chomsky.

8



■ Convençãodaprodu çãonula

Se umagramáticapermitirproduçãoda cadeianula , eladeverá ser da forma $\sigma{\to}\lambda$, onde σ é o símbolo inicial e não pertenceaoladodireito de qualquer produção e λ é a cadeianula . Assim, pode-se tratarestaprodu çãocomo um caso especial.

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

3. Linguagens e Gramáticas

- Definição (inclui itens a,b,ced):
 Seja G umagramática e λ a cadeianula .
- (a) Se todaprodução estiverna forma $A \rightarrow a$ ou $A \rightarrow a$ Bou $A \rightarrow \lambda$, com $A, B \in N, a \in T, G$ é uma gramática regular (ou tipo 3).
 - Nestagram ática, pode-se substituir um símbolon ão terminal por:(i)um símbolo terminal,(ii)um símbolo terminal seguidopor um não terminal ou (iii) pelacadeianula .

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

3. Linguagens e Gramáticas

- Exemplo: a gramática $G=(N,T,P, \sigma)$, com $T=\{a,b\}, N=\{\sigma,S\}, P=\{\sigma\rightarrow b\sigma, \sigma\rightarrow aS,S\rightarrow bS, S\rightarrow b\}$ é regular.
- Derivaçõesposs íveis: ab, abb, bbbabb,...
- $L(G)=\{b^nab^m \mid n \ge 0, m \ge 1\}$ $\Rightarrow G \notin uma$ gramática regular, portanto,a linguagem L(G) queelagera $\notin umalinguagem regular!$

Linguagensregularespermitemconcatena ção de símbolos, união e*(fechamentotransitivo e recursivo)de conjuntos de símbolos.

© Gomi, Reali,SatoeSichman,2002

- (b) Se todaprodução estiverna forma $A \rightarrow \delta$, com $A \in N$, $\delta \in (N \cup T)^*$, G é uma gramáticalivre de contexto (ou tipo 2).
 - $-\mbox{ Nestagram ática, pode-se substituir } A(\mbox{um não terminal isolado}) \mbox{ por } \delta \mbox{ sempreque se queira, independentemente do contexto em que } A \mbox{ estejainserido} \mbox{ .}$

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

3. Linguagens e Gramáticas

- <u>Exemplo</u>:a gramática G=(N,T,P, σ), com T={a,b},N={ σ },P={ $\sigma \rightarrow a\sigma b$, $\sigma \rightarrow ab$ } é **livre de contexto.**
- Derivaçõesposs íveis: ab, aabb, aaabbb,...
- L(G)={aⁿbⁿ | n=1,2,...} ⇒ L é umalinguagem livre de contexto e não é uma linguagem regular!

Linguagenslivres de contextopermitem, além das operaçõespermitidaspara a linguagem regular, operações de aninhamento.

© Gomi, Reali, SatoeSichman, 2002

PCS2215 - Fund.Eng.Comp.II

3. Linguagens e Gramáticas

- (c) Se todaprodução estiverna forma $\alpha A\beta \rightarrow \alpha \delta\beta$, com $\alpha, \beta \in (N \cup T)^*$, $A \in N$, $\delta \in (N \cup T)^* \{\lambda\}$, G é uma gramática sensívela o contexto (ou tipo 1).
 - Nestagram ática, pode-se substituir A por δ se A estiverdentro do contexto α e $\beta.$
 - Na gramática do tipo 1, $|\alpha A\beta| \le |\alpha \delta\beta|$, exceto para a produção $\sigma \rightarrow \lambda$, com σ sendo o símbolo inicial e λ , a cadeianula .

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

3. Linguagens e Gramáticas

- Ex.:a gramática G=(N,T,P, σ), comT={a,b,c},
 N={σ,A,B,C,D,E},P={σ→aAB, σ→aB,A →aAC,
 A→aC,B →Dc,D →b,CD →CE,CE →DE,
 DE→DC,Cc →Dcc} é sensívelaocontexto
 (ex.:CE →DE dizque C pode ser substituídopor D caso C sejaseguidopor E)
- Derivaçõesposs íveis: abc, aabbcc, aaabbbccc,...
- $L(G)=\{a^nb^nc^n \mid n=1,2,...\}$ \Rightarrow nãoexisteumagram ática livre de contexto GcomL=L(G); assim,L não é uma linguagemlivre de contexto!

Ex: declarações e uso de variáveis em programas fazemparte de linguagens sensíveis ao contexto.

© Gomi, Reali,SatoeSichman,2002

- (d) Se todaprodução deG estiverna forma $\alpha \rightarrow \beta$,com $\alpha \in [(N \cup T)^* T^*]e$ $\beta \in (N \cup T)^*$,G é uma gramática irrestrita (ou tipo 0).
 - Nestagram ática, nenhumalimita ção é imposta.

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

3. Linguagens e Gramáticas

- <u>Exemplo</u>: a gramática $G=(N,T,P, \sigma)$, $comT=\{a,b\},N=\{\sigma,B,C\}$, $P=\{\sigma\rightarrow BC,BC\rightarrow CB,B\rightarrow b,C\rightarrow a\}$ é **irrestrita.**
 - Esta produção somente é permitida em gramáticas irrestritas:BC →CB

 $L(G)=\{ab, ba\}$

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

3. Linguagens e Gramáticas

- Umagramática regularé umagramática livre de contexto.
- Umagramáticalivre de contexto, sem produções do tipo $A \rightarrow \lambda$, é uma gramáticasens ívelaocontexto .
- Umagramáticasensívelaocontexto é umagramáticairrestrita .

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

3. Linguagens e Gramáticas

■ Definição:

Umalinguagem Lé sensívelaocontexto (respectivamentelivre de contexto, regular)se existeumagramática sensívelaocontexto G(respectivamente livre de contexto, regular)comL=L(G).

© Gomi, Reali,SatoeSichman,2002

■ A gramáticaparainteiros dada(slide29)é livre de contexto.Se mudarmos as produçõespara :

$$\begin{split} <& \text{digitos>::=0< digitos>} |1< \text{digitos>}|...|9< \ \text{digitos>}| \ \lambda \\ <& \text{inteiro>::=+< inteiro semsinal>}| \ -<& \text{inteirosemsinal>}| \\ 0<& \text{digitos>} |1< \text{digitos>}|...|9< \ \text{digitos>} \\ \end{split}$$

<inteiro semsinal >::=0< digitos>|1< digitos>|...|9< digitos>

$$\label{eq:constraint} \begin{split} & resultar \'anumagram \'atica & Gregular. Como a \\ & linguagem \ L = L(G) \ geradan \~ao foi modificada \\ & conclu\' mos que \ L\'e \ uma linguagem \ regular. \end{split}$$

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

3. Linguagens e Gramáticas

■ Definição:

As gramáticas GeG' são equivalentes seL(G)=L(G').

PCS2215 - Fund.Eng.Comp.II

4. AutômatosFinitosNãoDeterminísticos

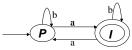
■ Nestaseçãomostraremosquegramáticas regulares e autômatosfinitossão essencialmenteequivalentes ,no sentido em que ambos sãoespecificações de uma linguagem regular(a gramática, como geradora dalinguagem eo autômato, como reconhecedor dalinguagem).

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

4. AutômatosFinitosNãoDeterminísticos

Seja o autômatofinito AF abaixo,o qual aceitacadeiassobre {a,b} quecontêm um númeroímpar de a's.



 Determinar a gramática regular equivalente.

© Gomi, Reali,SatoeSichman,2002

4. AutômatosFinitosNãoDeterminísticos

■ **AFC** ossímbolos de entrada {a,b}doAF são ossímbolosterminais deG.Os estados **P** e **I** sãoos símbolosnãoterminais .O estadoinicial **P** éo símbolo inicial.OsarcosdoAF correspondemàs produções deG.Se existir um arcorotuladopor *x* deS para S', escreve-sea produção:S →*x*S'.

No exemplo, temos: $P \rightarrow bP$, $P \rightarrow aI$, $I \rightarrow aP$, $I \rightarrow bI$

Além disso,seSforum estado de aceitação, incluise:S →λ.
 No exemplo: I→λ.

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

4. AutômatosFinitosNãoDeterminísticos

■ Assim,a gramática G=(N,T,P,P),com N={I,P},T={a,b}e P={P→bP, P→aI, I→aP,I→bI, I→λ} gera a linguagem L(G),a qual é a mesma que o conjunto de cadeiasaceitaspelo autômatofinito AF.

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

4. AutômatosFinitosNãoDeterminísticos

■ Teorema:

Seja Aum autômatofinito dado por um diagrama de transições. Seja σ o estadoinicial . Seja To conjunto dos símbolos de entrada eN,o conjunto de estados. Definirprodu ções $S \rightarrow xS$ ' se existir um arcorotulado x deS para S' e $S \rightarrow \lambda$ seSfor um estado de aceitação. Seja a gramática regular $G=(N,T,P,\sigma)$. Desta forma,o conjunto de cadeias aceitaspor A é igual aL(G).

© Gomi, Reali,SatoeSichman,2002

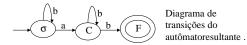
PCS2215 - Fund.Eng.Comp.II

4. AutômatosFinitosNãoDeterminísticos

- Seja a gramática regular G=(N,T,P,σ),com
 N={σ,C},T={a,b},P={ σ→bσ, σ→aC,C→bC,
 C→b}. Determinar oAF correspondente.
- GAF: Os símbolosn ãoterminaisser ãoos estados.Para cadaprodu çãoda forma S→xS', desenharumaaresta deSaS ',com rótulo x (produções σ→bσ, σ→aC,C →bC).A produção C→b equivale a:C →bF,F →λ, sendo Fum símbolon ão terminal adicional.A produção F→λ indicaque F é um estado de aceitação.

© Gomi, Reali,SatoeSichman,2002

4. AutômatosFinitosNãoDeterminísticos



■ Esteautômato éum **autômatofinitonão determinístico** (estando no estado C, caso receba b comoentrada ,o próximoestado nãoestádeterminado : pode serC ou F)

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

4. AutômatosFinitosNãoDeterminísticos

■ Definição :

Um autômatofinitonão determinístico At= (I,S,f,A,σ) consite de:

(a)um conjuntofinito Ide símbolos de entrada.(b)um conjuntofinito Sde estados.

(c) umafunção próximo estado f: $SxI \rightarrow P(S)$.

(d)um subconjunto AdeSde estados de aceitação.(e)um estadoinicial σ.

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

4. AutômatosFinitosNãoDeterminísticos

■ Exemplo 10.4.6: desenhar o diagrama de transições doAF nãodetermin ístico comI={a,b}, S={σ,C,D},A={C,D}, estadoinicial σ e função próximoestado dado pelatabelaabaixo :

I	a	b
s		
σ	{σ,C}	{D}
C	ф	{D} {C}
D	{C,D}	ф

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

4. AutômatosFinitosNãoDeterminísticos

- *Definição (itens a-e)*: Seja At=(I,S,f,A,σ)um autômatofinitonãodeterminístico .
- a) A cadeianula é aceitapor At sse σ∈ A.
- b) Se $\alpha = x_1...x_n$ é umacadeian ãonulasobre Ie os estados $\sigma_0,...,\sigma_n$ satisfazem: (a) $\sigma_0 = \sigma$; (b) $\sigma_i \in f(\sigma_{i-1},x_i)$ comi=1,..,n; (c) $\sigma_n \in A$, diz-se que α é aceitapor At.
- c) Denota-seAc(At) aoconjunto de cadeiasaceitas por Ate diz-se que At aceita Ac(At).

© Gomi, Reali,SatoeSichman,2002

4. AutômatosFinitosNãoDeterminísticos

- d) SeAteAt 'sãoaut ômatosfinitosn ão determinísticos eAc(At)=Ac(At'), então Ate At'são equivalentes.
- e) Se $\alpha = x_1...x_n$ é umacadeiasobre Ie existem osestados $\sigma_0,...,\sigma_n$ satisfazendo (a) e (b) da Def.10.4.7,0 caminho $(\sigma_0,...,\sigma_n)$ é chamado de caminhoquerepresenta α emAt.

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

4. AutômatosFinitosNãoDeterminísticos

 Exercício: a cadeia α = aabaabbb é aceitapelo autômatofiniton ãodetermin ísticoabaixo ?Se sim, localizar o caminhoquerepresenta α eo estado de aceitação.

Comi Booli SotooSishmon 2002

PCS2215 - Fund.Eng.Comp.II

4. AutômatosFinitosNãoDeterminísticos

■ Teorema:

Seja G=(N,T,P, σ) umagram ática regular. Seja I=T,S=N \cup {F}, onde F \notin N \cup T, f(S,x)={S '|S \rightarrow xS' \in P} \cup {F|S \rightarrow x \in P}, A={F} \cup {S|S \rightarrow λ \in P}.

Desta forma, o autômatofiniton \Tilde{a} o determinístico At=(I,S,f,A, $\Tilde{\sigma}$) aceita precisamentecadeias deL(G).

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

5. Relaçãoentrelinguagens e autômatos

- Na seção anterior vimosque ,seAéum autômato finito, existeumagramática regularG,com L(G)=Ac(A). Vimostambémque ,seGé uma gramática regular, existe um autômatofinitonão determinístico At,comL(G)=Ac(At).
- Nestaseçãoveremosque ,seGé umagramática regular, existe um autômatofinito A,com L(G)=Ac(A). Issoseráresultadodademonstração de quequalquerautômatofinitonãodeterminístico pode ser convertido num autômatofinito equivalente.

© Gomi, Reali,SatoeSichman,2002

5. Relaçãoentrelinguagens e autômatos

■ **Teorema**: Seja um autômato finito não determinístico At=(I,S,f,A,\sigma). Seja:

$$\begin{split} &(a)S \ '=P(S).(b)I \qquad '=I.(c) \qquad \sigma'=\{\ \sigma\}.\\ &(d)A \ '=\{X\subseteq S', \ \exists\ y\in X\ \middle|\ y\cap A\neq \emptyset\}.\\ &(e)ParaX \ \in S'\ ex\in I, \end{split}$$

$$f'(X,x) = \left\{ \begin{array}{l} \phi \; seX = \phi \\ \displaystyle \bigcup_{S \in X} f(S,x) seX \; \neq \phi. \end{array} \right.$$

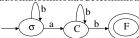
Então o autômato finito $At'=(I',S',f',A',\sigma')$ é equivalente aAt.

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

5. Relaçãoentrelinguagens e autômatos

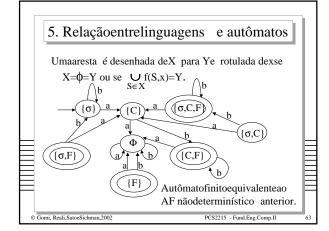
 <u>Exemplo</u>: Encontrar o autômatofinitoequivalente aoautômatofinitonãodeterminístico dado abaixo:

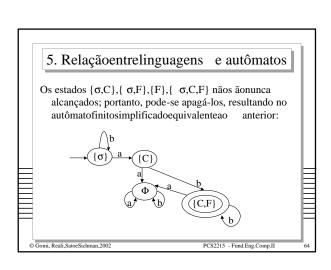


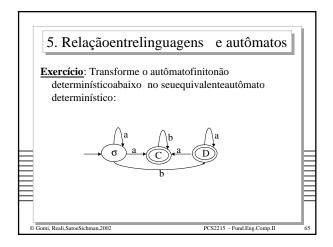
O conjunto de símbolos de entrada {a,b} nãomuda.

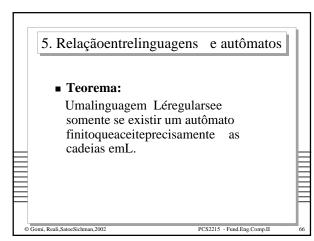
Os estadosconsistem de todosossubconjuntos do conjunto originalS= $\{\sigma,C,F\}$: $\phi,\{\sigma\},\{C\},\{F\},\{\sigma,C\},\{\sigma,F\},\{C,F\},\{\sigma,C,F\}.O$ estadoinicial é $\{\sigma\}.O$ s estados de aceitaçãos ãotodosossubconjuntos deS quecontenham um estado de aceitação doAF nãodetermin ístico original: $\{F\},\{\sigma,F\},\{C,F\},\{\sigma,C,F\}.$

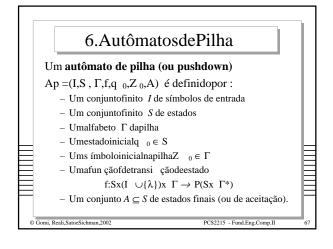
© Gomi, Reali,SatoeSichman,2002

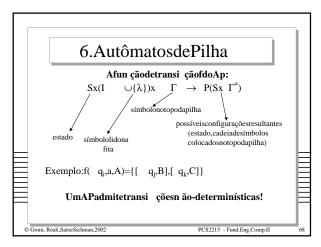


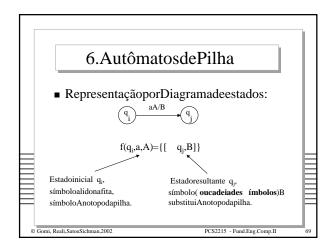


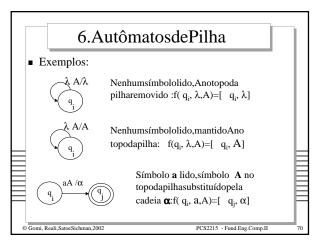


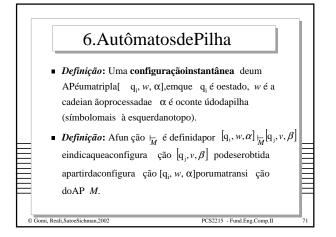


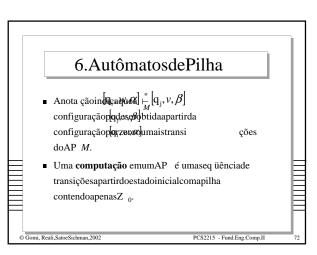


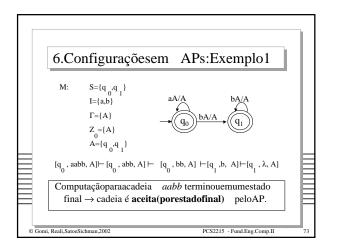


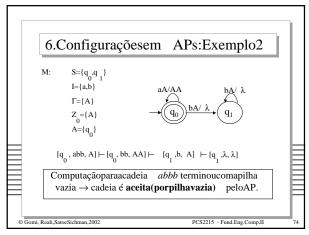


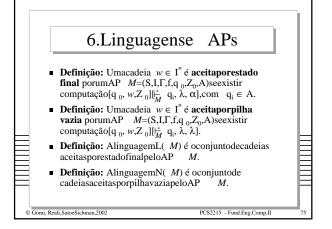


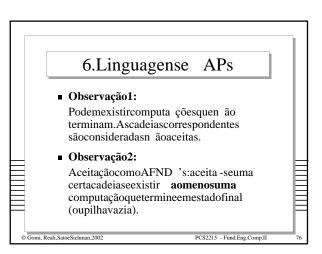


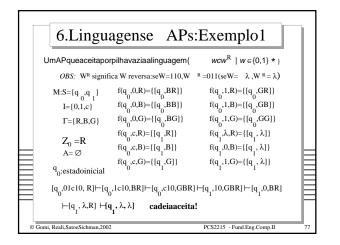


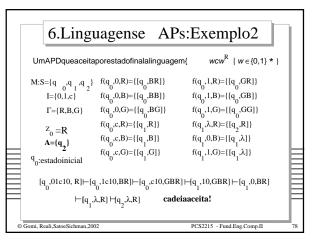


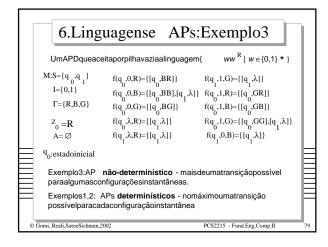


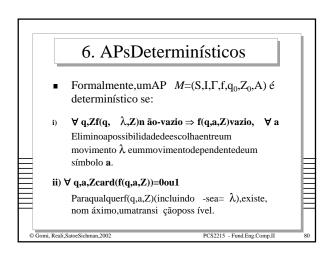












6. APs:observaçõesimportantes

- <u>Nãohá</u> equivalênciaentre APs nãodeterminísticos e APsdeterminísticos .
- Existeequivalênciaentre APs que aceitamlinguagensporpilhavaziae APs queaceitamlinguagensporestado

(Prova: Hopcroft/Ullman,págs,114e115.)

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

6. APs eLinguagensLivresdeContexto

Teorema (Chomsky, 1962):

Léumalinguagemlivredecontexto sss L éaceitaporalgumAP *M* queaceitapor pilhavazia(ouporestadofinal).

(Prova: Hopcroft/Ullman,págs.116 -119)

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

7. Máquinas deTuring

- Na seção 3 vimosque L={aⁿbⁿ | n=1,2,...} não é umalinguagem regular(slide38)eo teorema doslide66 afirmaque L nãopode ser reconhecidapor um autômatofinito.
 - Para determinar sea cadeia 000000111111 fazparte deL, provavelmentecontaremos o número de0's nacadeia e, aochegar o primeiro 1, anotaremosestenúmeropara futuracomparação e entãopassaremos a contar o número de1's. Desta forma, fizemosuso de alguma memória extra, nãodisponível num autômatofinito!

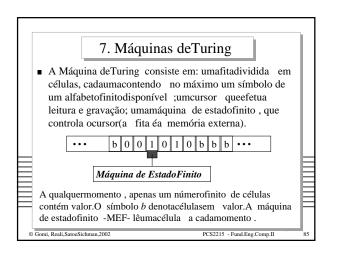
© Gomi, Reali,SatoeSichman,2002

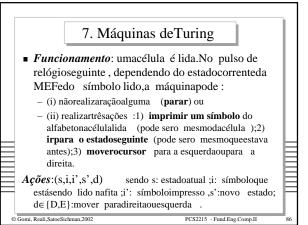
PCS2215 - Fund.Eng.Comp.II

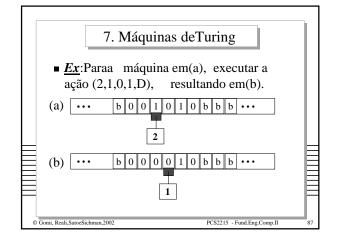
7. Máquinas deTuring

- Para simularprocedimentosmaisgerais dos que ospermitidospelasmáquinas de estadofinito, usamosuma *Máquina deTuring*, propostapelo matemáticoinglês AlanM.Turingem1936.
- Umamáquina deTuringé essencialmenteuma máquina de estadofinito coma habilidade de ler suasentradasmais de umavez e também de apagar ou substituir osvalores de suasentradas; elatambém tem uma memóriaauxiliarilimitada .

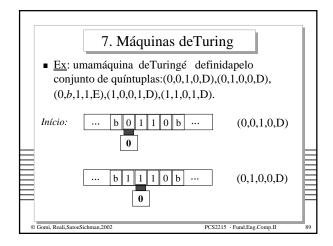
© Gomi, Reali,SatoeSichman,2002

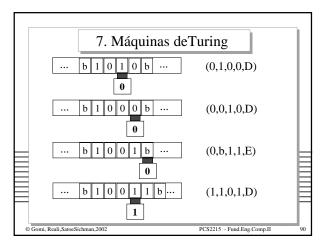


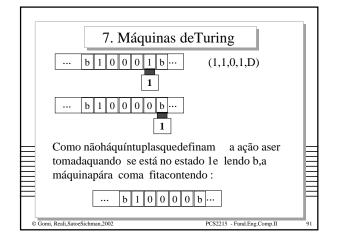


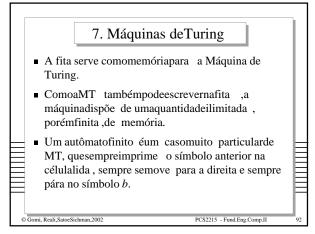


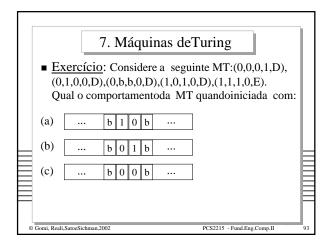
7. Máquinas deTuring • Definição: Máquinas deTuring Seja Sum conjuntofinito de estados eIum conjuntofinito de símbolosdafita (alfabeto dafita) incluindo o símbolo especial b. Umamáquina deTuringéum conjunto de quíntuplasda forma (s,i,i',s',d) onde s,s' ∈ S;i,i '∈I; d∈{D,E} e nãoh á mais de umaqu íntuplacome çandopelosmesmos símbolos s e i.











7. Máquinas deTuring

- Aplicações de MTs:
 - parareconhecerconjuntos (linguagens)
 - paracomputarfunções
- Reconhecimento (aceitação) por MT
 - Umamáquina deTuringTcom alfabetodafita I reconhece (aceita)um subconjunto SdeI*seT, começando em algumaconfiguraçãoinicial em umafitacontendoumacadeia α de símbolos de entradas, pára emum *estado final* see somente se $\alpha \in S$.

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

7. Máquinas deTuring

- Um estado finalem umamáquina deTuring éum estadoquenãoseja o primeiro elemento de qualquerquíntupla.
- Peladefinição de aceitação dada,T podeter doiscomportamentosquandoaplicada a umacadeia α∉S: (i) T podeparar emum estadonão final ou (ii)T podenãoparar .

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

7. Máquinas deTuring

■ Ex:MT quereconhece S={0ⁿ1ⁿ},comn ≥0. Alfabetoda fita={0,1,b,X}.O estado 8 é o únicoestado final.

(0,b,b,8,D): reconhece a fitavazia , quepertence aS.

(0,0,X,1,D): apaga o0 mais à esquerda e iniciamovparadireita .

(1,0,0,1,D),(1,1,1,1,D),(1,b,b,2,E):movep/ direita,no estado 1, até que encontre o fimdacadeiainicial ; então,movep/ esquerda,no estado 2.

(2,1,X,3,E): apaga o1 mais à direita e iniciamovparaesquerda .

(3,1,1,3,E):move para a esquerdaporsobreos 1s.

(3,0,0,4,E): passaaoestado 4 aoencontrar um0.

(3,X,X,7,D): passaaoestado 7se nãoencontrarmais 0s

(4,0,0,4,E):move para a esquerdaporsobreos 0s.

(4,X,X,5,D): encontra o extremoesquerdodacadeia e recomeça o processo.

(5,0,X,6,D): apaga o0 mais à esquerda.

(6,0,0,6,D),(6,1,1,6,D),(6,X,X,2,E):movep/ direita,no estado 6, até que encontre o fimdacadeiabin ária; então,movep/ esquerda,no estado 2.

(7,X,X,8,D): nãoh á mais 1s nacadeia ,a máquinaaceita a cadeia.

© Gomi, Reali,SatoeSichman,2002

7. Máquinas deTuring

- MT paracomputarfunções:
 - Dada umamáquina deTuringTe umacadeia α de símbolosdafita , começamos comT na configuraçãoinicialpadr ão em umafita contendo α.SeTem algummomentop ára deixandoumacadeia β nafita , podemos considerar β ovalorde umafun çãoavaliada em α. Assim,T(α)= β .O domíniodafun ção T consiste em todas as cadeias α para as quais T, em algummomento , pára.

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

8. LinguagensFormais e DispositivosComputacionais

- Vimosque as cadeias aceitas por um dispositivo computacional de capacidadelimitada coincide coma classemaisrestrita de linguagens: uma linguagem regular(tipo3)é aceitapor um autômatofinito.
- O dispositivocomputacionalmaisgeral éa Máquina deTuringea linguagemmaisgeral éa do tipo 0(irrestrita). Porisso, conjuntos reconhecidospormáquinas deTuring são as linguagens de tipo 0.

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

8. LinguagensFormais e DispositivosComputacionais

- Como vimos, existemdispositivoscomputacionais com capacidadesintermediáriasentreautômatos finitos e máquinas deTuring, quereconhecem linguagens do tipo 2(livres de contexto)e tipo 1(sensíveisaocontexto).
- Os autômatos de pilha reconhecemlinguagens do tipo 2(livres de contexto).
- Os **autômatoslimitados lineares** reconhecem linguagens do tipo 1(sensíveisaocontexto).

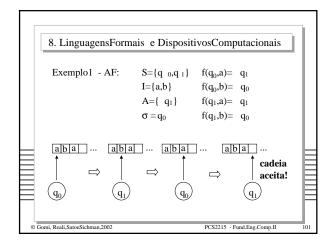
© Gomi, Reali,SatoeSichman,2002

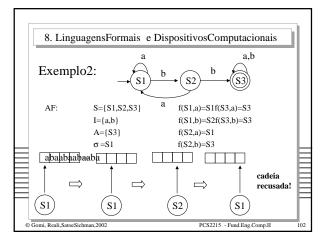
PCS2215 - Fund.Eng.Comp.II

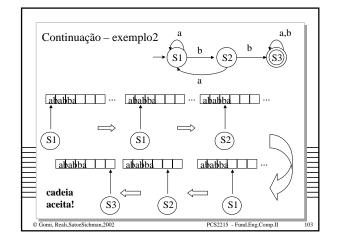
8. LinguagensFormais e DispositivosComputacionais

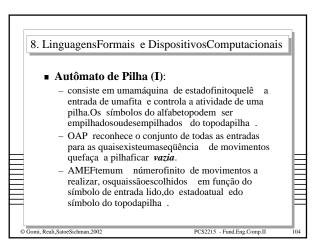
- Os autômatosfinitostambémpodem máquina de estadofinito, umcursore porém, ocursor somenteefetua leituras ese movimenta para a direita.
 - fita:armazenaumacadeia de I(1s ímbolo/célula).
 - cursor:l ê céluladafita(ums ímbolodacadeia).
 - máquina: alteraestado
deacordocom f emoveocursorparaa direita
(computa ção).
 - umacomputa ção **termina** quandoacadeia "acaba".
 - umacadeia é **aceita** peloAFseacomputa çãoterminaremum estados \in A.
 - umacadeia é rejeitada peloAFseacomputa çãoterminaremum estados ∉ A.

© Gomi, Reali,SatoeSichman,2002









8. LinguagensFormais e DispositivosComputacionais

■ Autômato de Pilha (II):

Os movimentospodem ser:

- Passaaoestadoseguinte , retira o símbolo do topoda pilha e lê o próximosímbolo de entrada;
- Passaao estado seguinte, retira o símbolo do topoda pilha, inclui um númerofinito de símbolos no topoda pilha e lê o próximosímbolo de entrada; ou
- Ignora o símbolodaentradasendo lido, manipula a pilhacomoacima, masnãolê o próximosímboloda entrada.

© Gomi, Reali,SatoeSichman,2002

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

8. LinguagensFormais e DispositivosComputacionais

■ AutômatoLimitado Linear:

- é umamáquina deTuring cujo cursorde leitura/gravaçãoestálimitado à partedafitaque contém a entrada original; além disso,a cada passoela tem umaescolha de quaismovimentos realizar, da mesma forma que aMT.
- Um autômatolimitado linear aceita o conjunto de todas as entradaspara as quaisexistealguma seqüência de movimentosquefaça a máquina de Turing parar em algumestado.

© Gomi, Reali,SatoeSichman,2002

PCS2215 - Fund.Eng.Comp.II

8. LinguagensFormais e DispositivosComputacionais

Linguagem	GramáticaDis	p . Computacional
irrestrita	irrestrita	Máquina deTuring
sensívelao contexto	sensívelao contexto	Autômatolimitado linear
livre de contexto	livre de contexto	Autômato de Pilha
regular	regular	AutômatoFinito

PCS2215 - Fund.Eng.Comp.II

Bibliografia

- [1] Johnsonbaugh, R. <u>DiscreteMathematics</u>. PrenticeHallInternational, London, UK, 4th. Ed. 1997. Cap. 10.
- [2] Gersting,J.L. <u>FundamentosMatemáticospara a Ciênciada</u>
 <u>Computação</u>,LTC Editora,RiodeJaneiro, Brasil,3a. Edição.1995.
 Cap.8.
- [3] Neto,J.J. <u>Introdução à Compilação</u>.LTC Editora,RiodeJaneiro, Brasil.1987.Cap.2.
- [4] Hopcroft, J. E. e. J. D. Ullman. <u>Introduction to Automata Theory</u>, <u>Languages and Computation</u>, <u>Addison-Wesley</u>.
- [5]Lewis,H.R.eC.H. Papadimitriou. <u>Elements of the Theory of Computation</u>. Prentice-Hall.

© Gomi, Reali,SatoeSichman,2002