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Abstract. Variable mass systems have been the focus of a large number of problems in classical mechanics. However, despite the 
classic nature and importance of variable mass systems dynamics, many misinterpretations were done on the correct application of 
Newton’s second  law, even in a not so distant past. Such misinterpretations sometimes give rise to apparent paradoxes in Classical 
Mechanics. For instance, motivated by the rocket problem, a long debate on the correct application of Newton’s law took place 
during the 1960’s, among American scholars and educators. Even subtler may be the proper application and interpretation of the 
Lagrangian formalism to systems presenting mass dependence on time, position (and velocity). The subject has not always been 
deeply discussed in Engineering Mechanics Education and, even worse, not always properly included in many modern Engineering 
Courses curricula, at both undergraduate and graduate levels. The purpose of the present paper is, therefore, to re-address such an 
important matter, aiming at contributing to Engineering Mechanics Education, by discussing under a historical perspective some 
theoretical aspects involved in variable mass systems dynamics which are usually hidden behind many derivations. 
 
Keywords: variable mass systems, Engineering Mechanics, Education, Newton’s Law, Meshchersky Equation, Lagrange 
Equation. 

 
1. INTRODUCTION 
 

Variable mass systems have been the focus of a large number of problems in classical mechanics. According to 
Šíma and Podolský (2005), the Czech scientist and inventor von Buquoy “was the first to investigate systems with a 
varying mass”. “In 1812 he explicitly formulated the correct dynamical equation of motion for the case when the mass 
of a moving object is changing”; see von Buquoy (1812), page 66, apud Šíma and Podolský (2005). His work was then 
presented in 1815, von Buquoy (1815), at the Paris Academy of Sciences. Also according to Šíma and Podolský, “apart 
from a single short article by Poisson (1819), his ideas did not attract attention, and they gradually become forgotten. 
Buquoys’s general equation of motion and other explicit examples were later formulated independently by various 
authors”; to be mentioned, Tait and Steele (1856) and Meshchersky (1897), apud Šíma and Podolský (2005).  

In particular, Meshchersky (1897) Master Thesis, and his subsequent work written in 1904, have been ever since 
recognized - in the Russian technical literature - as the limestone in the study of variable mass systems in the context of 
Classical Mechanics; see, e.g., Targ (1976), page 394 or Starjinski (1980), page 498. The Russian technical literature is 
indeed reach in examples of variable mass systems, since this early work which interpreted Newton’s law for the 
general case of continuously ejected (accreted) mass with non-null velocity. In fact, this interpretation is commonly 
cited in Russian and Eastern European texts as Meshchersky’s Equation, and the reaction (or thrust) force, that is 
explicitly shown to be proportional to the relative velocity between the particle and the ejected mass, is known as 
Meshchersky’s force. 

Other important and early pioneering work should also be cited. In 1857 Cayley (1857) discussed the problem of a 
chain being coiled up at a table. Levi-Civita (1928, 1930) treated the motion of a variable mass point body in the two-
body problem, introducing an extended form of Newton's law. Such a form, however, is only valid if mass is ejected or 
accreted with null velocity with respect to an inertial frame, as it will be discussed in the present paper. 

During the 1950’s and 60’s a renewed interest in this subject came into play with the ‘rocket problem’ and the 
emerging Aerospace Engineering. Apart the ‘rocket problem’, another special class, related to tethered satellite systems, 
might also be cited; see, e.g., Crellin et al. (1995, 1997). From another practical side, the textile industry has been a 
source of variable mass systems problems in Engineering Mechanics; see the works of Cveticanin (1984, 1989, 1992, 
1993a, 1993b). All those applied research activities gave rise to the need of new theoretical investigations, as those 
carried out in the 1980's and 90’s by Ge, (1982, 1984) and by Cveticanin (1993b). Open systems approaches have also 
been a very interesting field to which proper theoretical formulations for variable system dynamics gained renewed 
interest, as testimonies the work of McIver (1973) and, more recently, those by Mušicki (1999, 2000) and the review by 
Irschik and Holl (2004). 

However, despite the classic nature and importance of variable mass systems dynamics, many misinterpretations 
were done on the correct application of Newton’s second law, even in a not so distant past. For instance, motivated by 
the rocket problem - and by some controversy aroused from distinct interpretations - a long debate on the correct 
application of Newton’s law took place during the 1950’s and 60’s, amongst American scholars and educators: “…this 



basic law of mechanics is currently being seriously1 misinterpreted. This misinterpretation appears under conditions 
where the mass of a body is a function of time”, Meriam (1960); “There exists considerable confusion and disagreement 
among professional physicists concerning the correct classical equations of motion for systems of changing mass…”, 
Tiersten (1969). And, even recently, “despite the fact that variable mass dynamics has been an active research field for 
many years, we still find in the literature wrong applications of Newton’s second law in this context…”, Plastino and 
Muzzio (1992).  

Much subtler may be the proper application and interpretation of the Lagrangian formalism to systems presenting 
explicitly mass dependence on position (and on velocity2); see, for example, the works of Cveticanin (1993b), Irschik 
and Holl (2002), Pesce (2003) and Mušicki (2005). 

Those misinterpretations sometimes gave rise to apparent paradoxes in Classical Mechanics, most of them 
involving energy conservation principles. Examples on that are the case of some treatments given to the well-known 
chain problem coiled up at a table, where a continuous impact is involved, or the analogous case of the impact of a rigid 
body against the free surface of a liquid; see Pesce (2003, 2005), Casetta and Pesce (2006, 2007). 

All those aspects have not always been deeply discussed in Engineering Mechanics Education and, worse, not 
always included in many modern Engineering Courses curricula, at both undergraduate and graduate levels. The 
purpose of the present paper is, therefore, to re-address such an important theme, aiming at contributing to Engineering 
Mechanics Education by re-addressing theoretical aspects often involved in variable mass systems dynamics, which are 
usually hidden behind many derivations. 

In Sec. 2, the proper Meshchersky form of Newton’s law for continuously varying mass particles is re-addressed. A 
short review on the evolution of some historical notes which may have contributed to the formalization of such law of 
motion is done. Simple and usual didactic examples enlightening the usage of Newton’s law in problems involving 
variable mass particles (or subsystems) are discussed. In Sec. 3, it is shown that despite the well-known generality of 
Lagrange’s Equation, modified forms for the generalized force may be required in the analysis of cases involving 
variable mass problems. A simple example is shown.      
  
2. NEWTON’S SECOND LAW OF MOTION AND VARIABLE MASS SYSTEMS 
 

According to Arons and Bork (1964), the term ‘law of motion’ was introduced in the 17th century by Descartes. 
After stating the law of inertia in an essentially modern form, Descartes stated a law of conservation of momentum with 
respect to its magnitude only, and not to direction, and continued with a list of ‘laws of impact’ which involved the 
impact between solid bodies. At the beginning of his famous work, Philosophiae Naturalis Principia Mathematica, 
Newton asserted the so-called ‘laws of motion’, which is more than a result of an appreciation of previous works. To 
Arons and Bork, “rather than dealing with relations between initial and final conditions in an interacting system, as 
done by Descartes, Newton dealt directly with the effect of the forces acting on individual bodies…” However, when 
Newton discussed the motion of bodies, the trajectories were conic sections and not straight lines or other paths, and the 
forces considered by him were central forces. Apparently, he showed no interest in the mechanical problems usually 
found in today textbooks, particularly the variable mass ones. Paradoxically, according to Dugas (1951), “Newton 
introduced the notion of mass into Mechanics3”, even though “this notion had appeared in Huyghen’s work, but only in 
an impermanent form”. 

To analyze the motion of the planets, Newton needed to focus his attention on the history of the motion of a single 
body, and not on the whole interacting system. In this sense, Arons and Bork (1964) pointed out: “it seems quite 
possible that, motivated by this need, he discovered in the ‘third law of motion’4 a way of separating or isolating an 
individual body from the rest of the system with which it is interacting”. “Given equal and opposite action of bodies on 
each other (third law), consistency with the known laws of impact required that these actions imparted equal and 
opposite changes of momentum. Thus, Newton might naturally have been led to his second law5. In recent years, many 
authors pointed out that in using the term ‘motive force’ Newton was referring to what we call ‘impulse’”.  

However, Newton’s law is sometimes written, even for a single particle, not as a statement which relates impulse 
and momentum, but as (see, e.g., Goldstein (1981), chapter1), 

)(
d
d vF m
t

= ,               (1) 

                                                           
1 Authors’ enhancement. 
2 Not in a relativistic sense, though. 
3 “Definition I – The Quantity of Matter is the measure of the same, arising from its density and bulk conjunctly”; Dugas (1951), page 201. 
4 “Law III - To every action there is always opposed an equal reaction – or the mutual actions of the two bodies upon each other are always equal, and 
directed to contrary parts”; Dugas (1951), page 206. 
5 “Law II - The alteration of [the quantity] of motion is ever proportional to the motive force impressed; and is made in the direction of the right line 
in which that force is impressed”; Dugas (1951), page 206. 
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being  the resultant of all external impressed forces, m the mass of the body and v its velocity vector. The key point is 
that this interpretation of Newton’s second law is of restrict validity in Mechanics

F
6. Considering it applied to a single 

particle, such a form may be encountered in Levi-Civita’s work (1928), and is only valid if mass is constant or if is 
accreted (ejected) at null velocity with respect to the inertial frame of reference. In the case of variable mass systems 
(the concept of an open system should be here evoked), Eq. (1) is not generally valid. On the other hand, in this form, 
Eq. (1) violates the relativity principle under Galilean transformations (see Appendix) – an obvious exception if mass is 
invariant - and, therefore, cannot be considered as Newton’s second law, but as a particular case of it. As already 
mentioned, this issue was early addressed by von Buquoy (1812), Tait (1856) and Meshchersky (1897).  

Nonetheless, from a recent perspective, according to Plastino and Muzzio (1992), this particular form of Newton’s 
law, Eq. (1), “was popular in textbooks, decades ago, because it was then in the vogue to consider that, according to 
special relativity, mass depended on velocity”. 

The derivation of the proper Newton’s law for variable mass system might not be considered straightforward, since 
the original one was formulated for a definite set of particles or rigid bodies. According to Eke and Mao (2002), an 
interesting manner to overcome this difficulty is to model variable mass systems in a way that allows them to be viewed 
as constant mass systems, and thus make them amenable to treatment by existing principles of dynamics. Such models 
will not be explored here, but a brief discussion on some of them can be found in Irschik and Holl (2002) and Ambrosi 
and Mollica (2002). A didactical manner to derive the proper Newton’s law of motion for simple variable mass systems 
is the one due to Meriam (1960) and/or to Leitmann (1957). Their technique consists in considering a set of constant-
mass particles. Newton’s law is then applied to the whole system, but the particles are labeled in order to be possible 
distinguishing those particles which, at a certain instant of time, belong to a considered partial system and those which 
do not. Simple algebraic manipulations and the assumption of validity of the principle of conservation of mass, applied 
to the whole system, lead to Newton’s law in its most general form, i.e. 

)(
d
d

d
d vuF m

tt
m

=+ , (2) 

where v is the velocity of the particle under study, that is gaining (loosing) mass at a time rate tm dd and u is the 
velocity vector of the accreted ( 0dd >tm ) or ejected  ( 0dd <tm ) mass, to/from the system, both velocities obviously 
measured in the same inertial frame of reference. Note that Eq. (1) is promptly recovered from Eq. (2) in the particular 
(Levi-Civita’s) case where mass is accreted (ejected) with null velocity. Equation (2) is also usually written in terms of 
the relative velocity between the particle and the accreted (ejected) mass, 
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d
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This form of Newton’s Law is due to Meshchersky (see Appendix) who, in the end of the 19th and beginning of the 
20th centuries, pioneered studying the dynamics of a variable mass point; Meshchersky (1897, 1904). Equation (3) is 
known as Meshchersky’s Equation in the Russian technical literature. The reaction force  is known as 
Meshchersky’s force. In 1903, according to Starjinski (1980), page 498, the Russian scientist Tsiolkovski - who had 
invented a kind of rocket-aircraft twenty years before that - applied Meshchersky’s Equation to solve the rocket 
problem in two versions: (i) gravity-free and (ii) non-gravity-free. Those two problems are sometimes referred to as the 
first and the second problems of Tsiolkovski. 

relmuΦ &=

Most text books, either at undergraduate or graduate level, mention variable mass systems. Nonetheless, to these 
authors knowledge, there are not so many of them presenting comprehensive and properly didactic treatments of 
Newton’s second law. Examples, in this sense, are Inglis (1951), Targ (1976), Starjinski (1986), José and Saletan 
(1998). 

In many other undergraduate and graduate texts, either the problem is simply not addressed (some times just 
mentioned) or is treated only when dealing with the ‘rocket problem’. Meriam and Kraige (1987) or Boresi and Schmidt 
(1954) are examples of this last approach. 

Worse, there are even some classics that give wrong treatments to the problem, stating Eq. (1) as generally valid for 
a single varying mass particle, with no further consideration; see, e.g., Goldstein (1950, 1981), chapter 1, Singe and 
Griffith (1959), chapter 12. The reasons for this are not clear to the present authors, but certainly influenced the 
surprising debate occurred among American educators in the 1950’s and 60’s. 

It is also interesting to mention that Eq. (2) can also be conceived by recovering the following axiom of mechanics: 
any change whatsoever in the quantity of any entity within a closed surface can be affected in one or other of two 
distinct ways: it may be affected by the production or destruction of the entity within the domain, or by the passage of 
the entity across the domain due to its transportation by particles; see Irschik and Holl (2004) for a detailed discussion 
on the application of general laws of balance and the generalized transport theorem. According to Thompson (1988), the 

                                                           
6 Eq. (1), in the form, 

dt
dpF = , is always valid if one thinks of an invariant mass system being p the total momentum . 



time rate of change momentum of an open system (the first parcel of the right-hand side of Eq. (2)) can be created or 
destroyed by the action of the impressed forces (the left-hand side of Eq. (2)) or carried into the domain or out of it by 
means of a flux of mass with non-null velocity (the second term of the right-hand side of Eq. (2)). 

 
2.1. Simple Didactic Examples 

 
Consider, first, an open system consisting of an open-topped freight car which can accumulate water (or seeds) 

which is (are) being dropped from an external pipe. Besides vertical reactions and weight, no other external forces act 
on the system, particularly not in the horizontal direction. For the sake of simplicity a ‘fixed frame’ of reference is 
adopted.  

In order to analyze the motion of the system formed by the car plus the amount of dropped water (or seeds), Eq. (2) 
(or 3) must be used. At first, let us assume that the pipe is fixed at a position, and the car is filled with some finite 
amount of water when it passes through this position. Since the pipe is fixed, the horizontal velocity of the water flow is 
zero, i.e. mass is accreted with zero horizontal velocity, 0=xu . If m is the mass of the system and  its horizontal 
velocity, Eq. (2) then leads to 

xv

0)(
d
d
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                    (4)  
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ux = 0 

Figure 1. Sketch of the horizontal motion of an open-topped freight car that is filled with water, from a fixed pipe. 
 
By integrating Eq. (4) between some instant of time before the car is under the pipe and some after that, we have 

beforex
after

before
afterx v

m
m

v ,, =               (5) 

As  after passing through the pipe, the velocity of the system is clearly reduced. beforeafter mm >

 
Let us now assume that the pipe follows the car and thus water is always being dropped into it (see Fig. 2). In this 

case, mass is accreted with the same horizontal velocity of the car, i.e. xx vu = .  
 

x 

vx 

ux = vx 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. Sketch of the horizontal motion of an open-topped freight car that is filled of water, from a pipe with the 
same horizontal velocity as the car. 

 
        In this case, Eq. (2) becomes 
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One can then conclude from Eq. (6) that 

beforexafterx vv ,, = .              (7) 

At a first sight, this result could be sought against a naïve intuition, since, although the mass of the system increases 
with time, its velocity remains the same. 

 
Take now the classical rocket problem. The whole system has invariant mass, m. Eq. (1) could then be applied to 

the whole (constant mass) system, which could then be divided into two exchanging mass subsystems; i.e., the rocket 
plus the non-burned fuel, with mass , and the burned fuel (the expelled gases), with mass  , with 1m 2m 021 <−= mm &&  
(see Fig. 3). However, care should be taken in interpreting the fluxes of exchanging mass between the two subsystems 
and their relations with respect to the respective positions of the two centers of mass, together with their respective 
velocities and accelerations7. See the works by Thorpe (1962) and by Tiersten (1969), for an enlightening discussion on 
this subject. 

 
 
 
 
 

 
m2 

m1 

v2 v1 

 
Figure 3. Illustration of the rocket problem. Partition of the whole system into two subsystems. 

 
On the other hand, from the simpler (and approximate) point of view of particle dynamics, Eq. (2) might be applied to 
the subsystem of mass  (rocket + non-burned fuel), now taken as a single particle, and to another second subsystem, 
composed, at each instant of time, by an expelled (carrying-mass) particle, of mass

1m
μ , that is incorporated to the gas 

tail. The resultant of external forces acting on those two subsystems are the sum fFF += 1 , where f is the total external 
force acting just on the expelled particle. Taking u as the velocity of the expelled particle, it follows, from Eq. (2), that, 
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or else, recalling that 01 <−= μ&&m , Eqs. (8) may be written in Meshchersky’s form, as 
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 De Souza and Rodrigues (2004) argue that such a kind of splitting is didactically fruitful since Eqs. (8) present a 
common generic structure. Note that summing up Eqs. (8a) and (8b) does recover Eq. (1) for this two-particle system. 
Both fluxes of mass cancel each other; i.e. the second terms in the left-hand sides play the role of an action-reaction 
pair, what they indeed are. 

 
3. THE APPLICATION OF LAGRANGE EQUATION TO VARIABLE MASS SYSTEMS 
  

Within Analytical Mechanics, under the Langragian formalism, some special care may be also needed, when 
dealing with variable mass systems. At first, recall that the original form of Lagrange Equation, namely, 
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7 It should be noted that, actually, the position of the center of mass of the rocket + unburned fuel varies with respect to a reference system fixed at the 
rocket, say the nozzle. So does the position of the center of mass of expelled gases, with respect to the nozzle. 



where T  is the kinetic energy of the system, is the j-th generalized force and  the corresponding generalized 
coordinate, was also derived for a definite i-set of constant-mass particles; see, e.g. Eke and Mao (2002). Curiously, this 
same form may be also applied to systems with varying mass. However, the generalized forces must be redefined 
accordingly. The explanation for this kind of invariance is quite subtle and may be disclosed in the derivation of 
Lagrange Equation as obtained trough the application of the Principle of Virtual Work to D’Alembert’s Principle; see 
Pesce (2003), for a detailed discussion on this matter. Usually, though, this invariance property is not comprehensively 
covered, in most text books, even in classic ones; see, e.g., Lanczos (1949), Whittaker (1965), Pars (1965), Landau and 
Lifschitz (1966). 

jQ jq

 
In the simpler, usual and first varying mass case, in which the variation of mass is given as an explicit function of 

time, in the form , it is sufficient to redefine the generalized force as; see, e.g., Cveticanin (1993b) or Pesce 
(2003), 
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where  is the velocity of the accreted (ejected) mass to (from) the particle i. However, in a second and more general 
case, in which masses are considered as functions of position and time,

iu
);( tqmm jii = , the generalized forces read; see 

Pesce (2003)8
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Finally, in the third and most general case that might be conceived in the context of Mechanics, when masses are 
considered as functions of position, time and (possibly) velocities, );,( tqqmm jjii &= , the generalized forces read; see 
Pesce (2003), 
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Therefore, analogously to Newtonian Mechanics, unless further considerations regarding the definition of 
generalized forces are made, the classical form of Lagrange equation is only applicable to the very particular case in 
which mass is accreted (ejected) with null (absolute) velocity and, moreover, given solely as function of time (explicit 
dependences on position or velocity otherwise precluded). 
 
3.1 A Simple Didactic Example 

 
The same examples presented in Sec. 2 can be alternatively solved through the application of Eqs. (10)-(12). Let us, 

instead, consider another didactic problem which may require the application of Eq. (13). Suppose a heavy cable being 
deployed from a reel by the action of gravity as in Fig. 4. This same example and two other problems in Offshore 
Engineering are treated in Pesce et al. (2006). 

 
 

R

l(θ)=Rθ

g

R

l(θ)=Rθ

g

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Sketch of a heavy cable being deployed from a reel under the action of gravity. 
                                                           
8 See also Cveticanin (1993b) for an equivalent form of this extended Lagrange Equation, where Meshchersky’s force appears explicitly. 
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The angleθ , the generalized coordinate, is such that the cable suspended length can be given by θRLs = . If L  is 

the entire length of the cable and, μ its density per unit length, θμRms =  and )( θμ RLmw −=  are, respectively, the mass 
of the suspended and wound parts. Note that mass enters into the suspended and leaves the wound part with velocity 

. Suppose now that, for some practical reason, the analyst is interested in the subsystem composed by the reel and 
the wound portion, i.e., a variable mass system. 

θ&Ru =

The traction T  which acts on the system can be obtained by the application of Eq. (2) in the suspended part 

( ) θθ && R
t

m
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which can be integrated to give 

( θ&&RgmT s −= )  .             (16) 

Letting  be the moment of inertia of the reel, , plus the one of the wound part, 
, the kinetic energy of the considered subsystem is then given by 
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If, erroneously, Lagrange equation in the form of Eq. (10)-(11) is applied, with , RRmTQ w )( θ&&+= θ=q  and 
22

02
12

2
1 )]([ θθμθ && RLRIIT −+== , the obviously incorrect equation of motion is obtained: 

0)( 223
2
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Note that, as written above, the mass of the reel plus the wound portion is explicitly dependent on the generalized 
coordinate, and so Eq. (13) must be used to give the proper equation of motion, i.e. 

0)( 22
0 =−+ θμθμ gRLRI && .           (18) 

Eq. (18) is indeed the correct equation of motion and might have been obtained by directly applying the classical 
form of the Lagrange’s Equation, Eq. (10-11), to the system, then to be considered as a whole, hence of invariant mass. 

 
4. CONCLUSIONS 

 
Problems of variable mass systems in Engineering Mechanics are rather classical and a very well explored subject in 

the technical literature, since von Buquoy’s work, in 1812-1815 and Metchersly’s, in 1897. Nevertheless, its subtlety 
sometimes reserve trappings to students and even to scholars. As a matter of fact, much work is still being carried out 
on the subject, as testimonies the recent review by Irschik and Holl (2004). Sometimes, motivated by nonlinear 
dynamics applications, aroused from engineering problems, other times by theoretical issues, see, e.g. Mušicki (2005), 
variable mass system dynamics is still a state-of-the-art matter. Nevertheless, from time to time, misinterpretations are 
found on the correct application of Newton’s second law or concerning the Lagrangian Equation to this kind of systems. 
The present paper aimed at contributing to Engineering Mechanics Education by re-addressing former discussions from 
a historical perspective, otherwise hoping to stimulate students and scholars to reflect on some theoretical aspects that 
are usually hidden behind many derivations. 
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APPENDIX 
 
Galilean invariance 

 
Consider two inertial frames of reference. One of them, for simplicity and no loss of generality, is supposed fixed 

and the other one moves with a constant velocity, . Let  and refv v v′  be the velocity of a point with respect to those 
frames of reference. Then, it follows that refvvv +′=  and vv ′= && . Let us now show that the Newton’s law in the form 
of Eq. (2) or (3) is invariant with respect the adopted inertial frame of reference. From Eq. (2) we have that 
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Eq. (A1) can be written as  
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Hence, from Eqs. (A1) and (A3) it follows that the Newton’s law, in one of this forms, is invariant with respect to 
the choice of the inertial frame of reference. Note that, on the other hand, Eq. (1) does not share this property, i.e. 

refref t
mm

tt
m

t
m

t
m

t
mm

t
vvvvvvvvF

d
d)'(

d
d)'(

d
d

d
'd

d
d

d
d)(

d
d

+=++=+== ,       (A4)  

what clearly shows the dependence of Eq. (1) on the choice of the velocity of the inertial frame of reference, 
unless 0dd ≡tm .        

 
 
 



Meshchersky’s Equation 
 
See, e.g., Starjinski (1986), page 498, or Targ (1976), page 394. Consider a material volume which moves with 

respect to a fixed frame of reference. The mass in the interior of the material volume can vary (a discussion on the 
variation of mass of a material volume can be find in Irschik and Holl, 2004) with some law, . At an arbitrary 
instant of time , the mass of the material volume is given by  Let us now suppose that an observer 
follows the motion of this volume, and at a certain instant of time  an amount of mass is abandoned from the material 
volume. Since the material volume can move in any direction, the theorem of momentum change can be applied, i.e. 
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where  is the position of the center of mass of the material volume. By integrating Eq. (A5) between the instants  
and  one obtains 
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Let us now call by  the absolute velocity of the center of mass of the material volume at the instant . 

Since it was supposed that after  some amount of mass can be abandoned from the material volume, we thus call by 
 the velocity of the center of mass of the amount of mass that still remains in the considered material volume at 
. Finally, u  is the absolute velocity of the abandoned portion of mass , where  (see Fig. 5) 
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Figure 5. Motion of a variable mass material volume that abandons part of its mass  
 
 
Equation (A6) can then be rewritten as, 

ttmmmtm d)()d()d](d)([ 00 Fv-u-vv =+++ .          (A7) 

Taking Eq. (A7) in the limit as (neglecting second order terms), Meshchersky’s Equation of motion for a 
point of variable mass is readily obtained 

0d →t

)(
d
d

d
d v-uFv

t
m

t
m += ,           (A8) 

where the second term of the right-hand side is the reactive force of Meshchersky’s Equation (A8) obviously recover 
Eq. (1) when u = 0. 


