
Osborne Reynolds at the age of �24 (ca. 1866). 
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NOTE ON THE HISTORY OF 

THE REYNOLDS NUMBER 

N. Rott 

Department of Aeronautics and Astronautics, Stanford University, 
Stanford, California 94305 

1. NAME ORIGINS 

In 1908, Arnold Sommerfeld presented a paper on hydrodynamic stability at 
the 4th International Congress of Mathematicians in Rome (Sommerfeld 
1908). In the equation known today as the Orr-Sommerfeld equation, he 
introduced a number R as "eine reine Zahl, die wir die Reynolds'sche 
Zahl nennen wollen." (freely translated: "R is a pure number; we will call 
it the Reynolds number.") The terminology introduced by Sommerfeld 
has not changed ever since, and the use of the expression "Reynolds 
number" has spread into all branches of fluid mechanics. 

Actually Sommerfeld's work is not foremost in one's mind when one 
thinks of the direct continuation of the ideas set forth by Osborne Reynolds 
in 1883 (Reynolds 1883). This is probably the reason that Sommerfeld's 
use of the expression "Reynolds number" was generally forgotten before 
von Karman (1954) drew attention to it in his book Aerodynamics: Selected 

Topics in the Light of Their Historical Development. He referred there to 
work by Sommerfeld from the year 1908 but did not mention the title and 
the place of publication. Von Karman returned to this subject in his 
paper published in the Albert Betz anniversary issue of the Zeitschrift fur 
Flugwissenschaften (von Karman 1956). Unfortunately the reference there 
is to Sommerfeld's (1904) paper on the Reynolds theory of lubrication. In 
that work the inertial terms are neglected, and the notion of the Reynolds 
number is neither needed nor used. While it is not difficult to reconstruct 
the facts by the use of von Karman's book, it may be useful, nevertheless, 
to have these sources collected and recollected here again. 

1 also wish to correct and to explain an incorrect statement that I made 
on this subject in an earlier article in this series (Rott 1985). There I stated 

1 
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2 ROTT 

that the expression "Reynolds number" was introduced by Prandt!. This 
remark was based on personal recollections of conversations with Jakob 
Ackeret. Given the fallibility of memories that are not supported by tan­
gible evidence, this remark should never have been made. Thanks are due 
to numerous colleagues and friends who drew my attention to the facts 
uncovered by von Karman. However, I have decided to investigate, after 

having made the allegations, the actual role of Prandtl in the history of 
the Reynolds number. This has led also to studies of the early history of 
the notion and notation before Sommerfeld and Prandtl. A summary of 
my findings follows. 

Many people in fluid mechanics, if asked to guess, would be inclined to 
attribute the expression "Reynolds number" to Blasius. His work is the 
first that is fully devoted to the extraction from experiments of a function 
that, according to Reynolds' similarity law, depends only on the Reynolds 
number. The reader consulting the originals will find that Blasius actually 
uses the expression "Reynolds number," but only twice in the first pub­
lication of his results (Blasius 1912, pp. 640, 642). In the subsequent 
extended VDI report, he uses the expressions again in the corresponding 
passages (Blasius 1913, pp. 7, 9). 

Prandtl's role in the history of the Reynolds number, as revealed in his 
collected works, begins with his early paper on the Reynolds analogy 
(Prandtl 1910). There he introduces "die in der Hydrodynamik bekannte 
Reynolds'sche Zahl" but calls it later simply (. The words "known in 
hydrodynamics" refer to the general field. Thus it cannot be ascertained 
whether Prandtl has chosen his words following Sommerfeld or some other 
source known to him, or whether he made this choice independently. On 
the other hand, Prandtl's influence on Blasius is highly probable. 

In his encyclopedia article on "Fliissigkeitsbewegung," Prandtl (1913) 
writes more deliberately; "Die vorstehende Grosse, eine dimensionslose 
Zahl, wird nach dem Entdecker dieses Ahnlichkeitsgesetzes, Osborne 
Reynolds, die Reynolds'sche Zahl genannt." ("The forementioned 
quantity, a nondimensional number, is named after the discoverer of this 
similarity, Osborne Reynolds, [and is called] the Reynolds number". ) I am 
indebted to Professor Hiro Tani for pointing out this passage (in Volume 
3, p. 1445 of the collected works), as well as for other information used in 

this note. 
A study of Prandtl's collected works also shows the crucial role that he 

and his coworkers in GCittingen played in the application of hydrodynamic 
similarity to the drag problem. In the years around 1912, an international 
dispute erupted over the drag of spheres, with Prandtl and Eiffel (who made 
the famous drop experiments from his tower) as the main protagonists. In 
1913, Lord Rayleigh noted briefly that this discussion should be considered 
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mSTORY OF THE REYNOLDS NUMBER 3 

in the light of hydrodynamic similarity (Rayleigh 1913). He credited Stokes 
before Reynolds with the discovery of this notion. Stokes indeed noted the 

similarity properties of his basic equations of viscous flow together with 
their derivation in 1850. The resolution of the drag problem, however, 
called for the specific similarity law established by Reynolds (1883) for the 
pressure drop in pipes, which is also applicable-mutat is mutandis-to 
the drag problem. Interestingly, it was Lord Rayleigh who made what is 
almost certainly the first reference ever to Reynolds' similarity law, in the 

introduction to his paper "On the question of the stability of the flow of 
fluids" (Rayleigh 1892). (This is discussed later.) 

The resolution of the sphere drag problem was completed by Prandtl in 

his paper of 1914, where he introduced a new concept that complemented 
his boundary-layer theory-namely, the idea of the transition of the 
boundary layer from laminar to turbulent at a critical Reynolds number 

(PrandtlI914). Prandtl made here no more explanatory comments on the 
usage of this word. After his paper it became common knowledge that the 
drag coefficient depends on the Reynolds number, a term that became a 
household word in aerodynamics and aeronautics. The general acceptance 
of the term and of the notion came much later in hydraulic engineering, 
in spite of the fact that a textbook on hydraulics by von Mises appeared 
in 1914 that fully exploited Reynolds similarity (albeit without using the 
term "Reynolds number"). The memory of this book (von Mises 1914), 
which is now largely forgotten, is kept alive in Rouse & Ince's History of 
Hydraulics (Rouse & Ince 1957). 

After World War I, a treatise on similarity and its use for model experi­
ments appeared in the Jahrbuch der SchifJbautechnischen Gesellschaft by 
Moritz Weber, Professor of Naval Architecture in Berlin (Weber 1919). 
As noted by Rouse & Ince, Weber not only put the Reynolds number to 
use but also introduced the Froude number and a new number involving 
capillarity, which later was named for him. This was apparently the begin­
ning of a new era in the use of names for nondimensional numbers. 

Reference has been made here repeatedly to the seminal paper of Rey­
nolds (1883). There he gave, by dimensional analysis, unprecedented appli­
cations that led to specific results: He introduced the notion of the critical 
Reynolds number and established the similarity law for the pressure drop 
in pipes. The early history of these ideas is discussed in the following 
sections. 

2. REYNOLDS' FLOW-VISUALIZATION 
EXPERIMENTS 

Reynolds gave a visual demonstration of the transition from laminar to 
turbulent flow in a pipe, using an experimental setup that is still popular 
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4 ROTT 

today. Figure 1, which is reproduced from Reynolds (1883), shows an 
artist's concept of the original device. An elevated platform permits the 
use of a siphon that is high enough to reach the critical velocities; the valve 
at the exit is manipulated by a lever that extends to the platform. Water 
is drawn from a glass-walled box into a glass tube, together with a filament 
of dye. The tube has a trumpet-shaped inlet. Readings of the water level, 
accurate to 1/100 of an inch, were used to determine the velocity. 

The dye filaments at transition are reproduced in many texts, using 
Reynolds' original drawings; but as his apparatus is still in existence at the 
University of Manchester, modern photographs can also be obtained. A 
series is shown in Van Dyke's (1982) Album of Fluid Motion, with a telling 
comment: "Modern traffic in the streets of Manchester made the critical 
Reynolds number lower than the value 13,000 found by Reynolds." 

Cautioning remarks were already voiced by Reynolds himself con­
cerning the importance attached to the actual value of this critical number. 

Figure 1 Artist's concept of Reynolds' flow-visualization experiment. 
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HISTORY OF THE REYNOLDS NUMBER 5 

It was clear to him that he needed a carefully shaped inlet to avoid eddies 
created at the entrance of his tube. He also wrote (Reynolds 1883, p. 955): 
"The fact . . .  that this relation has only been obtained by the utmost care 
to reduce the external disturbances in the water to a minimum must not 
be lost sight of. " This is a reminder repeated from p. 943, where he 
notes (we revert to present-day terminology) that turbulent flow has been 
observed at much lower Reynolds numbers; he continues: "This showed 
that the steady motion was unstable for large disturbances long before the 
critical velocity was reached, a fact which agreed with the full-blown 
manner in which the eddies appeared. " 

This discussion admits the interpretation that, by more careful experi­
ments, an upper critical Reynolds number could be found that is the 
stability limit for small disturbances. Reynolds' experiments were repeated 
a quarter-century later by V. Walfrid Ekman, who visited Manchester to 
use Reynolds' original equipment. By smoothing the wooden trumpet­
shaped inlet, he was able to reach critical Reynolds numbers up to 44,000 
(and later more) but found strong scatter approaching these high values. 
He conjectured (Ekman 1910) that the flow is stable for small disturbances. 
In a footnote on the subject of the existence of the upper critical Reynolds 
number, Ekman notes: "It appears that Reynolds himself was somewhat 
doubtful on this point. It is not easy to find out from his paper what his 
final opinion really was. " 

The modern point of view, as formulated by Drazin & Reid (1981, p. 
219), is that investigations in this century "have led to the belief that 
Poiseuille flow in a circular pipe is stable with respect to axisymmetric 
disturbances. There is also increasing evidence that it is stable with respect 
to non-axisymmetric disturbances . . . .  " An infinite upper critical Reynolds 
number explains the experimental results. However, a full explanation has 
also to account for the stability in the varying environment of an inlet, 
where the Poiseuil� profile is not yet fully developed. . 

In summary, the simplest and most successful visualization of flow 
transition devised by Reynolds is not, at the same time, the simplest 
demonstration from the theoretical point of view. 

Reynolds first presented his experimental results in a form that did not 
take full advantage of the clarification of the concepts that he had obtained 
by dimensional analysis. (A close account is given in Lamb 1932.) For 
instance, Reynolds wrote for his upper critical velocity the expression 
U = PIBD, where D is the diameter, P = vivo is the kinematic viscosity v 
of water divided by its value Vo (=0.01779 cm2 S-I) at oce, and P is a 
function of the temperature as measured by Poiseuille. Finally, B is 
the parameter for which the critical value is determined by experiment. 
Reynolds found that B is about 43.79 in seconds per square meter units. 
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6 ROTT 

The Reynolds number is the reciprocal of the product Bvo; this gives 
12,830. 

In early classic (pre-Reynolds) hydraulics, measurements of the tem­
perature dependence of the viscosity in water were often combined with 
studies of the flow resistance in pipes. Reynolds actually used the function 
P to extend the scope of his experiments: Critical velocities obtained for 
5°C and 22°C were compared and found to have the ratio of about 1.4, 
in accordance with Poiseuille's formula for P. This complemented the 
experiments with different tube diameters of 1, 1/2, and 1/4 inch. 

3. THE CRITICAL REYNOLDS NUMBER 

In his original investigations Reynolds (1883, p. 946) came to the con­
clusion that "there must be another critical velocity, at which previously 
existing eddies would die out, and the motion become steady as the water 
proceeded along the tube. This conclusion has been verified." 

Reynolds determined this critical velocity by measuring the pressure 
drop in a 5-ft section at the end of a 16-ft pipe. He found the pressure loss 
to be proportional to the first power of the velocity for low speed but 
varying with a higher power beyond a "lower critical velocity," which 
occurred for the value B = 278 s m -2 orhis parameter defined above. This 
parameter value corresponds to a "lower critical" Reynolds number of 
2020. (Later, this was simply called the critical Reynolds number.) The 
supercritical pressure-loss dependence on the velocity was found to follow 
a power law with the exponent 1.723. 

Reynolds returned to the discussion of these results in 1895, when he 
first presented critical values by using explicitly the Reynolds number 
proper (Reynolds 1895). He called it K and based it (as an engineer always 
would, reading from a drawing or a caliper) on the pipe diameter. He 
quoted for the critical K of transition a value between 1900 and 2000, 
based on his own experience. 

Reynolds' purpose in his 1895 paper was to calculate K, or at least to 
find a lower bound for K, by identifying dissipation with what is today 
called turbulent production. He thus created the foundation of the main 
branch of modern turbulence theory by writing down the "Reynolds­
averaged" equations of motion. The history of these ideas is beyond the 
scope of this note. 

Reynolds had already observed that plugs oflaminar and turbulent flow 
alternate in a pipe near the critical Reynolds number, causing what is 
today called "intermittency" of the flow. For this reason Reynolds, as well 
as experimenters after him, preferred to give an interval for the critical 
Reynolds number instead of an "exact" value; it was found practically 
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HISTORY OF THE REYNOLDS NUMBER 7 

impossible to make an inlet sufficiently "rough" so that a weakly super­
critical flow would start without any laminar spots. 

Intermittency is easily demonstrated by letting a horizontal jet emerge 
from a near-critical pipe flow. The jet oscillates-Leo it reaches different dis­
tances as laminar and turbulent flow alternate at the exit. As explained by 
Julius Rotta (19 56), this occurs because for the same mass flow, laminar and 
turbulent parts do not have the same impulse. The laminar part has the 
higher impulse and thus moves farther horizontally when it emerges as a jet. 

Oscillations are strongly accentuated if they are coupled to changes of 
the mass flow. This always happens when the flow resistance in the near­
critical pipe, where laminar and turbulent flow plugs alternate, is a sig­
nificant part of the overall pressure drop in the system. Experiments in 
such systems are not suitable for the determination of the critical Reynolds 
number. To assure the constancy of the mass flux, Rotta experimented 
with a (low-pressure) airflow regulated by a sonic throat. Velocity and 
intermittency were determined by hot-wire measurements. Rotta's obser­
vations, supported by theoretical arguments, showed that the supercritical 
turbulent plugs grew mostly at their front end. He proposed to define the 
critical Reynolds number by the constancy of the intermittency factor. 
However, as the growth speed became very slow approaching the critical 
Reynolds number, reliable measurements would have required a tube of 
excessive length. Rotta measured a 2% excess of the plug growth speed 
over the mean speed at a Reynolds number of 2300, from which he 
extrapolated to a putative critical Reynolds number of2000. (This happens 
to be the value first proposed by Reynolds.) 

For pipes without a streamlined inlet, the critical value quoted in most 
contemporary textbooks is 2300. 

4. THE POWER LAW 

Reynolds determined the critical Reynolds number by the change of the 
dependence of the pressure loss on velocity. As already noted, he found 
for turbulent flow a velocity power law with the exponent 1.723, valid for 
his experiments over a range of 1 to 50 (Reynolds 1883, p. 9 75). He actually 
wrote down (on the same page) the similarity law for the pressure drop in 
its full generality, namely (in present-day notation) 

1 L 
p(L)-p(O) = 2PU2 

D
f(R), 

R=pUD == UD
, 

/l v 

and then considered the special functionf(R) = cR-n. 
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8 ROTT 

Representation of experimental results by a power law has led, during 
its long history, to the discovery of analytic relations at best and to useful 
local approximations at least. Dimensional analysis extends the scope 
and power of this tool immensely. The experimentalist then is guided by 
knowing that the exponents obtained for the different physical variables 
that enter the similarity parameter have to fulfill certain relations. 

Reynolds was the first to use the power law in this sense. Many laws 
with odd exponents were established before him without consideration of 
dimensionality or similarity. We can understand why Reynolds did not 
see the necessity of quoting them. 

Lord Rayleigh (1892) pointed to the two limits of Reynolds similarity 
where exact explicit laws follow: The classical slow-flow result (n = 1) is 
independent of density, while the limiting velocity-square law (n = 0) for 
turbulent flow at high speeds is independent of viscosity. Rayleigh con­
sidered the latter case as a further illustration of his principle that inviscid 
solutions and solutions obtained in the limit of vanishing viscosity can 
be fundamentally different. He proceeded to show that inviscid stability 
calculations for simple channel flows do not lead to unstable solutions. 

The next discussion of Reynolds' paper of 1883 (but with no mention 
of his work of 1895) appeared in 1897. That it was "next" is conjectured 
because the author, G. H. Knibbs of the University of Sydney, apparently 
was very conscientious in searching the literature, and he quotes only Lord 
Rayleigh's paper dealing with Reynolds' work. Knibbs (1897) could not 
accept Rayleigh's point of view and, moreover, he rejected Reynolds' 
similarity principle. To analyze such errors is futile. With some good will, 
one can say that Knibbs attempted (following older ideas) to establish 
formulas both for open channels and for pipes, using a common principle. 
When both viscosity and gravity play a role, then two empirical exponents 
are required for the most general power law, and the guidance given by 
Reynolds' similarity is lost. Knibbs described the history of the many 
contributions to the power law and took issue with Reynolds for ignoring 
them. 

We have already sided with Reynolds and adopt now an idea of Blasius 
for the selection of references: Only papers are quoted in which the power­
law dependence is stated both for the velocity U and for the diameter D, 
in a way that is compatible with Reynolds similarity. According to the 
formula that states the similarity law (see above), the difference of the 
exponents of U and of D has to be 3. Then, only one author is left on 
Knibbs' reference list, namely the German hydraulic engineer Gotthilf 
Heinrich Ludwig Hagen (1797-1884), of Hagen-Poiseuille fame. 

Knibbs was aware of the compatibility of Hagen's empirical results with 
Reynolds' theory, but this was for him only an isolated case. Hagen 
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HISTORY OF THE REYNOLDS NUMBER 9 

obtained his results without knowing about similarity; he found that the 
best fit to the averaged results of his measurements with three different 
tube diameters was obtained with the exponent n = 1/4, the same as 
today's accepted value. Actually, Hagen gave credit to the German engi­
neer Reinhard Woltman (1746-1822) for first proposing the exponent 1.75 
for the velocity, in work dating back to 1790. The fact that a power less 
than 2 describes pressure losses in pipes was already observed earlier, by 
Pierre Louis Georges Du Buat (1734-1809), one of the great hydraulicists 
of eighteenth-century France. For more historical material, the reader may 
want to consult the eminently readable book of Rouse & Ince (1957). 

Hagen's measurements were published in 1854 (Hagen 1854); in the 
same paper he made an observation for which he is probably best known. 
Knibbs quoted the whole passage in its original form: It is the first descrip­
tion of the transition between laminar and turbulent flow in a pipe. Hagen 
used sawdust ("Sagespahne") as a means of flow visualization; later 
(Hagen 1869), he recommended the use of filings of dark amber. Without 
the help of similarity laws, however, no general conclusions could be 
drawn. 

After the 1897 paper of Knibbs, it took 15 more years before Blasius 
reintroduced Reynolds similarity to the power law for pipes. In the mean­
time, however, important experiments were conducted with new means, 
and Hagen's feat was repeated on a grand scale. Pressure drop in (smooth) 
pipes was measured by two graduate students at Cornell University, 
August V. Saph and Ernest W. Schoder, Jun., working at the Hydraulic 
Laboratory (founded in 1899). Their results were published in the Trans­
actions of the American Society of Civil Engineers (Saph & Schader 1903). 
They fitted their data, both for velocity and diameter, with n = 1/4 but 
did not consider the dependence on viscosity. Blasius only had to introduce 
the kinematic viscosity of water to obtain the nondimensional constant 
that multiplies the power law. (Actually he also made experiments of 
his own and surveyed data from many other sources. Reynolds' own 
experiments did not turn out to be useful for the nondimensional constant.) 

The paper of Saph & Schader (1903) was published together with a 
written discussion of their work by leading hydraulicists. One of them, A. 
Flamant of France, pointed out that he had already obtained the formula 
of Saph & Schader in 1892. This lead proved to be interesting. Flamant's 
influential textbook Hydraulique first appeared in 1891. In the second 
edition (Flamant 1900), he gave a "new formula" that he obtained by 
inspecting existing results for accuracy and convenience; it agreed with the 
results of Saph & Schader. Flamant also mentioned Reynolds' results in 
his book: He quoted Reynolds' power-law exponent 1.723 but not the law 
of similarity. 
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10 ROTT 

Finally, around 1910, the acceptance of Reynolds similarity began to 
spread. In 1911, von Karman exhorted certain authors who were measur­
ing pressure loss in pipes for different fluids to be mindful of Reynolds 
similarity (von Karman 1911). Blasius wrote in the extended version of 
his paper (Blasius 1913, p. 5) that the Reynolds law "has not penetrated, 
as of today, into the pertinent fields of engineering" (in the original: "ist 
in die einschlagigen Gebiete der Ingenieurwissenschaften bis heute noch 
nicht eingedrungen"). His paper became influential in leading to a change, 
and it was widely used in aeronautical and mechanical engineering. 

The combination of the power law with similarity considerations proved 
to be a valuable tool for further developments in the early stages of 
turbulence theory and has led to results of lasting importance for engi­
neering applications. The connection between the wall stress, the dynamic 
pressure, and the Reynolds number, as given by Blasius' formula for pipe 
flow, is directly applicable to the turbulent boundary layer on a flat plate 
and can be extended to a multitude of interesting cases. 

A higher level of sophistication in the application of these tools was 
reached with the derivation of the 1f7-power law for the turbulent velocity 
profile. However, this also signaled the demise of the power-law era: Both 
discoverers of the 1f7-power law, Prandtl and von Karman, moved on to 
the logarithmic velocity distribution. (According to a personal com­
munication from Ackeret, Prandtl never believed in the deep physical 
significance of simple fractions as exponents: He wanted to find a 
logarithm.) 

Actually, neither Hagen nor Reynolds felt particularly committed to the 
use of the power law. Hagen, who was also a practical engineer and builder 
of public works, discussed in 1869 other types of formulas (Hagen 1869). 
For Reynolds, the power law was mostly a convenient tool for the deter­
mination of transition. He had continued interest in the critical Reynolds 
number and inspired other researchers to measure it. He remained active 
until 1905, when he retired from the position to which he was appointed 
in 1868: Professor of Engineering at the University of Manchester. 

5. EPILOGUE 

Reynolds begins his 1883 paper by stating: "The results of this investigation 
have both a practical and a philosophical aspect." This could be a useful 
quotation for instructors who teach a first course in fluid mechanics to 
juniors in an engineering college. There is a yearly battle going on for 
students' minds; history might help to convince them that the use of the 
Reynolds number as an independent variable is an application of a basic 
truth, and not just a useful convention for a handy diagram. 
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