UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA

DEPARTAMENTO DE ENGENHARIA MECÂNICA

IMPACTO DO USO DE NANOFLUIDOS NA PERDA DE CARGA EM TUBOS CAPILARES

Allison Massao Hirata

São Paulo

2010

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA

DEPARTAMENTO DE ENGENHARIA MECÂNICA

IMPACTO DO USO DE NANOFLUIDOS NA PERDA DE CARGA EM TUBOS CAPILARES

Trabalho de formatura apresentado à Escola Politécnica da Universidade de São Paulo para obtenção do título de Graduação em Engenharia

Allison Massao Hirata

Orientador: Flávio Augusto Sanzovo Fiorelli

Área de Concentração: Engenharia Mecânica

São Paulo

2010

FICHA CATALOGRÁFICA

Hirata, Allison Massao Impacto do uso de nanofluidos na perda de carga em tubos capilares /
A.M. Hirata. – São Paulo, 2010. 68 p.
Trabalho de Formatura - Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia Mecânica.
1. Tubos 2. Fluídos refrigerantes 3. Nanopartículas I. Universidade de São Paulo. Escola Politécnica. Departamento de Engenharia Mecânica II. t.

RESUMO

Este trabalho apresenta resultados da análise do efeito de nanopartículas em fluidos baseados em refrigerante na perda de carga em tubos capilares. Tal efeito tem sido pouco estudado, apesar do crescente interesse no uso de nanofluidos como alternativa a CFCs. A análise do efeito dessas partículas foi feita por meio de simulação numérica em um programa para escoamento em tubos capilares e utilizando uma adaptação da correlação para o impacto dos nanofluidos na perda de carga. A correlação proposta nesse trabalho pode ser aplicada para uma gama maior de vazões mássicas do que a correlação encontrada na literatura e apresenta aproximadamente a mesma precisão, quando comparado com os resultados experimentais. Diversos parâmetros foram variados e comparados, como temperatura de entrada, título inicial, diâmetro e comprimento do tubo capilar, assim como a fração mássica das nanopartículas. Foram observadas reduções de fluxo de massa de até 0,86% para uma fração mássica de CuO de w=0,1% e de até 2,65% para w=0,5%. O fluxo de massa decresce aproximadamente linearmente com o aumento do diâmetro do tubo capilar. A influência do título inicial e do comprimento do tubo é aproximadamente constante, entre 0,6% e 0,7% para w=0,1% CuO. Além disso, observou-se o fenômeno de atraso de vaporização no tubo devido à presença de nanopartículas.

ABSTRACT

This work presents the results of the analysis on the use of nanoparticle in refrigerant-based fluids and its effects on pressure drop in capillary tubes. Such effect has not been investigated even though interest in nanofluids as an alternative to chlorofluorocarbon refrigerants is increasing. Analysis on the effect of nanoparticles was done through numerical simulation software for flow in capillary tubes and using a new correlation formula for the effect of nanoparticles on pressure drop. The correlation formula proposed in this work can be applied for a wider range of mass flows than the correlation found in the literature and presents approximately the same accuracy when compared with the experimental results. Several parameters such as initial temperature, initial vapor pressure, diameter and length of the tube as well as weight fraction of nanoparticle have been varied and compared. It has been observed reductions due to the presence of the nanoparticles within the analysed range up to 0,86% for w=0,1% wt. CuO and 2,65% for w=0,5% wt. CuO. Mass flux decreases approximately linearly as tube diameter increases. Vapor pressure and tube length influences are approximately constant, regardless of its range, at around 0,6% to 0,7% for w=0,1% wt. CuO. Also, it was possible to capture the effect of delay in vaporization within the tube due to the presence of nanoparticles.

SUMÁRIO

1.	Introdução1
2.	Objetivos
3.	Revisão de Material Técnico
3.1.	Panorama do estudo de nanofluidos
3.2.	O experimento de Peng et al
4.	Metodologia7
4.1.	Hipóteses e restrições do modelo7
4.2.	Perdas de carga
4.2.2	1.Fração de vazio
4.2.2	2.Cálculo da perda de carga devido ao atrito10
4.2.3	3.Cálculo do multiplicador bifásico12
5.	Estudo Comparativo15
5.1.	Fração de vazio15
5.2.	Perda de carga por atrito
5.3.	Fator de impacto
6.	Revisão da correlação de atrito
7.	Simulação e análise
7.1.	Análise preliminar
7.2.	Influência sobre o título ao longo do tubo capilar
7.3.	Influência sobre a vazão mássica em função do grau de subresfriamento47
7.4.	Influência sobre a temperatura do fluido ao longo do tubo capilar50

7.5.	Influência sobre a vazão mássica em função do título de entrada	52
7.6.	Influência sobre o diâmetro do tubo capilar em função do fluxo de massa	54
7.7.	Influência sobre o comprimento do tubo em função do fluxo de massa	56
7.8.	Influência da fração mássica de nanopartículas	57
8.	Conclusões	50
9.	Referências Bibliográficas	52

1. INTRODUÇÃO

A Engenharia, por definição, sempre buscou fundamentalmente a transformação e desenvolvimento de tecnologias de modo viável, através da aplicação do conhecimento especializado. Tal progresso pode ser alcançado estudando-se os processos de produção atuais e ao mesmo tempo introduzindo novas ideias em busca de uma utilização cada vez mais eficaz dos recursos, de modo a reduzir o consumo energético.

Nesse contexto, a pesquisa no campo de refrigerantes térmicos tem se desenvolvido intensamente com o objetivo de aperfeiçoar a eficiência de ciclos de refrigeração industrial e comercial. Um dos mais recentes desenvolvimentos nesse tema é a pesquisa em nanofluidos, ou seja, coloides (geralmente de aplicação térmica) nos quais é introduzida uma baixa concentração de nanopartículas (1-100 nm). Essa nova categoria de fluidos tem sido foco de muitas pesquisas devido à sua potencial capacidade de melhorar a capacidade térmica e a eficiência energética dos fluidos originais.

Nos últimos anos, inúmeros artigos sobre o estudo de características térmicas de combinações de fluido-nanopartícula têm sido publicados, em especial no estudo comparativo de coeficientes de transferência de calor (Ding et al., 2007, Peng et al., 2009). Entretanto, observa-se que as pesquisas são ainda incipientes e muitos resultados experimentais são inconclusivos. Além disso, encontram-se poucos dados na literatura sobre outras propriedades térmicas e cinéticas dos nanofluidos, como a viscosidade e a perda de carga.

Portanto, tendo em vista o objetivo de apresentar um estudo comparativo do efeito da introdução de nanopartículas a fluidos baseados em refrigerante, o presente trabalho baseou-se em estudos de correlações disponíveis na literatura e na compilação de dados e programas de simulação de trabalhos anteriores para a análise do escoamento de nanorefrigerantes por tubos capilares.

2. OBJETIVOS

Este trabalho tem como objetivo analisar o efeito da introdução de nanopartículas em um fluido baseado em refrigerante que escoa através de tubos capilares. A partir de estudos de correlações de perda de carga em função de propriedades do nanorefrigerante obtidas na literatura, propõe-se uma nova correlação que se mostra equivalente à original, ao mesmo tempo em que reflete resultados coerentes para grandes valores de vazão mássica. O comportamento do nanorefrigerante no escoamento será analisado comparativamente com um refrigerante mais comum presente atualmente na indústria, o R-134a, sobre os quais nanopartículas não foram introduzidas. Essa análise será feita numericamente, por meio de um software de simulação em tubos capilares.

Finalmente, espera-se que os resultados dessa análise permitam quantificar a perda de carga devido à introdução de nanopartículas, além de determinar os parâmetros mais importantes que influem no rendimento do nanorefrigerante, assim como a tendência da influência desses parâmetros.

3. REVISÃO DE MATERIAL TÉCNICO

Visto que o tema desse trabalho, o estudo da perda de carga de nanofluidos escoando em tubos capilares, é muito recente e não é consolidado até mesmo dentro campo da engenharia térmica de refrigeração, encontram-se poucos experimentos realizados sobre nanofluidos utilizando refrigerantes como fluido-base. A maior parte das referências pesquisadas e utilizadas corresponde a artigos técnicos e publicações recentes de conferências. Assim, nessa seção serão introduzidos alguns dos conceitos gerais e as hipóteses adotadas para a compreensão do tema e determinação das condições de fronteira do trabalho.

3.1. Panorama do estudo de nanofluidos

Como dito anteriormente, não há literatura consolidada sobre as propriedades térmicas dos nanofluidos, e ainda menos sobre nanorefrigerantes. Todavia, Cheng et al. (2008) e Godson et al. (2010) compilaram alguns dos resultados das principais pesquisas nesse tema. Pode-se chegar a algumas conclusões, dentre as quais as mais relevantes para este trabalho são:

- Nanofluidos possuem em geral uma condutividade térmica mais importante que os correspondentes fluidos desprovidos dessas nanopartículas. Algumas hipóteses foram feitas para explicar esse resultado, como:
 - a. O aumento da área e capacidade térmica do fluido na fronteira devido à presença das nanopartículas;
 - b. A distribuição mais eficaz e uniforme da condutividade térmica devido à dispersão das nanopartículas;
 - c. O aumento da turbulência devido à presença das nanopartículas;
 - d. O movimento browniano, intensificado pela presença de nanopartículas, promovendo mais colisões e, portanto mais transferência de energia;

- e. O efeito de Sorét, que propõe a existência de um campo de forças gerado pelo gradiente de temperatura numa mistura de duas ou mais partículas;
- 2. Observa-se um aumento da condutividade térmica quanto maior a concentração de nanopartículas até 3% da fração volumétrica e maior o número de Reynolds (escoamento laminar e turbulento). Entretanto, a diferença na metodologia e nos resultados dos experimentos não permite chegar a uma conclusão sobre o comportamento da curva de condutividade.
- 3. A viscosidade de nanofluidos aumenta com o aumento da concentração volumétrica das nanopartículas e com a diminuição da temperatura. Tais observações condizem com a teoria macroscópica para fluidos no sentido de que a introdução de partículas resulta em aumento da viscosidade geral. Esta observação é base para o estudo do efeito da perda de carga devido aos nanofluidos.

A maior parte das pesquisas sobre as propriedades dos fluidos com nanopartículas tem utilizado água e etileno-glicol como fluido-base. Esse tipo de fluido, entretanto, não é adequado às aplicações atuais em refrigeração industrial, que é o escopo deste trabalho. Logo, as conclusões decorrentes dos estudos com esses tipos de fluido têm apenas o propósito de servir como referência e suporte às observações sobre o efeito dos nanofluidos em geral, como destacado anteriormente. Porém, evidentemente não será utilizado nenhum dado experimental dessas publicações, uma vez que não é possível delinear correlações de propriedades entre substâncias (ou misturas) distintas.

3.2. O experimento de Peng et al.

Dentre todas as publicações pesquisadas até o momento, o experimento de Peng, Ding, Jiang, Hu e Gao, publicado em 2009, é o único trabalho que apresenta correlações relevantes em relação à perda de carga para fluidos baseados em refrigerante. Peng et al. (2009) realizou um experimento para medição da perda de carga variando-se o fluxo de massa, o título e a fração mássica das nanopartículas no tubo capilar na posição horizontal. A partir dos dados experimentais obtidos, propôsse um fator de impacto das nanopartículas na perda de carga em função da concentração volumétrica e das propriedades de nanopartículas (óxido de cobre), propriedades do refrigerante-base (R-113) e da geométrica do tubo capilar.

O experimento para diferentes fluxos de massa do nanofluido (100, 150 e 200 kg/m²s) e concentrações volumétricas de CuO de 0,1%, 0,2% e 0,5%, obteve os seguintes resultados relevantes:

- A perda de carga no tubo não é desprezível e aumenta com o aumento da concentração em massa das nanopartículas no fluido. Esta perda é maior do que a perda de carga do refrigerante R-113 puro. A maior perda de carga obtida no experimento foi de 20,8%.
- 2. A perda de carga atinge um mínimo para valores de título entre 0,5 e 0,7.
- A perda de carga diminui com o aumento do fluxo em massa do nanorefrigerante.

Peng et al. propôs um modelo teórico que determina o fator de impacto da nanopartícula sobre a perda de carga. A expressão desse fator, indicada na equação (1), é função do diâmetro do tubo (D_i em m), da massa específica do refrigerante puro no estado líquido ($\rho_{r,L}$ em kg/m³), do fluxo de massa do fluido (G em kg/m²s) da fração volumétrica (φ em m³ de CuO/m³ de mistura), da massa específica (ρ_n em kg/m³) e do diâmetro médio (d_n em m) das nanopartículas, além do título (x adimensional) da mistura.

$$F_{PD} = \exp\left\{\varphi \times [2,19 \times 10^7 \times \frac{d_n}{D_i} + 37,26 \times \frac{\rho_n}{\rho_{r,L}} - 0,63 \times G - 217,73 \times x \times (1-x)\right\}$$
(1)

A perda de pressão no tubo é calculada, então, como:

$$\Delta P_{r,n,atrito} = F_{PD} \times \Delta P_{r,atrito} \qquad (em \, kPa) \tag{2}$$

O valor de $\Delta P_{r,atrito}$ é calculado através das correlações de perda de carga existentes na literatura para refrigerante puros.

Dado que é medida a fração mássica ω (em kg de CuO/kg da mistura), φ pode ser calculada através da seguinte equação:

$$\varphi = \frac{\rho_{r,l}\omega}{\rho_{r,l}\omega + \rho_n(1-\omega)} \qquad (\text{em m}^3/\text{kg}) \tag{3}$$

A expressão (1) chegou a uma precisão de 99% para um desvio de $\pm 5\%$ em relação aos resultados experimentais. Além disso, combinando-se essa expressão à correlação de Friedel (1979) para perda de carga em refrigerantes, obteve-se uma precisão de 92% com desvio de $\pm 15\%$. É importante notar, porém, que apesar de a correlação de Friedel ser a mais utilizada e menos imprecisa, ela pode fornecer erros de até 40%.

Apesar da ausência de outros experimentos para a combinação R-113-CuO, a expressão do fator de impacto parece suficientemente consistente e precisa para o uso neste trabalho. Logo, os cálculos e análises conseguintes serão baseados na qualidade dessa expressão.

4. METODOLOGIA

4.1. Hipóteses e restrições do modelo

Para que a correlação de Peng et al. (2009) possa ser aplicada corretamente no modelo proposto por Fiorelli (2000), é imprescindível utilizar as mesmas hipóteses e considerações dos autores. São elas:

- Escoamento em regime permanente, ou seja, efeitos de transição desprezíveis;
- Escoamento em regime turbulento plenamente desenvolvido;
- Escoamento horizontal, ou seja, efeitos de perda de carga estática desprezíveis;
- Escoamento unidimensional sem presença de surfactante;
- Deposição e coagulação de nanopartículas no tubo desprezíveis (devido à turbulência);
- Fase líquida e vapor em equilíbrio termodinâmico.

Entretanto, nem todas as condições estão explícitas no artigo analisado. Tendo em vista as simplificações mais empregadas nesse tipo de estudo, serão admitidas as seguintes hipóteses:

- Condução de calor nas paredes do tubo capilar na direção axial desprezível;
- Admite-se a possibilidade de troca de calor entre tubo capilar e meio externo;
- Coeficiente de troca de calor com o meio constante.

Uma vez que os fluxos de massa aplicados são relativamente pequenos, da ordem de G=100 a 200 kg/m²s, o modelo bifásico homogêneo não é aplicável (Whalley, 1996). Logo, deve-se empregar o modelo de fases separadas.

4.2. Perdas de carga

As perdas de carga total de uma mistura refrigerante-nanopartícula ao longo de um tubo capilar pode ser dividida em três partes, como indica a equação (4) a seguir:

$$\Delta P_{r,n,total} = \Delta P_{r,n,atrito} + \Delta P_{r,n,estat} + \Delta P_{r,n,acel} \qquad (em \, kPa) \tag{4}$$

 $\Delta P_{r,n,total}$ é obtido experimentalmente através de sensores na entrada e na saída do tubo capilar. Utilizando-se a hipótese de escoamento horizontal, tem-se que:

$$\Delta P_{r,n,estat} = 0 \text{ kPa}$$
⁽⁵⁾

 $\Delta P_{r,n,acel}$, a perda de carga devido à aceleração do fluido, é calculada como:

$$\Delta P_{r,n,acel} = G^2 \left\{ \left[\frac{x^2}{\rho_{r,n,V} \alpha} + \frac{(1-x)^2}{\rho_{r,n,L} (1-\alpha)} \right]_s - \left[\frac{x^2}{\rho_{r,n,V} \alpha} + \frac{(1-x)^2}{\rho_{r,n,L} (1-\alpha)} \right]_e \right\} (em \, kPa) \quad (6)$$

Admite-se que a maior parte das nanopartículas permanece no estado líquido da mistura. Logo, a massa específica do estado de vapor saturado da mistura refrigerante-nanopartícula, $\rho_{r,n,V}$, pode ser simplificada para a massa específica de vapor saturado do fluido refrigerante. Por sua vez, a massa específica da mistura no estado de líquido saturado, $\rho_{r,n,L}$, fica:

$$\rho_{r,n,L} = \frac{(1 - x + x\omega)\rho_{r,L}\rho_n}{\omega\rho_{r,L} + (1 - x)(1 - \omega)\rho_n} \qquad (\text{em kg/m}^3)$$
(7)

 ω é a fração mássica das nanopartículas em kg de CuO/kg de mistura.

4.2.1. Fração de vazio

4.2.1.1. Modelo de Steiner

Peng et al. (2009) estimou a fração de vazio α pelo modelo de Steiner (1993) para escoamento de refrigerantes em tubos horizontais, através da equação (8):

$$\alpha = \frac{x}{\rho_{r,n,V}} \left[(1+0,12(1-x)) \left(\frac{x}{\rho_{r,n,V}} + \frac{1-x}{\rho_{r,n,L}} \right) + \frac{1.18(1-x)[g\sigma_{r,n}(\rho_{r,n,L} - \rho_{r,n,V})]^{0.25}}{G\rho_{r,n,L}^{0.5}} \right]^{-1}$$
(8)

Das et al. (2003) afirmou que o efeito de nanopartículas na tensão superficial de um nanofluido $\sigma_{r,n}$ pode ser desprezada. Logo, temos:

$$\sigma_{r,n} = \sigma_r = \sigma_0 \left[1 - \left(\frac{T}{Tc} \right) \right]^n \quad (\text{em N/m})$$
(9)

As constantes σ_0 (em N/m), Tc (em K) e n para o R-113 encontradas na literatura (Hong et al., 2007) foram: Tc=241,1°C = 487,25 K, para uma variação de T/Tc entre 0,472 e 1; σ_0 =55,57 N/m e; n=1,2403.

O autor admite que o valor de T=47,6°C para a temperatura de ebulição do R-113 puro é uma boa aproximação para a temperatura da mistura durante o experimento.

4.2.1.2. Modelo de Premoli

Por outro lado, o modelo matemático usado por Fiorelli (2000) para a fração de vazio utiliza a correlação de Premoli (Premoli et al., 1971) para o cálculo das tensões superficiais de misturas de fluidos refrigerantes. Logo:

$$\alpha = \frac{x \upsilon_{\nu}}{x \upsilon_{\nu} + S(1 - x) \upsilon_{l}}, \text{ onde}$$
(10)

$$S = 1 + 1,578 \operatorname{Re}_{l}^{-0,19} \left(\frac{\upsilon_{v}}{\upsilon_{l}} \right)^{0,22} \sqrt{\frac{A_{l}}{1 + A_{l}F_{l}} - A_{l}F_{l}}$$
(11)

$$A_l = \frac{\beta}{1 - \beta} \tag{12}$$

$$F_{l} = 0.0273We_{lo} \operatorname{Re}_{lo}^{-0.51} \left(\frac{\upsilon_{\nu}}{\upsilon_{l}}\right)^{-0.08}$$
(13)

$$\beta = \frac{x\upsilon_v}{x\upsilon_v + (1-x)\upsilon_l} \tag{14}$$

$$We_{lo} = \frac{G^2 d_{lc} v_l}{\sigma}$$
(15)

S, A_l, F_l, β e We_{lo} são adimensionais e v_l e v_v são os volumes específicos do refrigerante puro nas fases líquida e vapor em m³/kg, respectivamente. Uma vez que, para este caso, utiliza-se apenas um único fluido refrigerante, admite-se que as tensões superficiais da mistura fluido-nanopartícula se comportem como a do R-113 puro, não sendo necessária aplicação da relação de e as relações de Heide (1997) para misturas refrigerantes. Tendo em vista que o modelo a ser validado no programa é o modelo de Peng, será utilizado o cálculo da fração de vazio de Premoli para manter a consistência das premissas do modelo de Fiorelli. Todos os valores para o cálculo de α são conhecidos.

Tendo em vista que os resultados do artigo de Peng estão explícitos apenas em função do gradiente de pressão de atrito calculado, não é possível fazer uma análise direta do efeito de α sobre as potenciais diferenças entre os resultados. Entretanto, buscou-se fazer uma análise comparativa dos dois métodos apresentados para o cálculo da fração de vazio de modo a qualificar se o uso de um método em detrimento ao outro resultaria em uma grande diferença nos resultados.

4.2.2. Cálculo da perda de carga devido ao atrito

Finalmente, podemos obter o valor esperado da perda de carga por atrito isolando-se este fator na equação (3). Estes resultados teóricos serão a base de comparação para a aplicação da correlação de Peng no software de simulação numérica EES (Engineering Equation Solver).

$$\Delta P_{r,n,atrito} = \Delta P_{r,n,total} - \Delta P_{r,n,acel} \qquad (em kPa)$$
(16)

O artigo de Peng limita-se a apresentar a evolução da perda de carga por atrito através de gráficos da razão entre a perda de carga por atrito sobre o comprimento do tubo ($dP_{r,n,atrito}/dL$) em função do título (x). Ora, sabe-se que, para um escoamento turbulento totalmente desenvolvido em um tubo, esta relação também pode ser calculada pela equação de Darcy-Weisbach:

$$\Delta P_{r,n,atrito} = f_{lo} \frac{L}{D} \rho \frac{V^2}{2}, \text{ ou } \frac{\Delta P_{r,n,atrito}}{L} = \frac{f_{lo}}{D} \rho \frac{V^2}{2} \qquad (\text{em kPa})$$
(17)

V, a velocidade do fluxo da mistura, também pode ser escrita como:

$$V = \frac{G}{\rho} \qquad (\text{em m/s}) \tag{18}$$

Então, a relação fica:

$$\frac{\Delta P_{r,n,atrito}}{L} = \frac{f_{lo}}{D} \frac{G^2}{2\rho} \qquad (\text{em kPa/m}) \tag{19}$$

Assim, precisa-se determinar o fator de atrito *f*. No modelo de fases separadas, o fator de atrito pode ser admitido como se o fluxo total fosse monofásico (geralmente admite-se líquido). Para a correção para o modelo bifásico, multiplica-se o resultado obtido por uma correlação obtida experimentalmente. A discussão sobre o multiplicador bifásico adotado é feita na próxima seção.

O fator de atrito pode ser obtido por meio do Diagrama de Moody, que relaciona *f* com a rugosidade relativa *e/D* e a turbulência (expressa pelo número de Reynolds). Por interpolação, pelos dados do NIST, obtém-se a viscosidade do fluido R-113 puro no estado líquido μ_l =4,95 10⁻⁴ kg/ms e μ_v =10⁻⁵ kg/ms. Logo, sabendo-se que:

$$\operatorname{Re}_{lo} = \frac{GD}{\mu_l},\tag{20}$$

Obtemos valores de Re entre 1640 e 3280.

Sabendo-se que a rugosidade absoluta *e* utilizada para o cobre é de 0,0015 mm (Soares, 2010), encontramos e/D=0,000185, então $f_{lo}=0,0136$.

Nota-se que este o ponto (Re, e/D) fica bastante distante das curvas para tubos lisos do diagrama de Moody, pois os valores de Re são muito pequenos, enquanto que Peng admite em seu experimento que o tubo é liso e o escoamento é turbulento. Isso se deve ao fato de que o escoamento na realidade não ser totalmente líquido, como calculado até agora, e a parcela de refrigerante no estado vapor tem viscosidade cerca de 50 vezes menor que a viscosidade no estado líquido.

4.2.3. Cálculo do multiplicador bifásico

Pode-se perceber que o título *x* não está diretamente presente na equação (17), mas na realidade f=f(x, Re, e/D). Entretanto, essa função é muito complexa e só pode ser obtida experimentalmente. Logo, para obter-se a razão entre a perda de carga com o comprimento em função do título, aplica-se um artifício. Conforme Collier and Thome (1996), o gradiente da pressão devido ao atrito para um escoamento bifásico pode ser escrito como o produto do gradiente de pressão para um fluxo monofásico por um fator multiplicador ϕ_{lo}^2 , como indicado a seguir:

$$\left(\frac{dp}{dz}F\right) = -\frac{fvG^2}{2d_{tc}} = \frac{f_{lo}G^2}{2d_{tc}\rho_l}\phi_{lo}^2 \qquad (\text{em kPa/m})$$
(21)

Onde f_{lo} é o fator de atrito para o fluido puro em fase de líquido saturado, calculado na seção anterior, e ϕ_{lo}^2 ; é o multiplicador bifásico.

Existem diversos métodos baseados em resultados empíricos que permitem calcular ϕ_{lo}^2 . Fiorelli e Peng propõem duas correlações distintas.

4.2.3.1. A correlação de Friedel

Peng et al. (2009) propõe o uso da correlação de Friedel (1979) para o estudo comparativo da correlação proposta por ele. A correlação de Friedel é muito utilizada para estimar o multiplicador para misturas bifásicas para o cálculo da perda de carga

em fluxos de fases separadas, especialmente quando $\frac{\mu_g}{\mu_l} > 0,001$, que é o caso do R-

113. O multiplicador neste caso é obtido a partir das seguintes equações:

$$\phi_{lo}^2 = A_1 + \frac{3,24A_2A_3}{Fr^{0.045}We^{0.035}}$$
(22)

, onde
$$A_1 = (1-x)^2 + x^2 \frac{\rho_l f_{go}}{\rho_g f_{lo}}$$
, (23)

$$A_2 = x^{0.78} (1-x)^{0.224}, (24)$$

$$A_{3} = \left(\frac{\rho_{l}}{\rho_{g}}\right)^{0.91} \left(\frac{\mu_{g}}{\mu_{l}}\right)^{0.19} \left(1 - \frac{\mu_{g}}{\mu_{l}}\right)^{0.7},$$
(25)

$$Fr = \frac{G^2}{gD\rho^2},\tag{26}$$

$$e We = \frac{G^2 D}{\rho \sigma}.$$
(27)

 ϕ_{lo}^2 , assim como Fr, We e as constantes A₁, A₂ e A₃, são adimensionais.

4.2.3.2. A correlação de Li

A correlação de Li é utilizada por Fiorelli e é expressa pela seguinte equação:

$$\phi_{lo}^{2} = \left\{ \frac{\ln\left[\left(7 / \operatorname{Re}_{lo}\right)^{0.9} + 0.27 \left(\varepsilon / d_{lc}\right) \right]}{\ln\left[\left(7 / \operatorname{Re}_{bif}\right)^{0.9} + 0.27 \left(\varepsilon / d_{lc}\right) \right]} \right\} \left[1 + x \left(\frac{v_{v}}{v_{l}} - 1 \right) \right]$$
(28)

0

nde
$$\operatorname{Re}_{bif} = \frac{GD}{\mu_{bif}}$$
 (29)

$$\mu_{bif} = \frac{\mu_l \mu_v}{\mu_v + x^{1.4} (\mu_l - \mu_v)}$$
 (em Pa.s) (30)

Mais uma vez, embora os dois métodos sejam válidos, privilegiaremos a correlação utilizada por Fiorelli para a validação do estudo de Peng e para o estudo comparativo conseguinte. Ressalta-se que para ambas todas as correlações apresentadas, é

5. ESTUDO COMPARATIVO

Tendo em vista que o trabalho de Peng et al. (2009) foi a única referência sobre o efeito da perda de carga em nanofluidos, e o software EES foi a única ferramenta que realizou os cálculos determinantes para as conclusões deste trabalho, é necessário efetuar uma verificação da consistência entre os resultados de Peng e os resultados obtidos no aplicativo. Além disso, é preciso admitir valores para certos parâmetros, e uma análise comparativa gráfica dos resultados, uma vez que muitos dados não estão explícitos numericamente na publicação de Peng.

5.1. Fração de vazio

Inicialmente, devem-se comparar os resultados alcançados com os diferentes métodos de cálculo da fração de vazio, o que afeta o valor do gradiente de pressão obtido. A comparação entre a equação de Premoli e a equação de Steiner fornece:

Figura 5.1: cCmparativo do cálculo das frações de vazio entre a equação de Premoli e de Steiner para G=100kg/m²s

Figura 5.2: Comparativo do cálculo das frações de vazio entre a equação de Premoli e de Steiner para G=150kg/m²s

Figura 5.3: Comparativo do cálculo das frações de vazio entre a equação de Premoli e de Steiner para G=200kg/m²s

A maior diferença encontrada entre os resultados foi de 9,6% para G=100 kg/m²s e x=0,2. Constata-se que o valor da fração de vazio de Premoli tende a ser maior para títulos de até 0,6, sendo aproximadamente igual ao alpha de Steiner em 0,7 e menor a partir deste ponto. Do cálculo da equação (6), decorre que quanto maior o valor de α , maior a parcela da perda de carga devido à aceleração. Logo, da equação (16), para um mesmo valor experimental de $\Delta P_{r,n,total}$, quanto maior a parcela devido à aceleração, menor será a parcela correspondente ao atrito. Portanto, como Peng utilizou a fração de vazio de Steiner, pode haver uma tendência de se encontrarem valores de gradiente de pressão menores que os encontrados pelo modelo de Premoli para o caso de títulos menores que 0,7.

5.2. Perda de carga por atrito

Após a parametrização de escala dos resultados gráficos do artigo com os resultados do aplicativo, constatam-se os seguintes resultados:

Figura 5.4: Gradiente de pressão em função do título para G=100kg/m²s

Figura 5.5: Gradiente de pressão em função do título para G=150kg/m²s

Figura 5.6: Gradiente de pressão em função do título para G=200kg/m²s

No caso da variação do gradiente de pressão com o título para diferentes fluxos mássicos, percebe-se que o modelo tende a estimar os valores acima do esperado, especialmente para baixas vazões (100 e 150 kg/m²s) e títulos acima de 0,7. O erro nesses casos é consideravelmente alto, chegando a até 50%. Entretanto, o modelo parece bastante adequado para vazões maiores (200 kg/m²s) e valores de título entre 0,3 e 0,5, conforme mostra a Figura 5.3. Esses resultados ficaram acima do limite de 35% de desvio estabelecido por Peng, porém vale lembrar que foram utilizadas correlações para o multiplicador de atrito diferentes das propostas (Li, 1991; Lockhart and Martinelli;1949), para se adequar ao modelo numérico. Além disso, como observado anteriormente, sabe-se que as correlações utilizadas apresentam tal desvio que os resultados obtidos são aceitáveis para se afirmar que a comparação dos dois modelos é válida.

5.3. Fator de impacto

Os resultados para o fator de impacto das nanopartículas são mostrados a seguir:

Figura 5.7: Correlação de atrito de Peng em função do título para G=100kg/m²s

Figura 5.8: Correlação de atrito de Peng em função do título para G=150kg/m²s

Figura 5.9: Correlação de atrito de Peng em função do título para G=200kg/m²s

Constata-se que novamente que o desvio dos resultados de Peng com os obtidos numericamente diferiram além do estipulado pelo autor, embora estejam muito próximos do limite. Utilizando-se a mesma escala de Peng, encontraram se diferenças de até 6%, ou seja, apenas 1% a mais do que o limite proposto. Assim como observado pelo autor, os maiores desvios foram encontrados para a composição de 0,2% em massa de nanopartículas de CuO. Uma possível causa dessa diferença é o fato de o que o fator de impacto proposto é considerado diretamente proporcional à fração mássica da nanopartícula, o que não se comprova pelos resultados experimentais. Nos resultados experimentais, as distâncias entre os valores para composições de 0,1% e 0,2% de CuO é aproximadamente igual à diferença entre as composições de 0,2% e 0,5%.

6. REVISÃO DA CORRELAÇÃO DE ATRITO

Uma vez verificada a consistência do aplicativo EES para a faixa de variação dos parâmetros utilizada por Peng, foi realizada uma análise preliminar dos resultados obtidos pelo código desenvolvido por Fiorelli. Notou-se, então, que a expressão da correlação de atrito apresentava valores menores do que 1 dentro da faixa de variação dos parâmetros utilizada neste trabalho. Isso indicaria que as nanopartículas reduziriam a perda de carga ao longo do tubo capilar, o que seria incoerente com a base teórica exposta na anteriormente, na revisão de material técnico. Em resumo, o aumento da viscosidade e da turbulência resultantes da introdução das partículas resultaria na elevação da perda de carga pela dissipação de energia no impacto do fluido com as nanopartículas e destas com as paredes do tubo capilar.

Observou-se que o resultado suspeito da correlação de atrito se deve principalmente a dois parâmetros que tem uma variação importante entre os trabalhos de Peng e Fiorelli:

- O diâmetro do tubo, que é da ordem de 10⁻³ m no experimento de Peng e de 10⁻⁴ m na tese de Fiorelli. Como resultado, o termo do diâmetro do tubo na correlação fica desproporcional em relação à influência do título e da fração de nanopartículas, já que tem peso 10 vezes maior do que nos experimentos de Peng.
- O fluxo de massa do experimento de Fiorelli é aproximadamente 10 vezes maior que a faixa de fluxos utilizada por Peng. Tendo em vista que o fluxo tem uma relação inversamente proporcional ao valor da correlação, e foi apresentado na forma e^{-0,63G}, somando-se esse termo aos outros fatores, existe um limite de G a partir do qual a relação inevitavelmente resultará em um valor menor do que 1. Mantendo-se fixos todos os outros parâmetros do experimento de Peng, observou-se que a correlação passa a dar um valor menor do que 1 já a partir de G=330kg/m²s.

Pelas razões expostas anteriormente, foi necessário buscar-se uma nova expressão para a correlação de atrito que satisfizesse tanto os resultados experimentais de Peng quanto fosse coerente com os resultados obtidos numericamente no modelo de Fiorelli.

Após o cálculo de uma regressão utilizando o EES, a expressão obtida foi:

$$F_{PD} = 1,002^{9000\frac{d_n}{D_i}} \cdot 1,001^{0,0002\rho_n \cdot v_l} \cdot 1,036^{\frac{100}{G}} \cdot 1,022^{\left\lfloor \frac{0,12}{x \cdot (1-x)} \right\rfloor} \cdot 1,03^{(800\omega)}$$

Os parâmetros d_n (em m), D_i (em m), ρ_n (em kg/m³), υ_1 em (m³/kg), G (em kg/m²s), x e ω (em kg CuO/kg de mistura) são os mesmos da fórmula original. Nota-se que os valores de cada termo não podem ultrapassar 1 independentemente dos valores das incógnitas. A Tabela 6.1 a 6.3 e as Figuras 6.1 a 6.3 mostram os resultados da correlação do atrito e a variação entre o valor experimental de Peng. Assim como a expressão original, o erro dessa fórmula é menor que 5% em 90% dos casos, o que valida a utilização dessa expressão para substituir a correlação original.

Tabela 6.1: Comparação entre a nova correlação de atrito teórico e a correlação obtida experimentalmente para G=100kg/m²s

W	Х	F_PD exp.100	novo F_PD 100	Variação
0,001	0,275	1,068	1,0562	-1,10%
0,001	0,38	1,059	1,0541	-0,46%
0,001	0,47	1,057	1,0534	-0,33%
0,001	0,575	1,055	1,0537	-0,12%
0,001	0,67	1,056	1,0548	-0,10%
0,001	0,785	1,073	1,0587	-1,33%
0,002	0,28	1,135	1,0813	-4,72%
0,002	0,38	1,122	1,0793	-3,80%
0,002	0,47	1,12	1,0787	-3,69%
0,002	0,565	1,113	1,0788	-3,07%
0,002	0,67	1,117	1,0801	-3,30%
0,002	0,785	1,119	1,0841	-3,12%
0,005	0,28	1,21	1,1608	-4,06%
0,005	0,38	1,189	1,1587	-2,55%
0,005	0,48	1,167	1,1579	-0,77%
0,005	0,575	1,162	1,1582	-0,32%
0,005	0,67	1,163	1,1595	-0,30%
0,005	0,78	1,167	1,1635	-0,30%

Tabela 6.2: Comparação entre a nova correlação de atrito teórico e a correlação obtida experimentalmente para G=150kg/m²s

W	Х	F_PD exp.150	Novo F_PD 150	Variação
0,001	0,275	1,05	1,0625	0,60%
0,001	0,38	1,048	1,0603	0,59%
0,001	0,47	1,047	1,0597	0,62%
0,001	0,575	1,042	1,0599	1,12%
0,001	0,67	1,045	1,0611	0,95%
0,001	0,785	1,05	1,0650	0,84%
0,002	0,28	1,113	1,0877	-2,84%
0,002	0,38	1,103	1,0857	-2,14%
0,002	0,47	1,096	1,0850	-1,58%
0,002	0,565	1,082	1,0852	-0,29%
0,002	0,67	1,093	1,0865	-1,18%
0,002	0,785	1,093	1,0905	-0,81%
0,005	0,28	1,186	1,1677	-2,12%
0,005	0,38	1,162	1,1655	-0,28%
0,005	0,48	1,148	1,1648	0,87%
0,005	0,575	1,132	1,1650	2,32%
0,005	0,67	1,147	1,1664	1,09%
0,005	0,78	1,152	1,1703	1,00%

W	Х	F_PD exp. 200	Novo F_PD 200	Variação
0,001	0,275	1,03	1,0563	2,55%
0,001	0,38	1,029	1,0541	2,44%
0,001	0,47	1,028	1,0535	2,48%
0,001	0,575	1,024	1,0537	2,90%
0,001	0,67	1,034	1,0549	2,02%
0,001	0,785	1,047	1,0588	1,12%
0,002	0,28	1,072	1,0814	0,87%
0,002	0,38	1,063	1,0794	1,54%
0,002	0,47	1,052	1,0787	2,54%
0,002	0,565	1,049	1,0789	2,85%
0,002	0,67	1,063	1,0801	1,61%
0,002	0,785	1,078	1,0841	0,57%
0,005	0,28	1,118	1,1609	3,84%
0,005	0,38	1,112	1,1587	4,20%
0,005	0,48	1,085	1,1580	6,73%
0,005	0,575	1,077	1,1582	7,54%
0,005	0,67	1,09	1,1596	6,38%
0,005	0,78	1,106	1,1635	5,20%

Tabela 6.3: Comparação entre a nova correlação de atrito teórico e a correlação obtida experimentalmente para G=150kg/m²s

Figura 6.1: Nova correlação de atrito em função do título para G=100kg/m²s

Figura 6.2: Nova correlação de atrito em função do título para G=150kg/m²s

Figura 6.3: Nova correlação de atrito em função do título para G=200kg/m²s

7. SIMULAÇÃO E ANÁLISE

7.1. Análise preliminar

Em primeiro lugar, foi realizado um trabalho de verificação do funcionamento do programa por meio da variação de alguns parâmetros como temperatura de entrada (denominada T_1) e diferença de temperatura de subresfriamento, seguida de uma simulação.

Uma vez verificada a consistência da correlação do fator de perda de carga dentro das hipóteses do modelo de Fiorelli, em uma determinada faixa de temperatura e pressão, buscou-se realizar as modificações necessárias no programa de simulação de modo a levar em consideração a presença de nanopartículas no fluido refrigerante.

Desse modo, é possível comparar tanto o efeito do fator de impacto devido à presença de óxido de cobre na mistura quanto o comportamento do fluido sob condições de operação diferentes.

Para o escopo deste trabalho, foi utilizado o programa de simulação para o caso do refrigerante R-134a. Os seguintes valores operacionais originais do trabalho de Fiorelli foram mantidos em todas as simulações:

- Pressão atmosférica (p_{atm}): 700 mmHg;
- Temperatura de evaporação (T_{ev}): -25°C;
- Temperatura do ambiente (T_{amb}): 25°C;
- Diâmetros de entrada e saída do tubo (D_{cd} e D_{ev}): 6 mm.

Foram mantidas as propriedades e a fração volumétrica do CuO, nanopartícula empregada na validação do modelo, a saber:

- Diâmetro da nanopartícula (d_n): 40 nm;
- Massa específica da nanopartícula (ρ_n): 6320 kg/m³.

Além disso, para efeito de comparação, foram definidos os seguintes valores de referência para os parâmetros variáveis:

- Temperatura de condensação (T_{cd}): 55°C;
- Título inicial (x₁): nulo (foi utilizado no programa x₁=0,001 para evitar inconsistências numéricas);
- Comprimento do tubo (L): 2,757 m;
- Diâmetro do tubo capilar (D_i): 0,762 mm.

Baseando-se em faixas operacionais típicas, decidiu-se escolher arbitrariamente quatro cenários para comparação, indicados na Tabela 7.1 a seguir.

Cenário 1	Cenário 2	Cenário 13	Cenário 14
ΔTsub=5°C	∆Tsub=5°C	∆Tsub=5°C	∆Tsub=5°C
$T_1=40^{\circ}C$	$T_1=40^{\circ}C$	$T_1=55^{\circ}C$	$T_1=55^{\circ}C$
Sem fator de impacto	Com fator de impacto	Sem fator de impacto	Com fator de impacto

Tabela 7.1 - Cenários preliminares utilizados para a verificação da simulação

Pelo programa, o tubo é dividido em 30 pontos, entretanto, o primeiro e o último ponto serão desconsiderados neste caso, devido a distorções em alguns valores resultantes da definição de alguns parâmetros de inicialização do programa.

Os resultados simplificados da simulação dos quatro cenários estão indicados na Tabela 7.2 e 7.3. Pode-se perceber que a diferença de pressão ao longo do tubo é discretamente maior quando há presença de CuO, como esperado, entretanto, esta não passou de 0,67%, na comparação entre os cenários 1 e 2 e de 0,41% na comparação entre os cenários 13 e 14.

		Cenári	o 1			Ce	enário 2			Va	riação	
Z	х	Т	р	Fpd	z	x	Т	р	var z	var x	var T	var p
0	0	35	1012,671	1			35	1012,62	0,00%	0,00%	0,00%	0,01%
1,373	0,001	34,175	866,729	1,0263	1,352	0,001	34,192	867,146	1,55%	0,00%	-0,05%	-0,05%
1,557	0,009	33,186	843,29	1,0261	1,539	0,009	33,205	843,741	1,17%	0,00%	-0,06%	-0,05%
1,712	0,016	32,186	819,851	1,0259	1,695	0,016	32,207	820,336	1,00%	0,00%	-0,07%	-0,06%
1,843	0,024	31,165	796,412	1,0257	1,829	0,024	31,188	796,931	0,77%	0,00%	-0,07%	-0,07%
1,956	0,033	30,121	772,973	1,0255	1,943	0,033	30,146	773,526	0,67%	0,00%	-0,08%	-0,07%
2,054	0,041	29,052	749,534	1,0253	2,043	0,041	29,079	750,121	0,54%	0,00%	-0,09%	-0,08%
2,14	0,05	27,959	726,095	1,0251	2,13	0,05	27,988	726,716	0,47%	0,00%	-0,10%	-0,09%
2,216	0,058	26,838	702,655	1,0249	2,207	0,058	26,869	703,311	0,41%	0,00%	-0,12%	-0,09%
2,283	0,067	25,688	679,216	1,0247	2,275	0,067	25,723	679,905	0,35%	0,00%	-0,14%	-0,10%
2,343	0,076	24,509	655,777	1,0245	2,335	0,076	24,546	656,5	0,34%	0,00%	-0,15%	-0,11%
2,396	0,085	23,297	632,338	1,0243	2,39	0,085	23,337	633,095	0,25%	0,00%	-0,17%	-0,12%
2,444	0,095	22,051	608,899	1,0241	2,438	0,094	22,093	609,69	0,25%	1,06%	-0,19%	-0,13%
2,486	0,104	20,768	585,46	1,0239	2,481	0,104	20,814	586,285	0,20%	0,00%	-0,22%	-0,14%
2,525	0,113	19,445	562,021	1,0237	2,52	0,113	19,494	562,88	0,20%	0,00%	-0,25%	-0,15%
2,559	0,123	18,08	538,582	1,0235	2,555	0,123	18,133	539,475	0,16%	0,00%	-0,29%	-0,17%
2,59	0,133	16,67	515,143	1,0233	2,586	0,133	16,726	516,07	0,15%	0,00%	-0,33%	-0,18%
2,617	0,143	15,209	491,704	1,0231	2,614	0,143	15,27	492,665	0,11%	0,00%	-0,40%	-0,20%
2,641	0,153	13,695	468,265	1,0229	2,639	0,153	13,761	469,26	0,08%	0,00%	-0,48%	-0,21%
2,663	0,163	12,122	444,826	1,0227	2,661	0,163	12,193	445,855	0,08%	0,00%	-0,58%	-0,23%
2,682	0,174	10,485	421,387	1,0225	2,68	0,174	10,561	422,45	0,07%	0,00%	-0,72%	-0,25%
2,699	0,185	8,777	397,948	1,0224	2,697	0,184	8,859	399,044	0,07%	0,54%	-0,93%	-0,27%
2,713	0,196	6,99	374,509	1,0222	2,711	0,195	7,078	375,639	0,07%	0,51%	-1,24%	-0,30%
2,725	0,207	5,116	351,07	1,022	2,724	0,206	5,211	352,234	0,04%	0,49%	-1,82%	-0,33%
2,735	0,218	3,143	327,631	1,0218	2,734	0,218	3,246	328,829	0,04%	0,00%	-3,17%	-0,36%
2,743	0,23	1,058	304,192	1,0217	2,742	0,229	1171	305,424	0,04%	0,44%	-99,91%	-0,40%
2,749	0,242	-1,154	280,753	1,0215	2,749	0,241	-1,031	282,019	0,00%	0,41%	11,93%	-0,45%
2,754	0,254	-3,513	257,314	1,0213	2,753	0,253	-3,378	258,614	0,04%	0,40%	4,00%	-0,50%
2,756	0,266	-6,044	233,875	1,0212	2,756	0,266	-5,895	235,209	0,00%	0,00%	2,53%	-0,57%
2,757	0,279	-8,78	210,436	0	2,757	0,278	-8,614	211,804	0,00%	0,36%	1,93%	-0,65%

Tabela 7.2: Variação de parâmetros ao longo do tubo capilar com e sem a correlação de perda de carga (cenários 1 e 2)

		Cenári	o 13		Cenário 14				Variação			
z	х	Т	р	Fpd	z	х	Т	р	var z	var x	var T	var p
0	0	50	1484,658	1			50	1484,568	0,00%	0,00%	0,00%	0,01%
1,254	0,001	48,602	1272,006	1,026	1,232	0,001	48,635	1273,074	1,79%	0,00%	-0,07%	-0,08%
1,433	0,01	47,495	1237,012	1,0258	1,413	0,01	47,531	1238,119	1,42%	0,00%	-0,08%	-0,09%
1,589	0,019	46,376	1202,018	1,0255	1,572	0,019	46,413	1203,164	1,08%	0,00%	-0,08%	-0,10%
1,726	0,029	45,231	1167,023	1,0253	1,71	0,029	45,27	1168,209	0,94%	0,00%	-0,09%	-0,10%
1,847	0,039	44,06	1132,029	1,025	1,833	0,039	44,102	1133,254	0,76%	0,00%	-0,10%	-0,11%
1,953	0,049	42,862	1097,034	1,0248	1,941	0,049	42,906	1098,299	0,62%	0,00%	-0,10%	-0,12%
2,048	0,059	41,635	1062,04	1,0245	2,037	0,059	41,681	1063,344	0,54%	0,00%	-0,11%	-0,12%
2,133	0,07	40,377	1027,046	1,0243	2,123	0,07	40,426	1028,389	0,47%	0,00%	-0,12%	-0,13%
2,209	0,08	39,087	992,051	1,0241	2,2	0,08	39,139	993,433	0,41%	0,00%	-0,13%	-0,14%
2,277	0,091	37,762	957,057	1,0238	2,269	0,091	37,816	958,478	0,35%	0,00%	-0,14%	-0,15%
2,338	0,102	36,4	922,063	1,0236	2,33	0,102	36,458	923,523	0,34%	0,00%	-0,16%	-0,16%
2,393	0,113	34,999	887,068	1,0234	2,386	0,113	35,059	888,568	0,29%	0,00%	-0,17%	-0,17%
2,442	0,124	33,555	852,074	1,0231	2,436	0,124	33,62	853,613	0,25%	0,00%	-0,19%	-0,18%
2,486	0,136	32,067	817,079	1,0229	2,481	0,136	32,135	818,658	0,20%	0,00%	-0,21%	-0,19%
2,526	0,147	30,53	782,085	1,0227	2,522	0,147	30,602	783,703	0,16%	0,00%	-0,24%	-0,21%
2,562	0,159	28,94	747,091	1,0225	2,558	0,159	29,016	748,748	0,16%	0,00%	-0,26%	-0,22%
2,594	0,171	27,293	712,096	1,0223	2,59	0,171	27,374	713,792	0,15%	0,00%	-0,30%	-0,24%
2,622	0,183	25,583	677,102	1,0221	2,619	0,183	25,67	678,837	0,11%	0,00%	-0,34%	-0,26%
2,647	0,195	23,806	642,107	1,0219	2,645	0,195	23,898	643,882	0,08%	0,00%	-0,38%	-0,28%
2,669	0,208	21,954	607,113	1,0217	2,667	0,207	22,052	608,927	0,07%	0,48%	-0,44%	-0,30%
2,689	0,22	20,02	572,119	1,0215	2,687	0,22	20,125	573,972	0,07%	0,00%	-0,52%	-0,32%
2,705	0,233	17,994	537,124	1,0213	2,704	0,233	18,106	539,017	0,04%	0,00%	-0,62%	-0,35%
2,72	0,246	15,865	502,13	1,0211	2,718	0,246	15,986	504,062	0,07%	0,00%	-0,76%	-0,38%
2,731	0,26	13,621	467,136	1,0209	2,73	0,259	13,751	469,107	0,04%	0,39%	-0,95%	-0,42%
2,741	0,273	11,245	432,141	1,0208	2,74	0,273	11,385	434,151	0,04%	0,00%	-1,23%	-0,46%
2,748	0,287	8,717	397,147	1,0206	2,747	0,286	8,87	399,196	0,04%	0,35%	-1,72%	-0,51%
2,753	0,301	6,014	362,152	1,0205	2,753	0,3	6,18	364,241	0,00%	0,33%	-2,69%	-0,57%
2,756	0,315	3,102	327,158	1,0203	2,756	0,314	3,285	329,286	0,00%	0,32%	-5,57%	-0,65%
2,757	0,329	-0,060	292,164	0	2,757	0,328	0,144	294,331	0,00%	0,30%	-141,67%	-0,74%

Tabela 7.3: Variação de parâmetros ao longo do tubo capilar com e sem a correlação de perda de carga (cenários 13 e 14)

Após a validação do programa a partir dos resultados anteriores, foi feita uma série de simulações para avaliar a influência do fator de impacto sobre cada parâmetro operacional do tubo capilar.

O resumo dos parâmetros iniciais empregados em cada cenário analisado está indicado na Tabela 7.4.

Cenário	Tcd	$\Delta Tsub$	x2	Di	z30	Fpd	Item
1	40	5	0	0,000792	2,757	Sim	
2	40	5	0	0,000792	2,757	Não	
3	40	4,5	0	0,000792	2,757	Sim	
4	40	4,5	0	0,000792	2,757	Não	
5	40	4	0	0,000792	2,757	Sim	
6	40	4	0	0,000792	2,757	Não	
7	40	3,5	0	0,000792	2,757	Sim	
8	40	3,5	0	0,000792	2,757	Não	
9	40	3	0	0,000792	2,757	Sim	
10	40	3	0	0,000792	2,757	Não	
11	40	2,5	0	0,000792	2,757	Sim	7.1
12	40	2,5	0	0,000792	2,757	Não	7.2
13	55	5	0	0,000792	2,757	Sim	7.3
14	55	5	0	0,000792	2,757	Não	7.4
15	55	4,5	0	0,000792	2,757	Sim	
16	55	4,5	0	0,000792	2,757	Não	
17	55	4	0	0.000792	2.757	Sim	
18	55	4	0	0.000792	2.757	Não	
19	55	3.5	0	0.000792	2,757	Sim	
20	55	3.5	0	0.000792	2.757	Não	
21	55	3	0	0.000792	2,757	Sim	
22	55	3	0	0.000792	2.757	Não	
23	55	2.5	0	0.000792	2,757	Sim	
24	55	2.5	0	0.000792	2,757	Não	
25	55	5	0.02	0.000792	2,757	Sim	
26	55	5	0.02	0.000792	2 757	Não	
20	55	5	0.04	0.000792	2,757	Sim	
2.8	55	5	0.04	0.000792	2,757	Não	
29	55	5	0.06	0.000792	2,757	Sim	
30	55	5	0.06	0.000792	2,757	Não	7.5
31	55	5	0.08	0.000792	2,757	Sim	
32	55	5	0.08	0.000792	2,757	Não	
33	55	5	0.1	0.000792	2,757	Sim	
34	55	5	0.1	0.000792	2,757	Não	
35	55	5	0	0.0007	2,757	Sim	
36	55	5	0	0,0007	2,757	Não	
37	55	5	0	0,0006	2,757	Sim	
38	55	5	0	0,0006	2,757	Não	
39	55	5	0	0.0005	2,757	Sim	7.6
40	55	5	0	0.0005	2,757	Não	
41	55	5	0	0,0009	2,757	Sim	
42	55	5	0	0,0009	2,757	Não	
43	55	5	0	0,000702	2,737	Sim	
4.5	55	5	0	0,000792	2,0	Não	
44	55	5	0	0,000792	2,0	Sim	
45	55	5	0	0,000792	2,1	Não	
40	55	5	0	0,000792	2,1	Sim	7.7
4/	55	5	0	0,000792	2,0	Não	
48	55	5	0	0,000792	2,0	rina0	
49	55	5	0	0,000792	2,3	Não	
50	55	5	0	0,000792	2,3	INAO Sim	7.8 (
51	55	5	0	0,000/92	2,131	Sim	7.8 (w=0,2%)
52	55	5	0	0,000792	2,151	Sim	7.8 (W=0,4%)

Tabela 7.4: Resumo dos parâmetros iniciais dos cenários estudados

7.2. Influência sobre o título ao longo do tubo capilar

As Tabelas 7.5 a 7.14 mostram a evolução do título, da temperatura e da pressão ao longo do tubo capilar para temperaturas de entrada com grau de subresfriamento de 4,5 a 2,5°C quando T₁=40°C e T₁=55°C. Pode-se observar que, como esperado, a fração de título para o caso em que há presença de nanopartículas é menor que na mistura sem nanopartícula, dada uma mesma posição do tubo capilar. Nota-se, portanto, um ligeiro "atraso" no início da aparição da fase vapor quando a mistura é um nanofluido, indicado na Figura 7.1. O atraso para o início da vaporização devido ao impacto das nanopartículas foi menor quanto maior o grau de subresfriamento, variando de 1,55% para Δ Tsub=5°C a 2,64% para Δ Tsub=2,5°C, a T₁=40°C. Para a temperatura de condensação T₁=55°C, o atraso foi entre 1,79% (Δ Tsub=5°C) e 2,60% (Δ Tsub=2,5°C).

Pela Figura 7.2, nota-se que a diferença entre a posição de início da vaporização no tubo com nanofluido aumenta com o quanto maior o grau de subresfriamento. Além disso, as variações são maiores no início do resfriamento e a diferença diminui a zero no final do tubo, como esperado, uma vez que foi fixada a temperatura (logo, a pressão) de evaporação na saída.

Figura 7.1: Trecho ampliado indicando "atraso" do título em função da posição no tubo capilar quando há nanopartículas (cenários 1 e 2)

Figura 7.2: Trecho ampliado indicando "atraso" do título em função da posição no tubo capilar quando há nanopartículas (cenários 1 e 2)

		Cenário	3			С	enário 4			Variação			
z	х	Т	р	Fpd	z	х	Т	р	var z	var x	var T	var p	
0	0	35,5	1012,777	1			35,5	1012,724	0,00%	0,00%	0,00%	0,01%	
1,294	0,001	34,671	878,781	1,0264	1,273	0,001	34,689	879,233	1,65%	0,00%	-0,05%	-0,05%	
1,489	0,009	33,67	854,825	1,0262	1,47	0,009	33,691	855,313	1,29%	0,00%	-0,06%	-0,06%	
1,652	0,016	32,659	830,87	1,0259	1,635	0,016	32,681	831,393	1,04%	0,00%	-0,07%	-0,06%	
1,791	0,025	31,625	806,914	1,0257	1,776	0,024	31,65	807,473	0,84%	4,17%	-0,08%	-0,07%	
1,91	0,033	30,569	782,958	1,0255	1,897	0,033	30,595	783,553	0,69%	0,00%	-0,08%	-0,08%	
2,014	0,041	29,487	759,003	1,0253	2,002	0,041	29,516	759,633	0,60%	0,00%	-0,10%	-0,08%	
2,105	0,05	28,379	735,047	1,0251	2,095	0,05	28,411	735,713	0,48%	0,00%	-0,11%	-0,09%	
2,185	0,059	27,244	711,091	1,0249	2,176	0,059	27,278	711,793	0,41%	0,00%	-0,12%	-0,10%	
2,256	0,068	26,08	687,135	1,0247	2,248	0,068	26,116	687,874	0,36%	0,00%	-0,14%	-0,11%	
2,319	0,077	24,885	663,18	1,0245	2,312	0,077	24,924	663,954	0,30%	0,00%	-0,16%	-0,12%	
2,376	0,086	23,657	639,224	1,0243	2,369	0,086	23,699	640,034	0,30%	0,00%	-0,18%	-0,13%	
2,426	0,096	22,393	615,268	1,0241	2,42	0,095	22,438	616,114	0,25%	1,05%	-0,20%	-0,14%	
2,471	0,105	21,092	591,313	1,0239	2,466	0,105	21,14	592,194	0,20%	0,00%	-0,23%	-0,15%	
2,512	0,115	19,75	567,357	1,0237	2,507	0,115	19,802	568,274	0,20%	0,00%	-0,26%	-0,16%	
2,548	0,125	18,365	543,401	1,0235	2,544	0,124	18,421	544,354	0,16%	0,81%	-0,30%	-0,18%	
2,58	0,135	16,932	519,445	1,0233	2,577	0,134	16,992	520,434	0,12%	0,75%	-0,35%	-0,19%	
2,609	0,145	15,449	495,49	1,0231	2,606	0,144	15,513	496,514	0,12%	0,69%	-0,41%	-0,21%	
2,635	0,155	13,91	471,534	1,0229	2,632	0,155	13,979	472,594	0,11%	0,00%	-0,49%	-0,22%	
2,658	0,166	12,31	447,578	1,0227	2,655	0,165	12,385	448,674	0,11%	0,61%	-0,61%	-0,24%	
2,678	0,176	10,644	423,622	1,0225	2,676	0,176	10,725	424,754	0,07%	0,00%	-0,76%	-0,27%	
2,695	0,187	8,905	399,667	1,0223	2,694	0,187	8,992	400,834	0,04%	0,00%	-0,97%	-0,29%	
2,71	0,199	7,084	375,711	1,0222	2,709	0,198	7,177	376,914	0,04%	0,51%	-1,30%	-0,32%	
2,723	0,21	5,172	351,755	1,022	2,722	0,209	5,273	352,994	0,04%	0,48%	-1,92%	-0,35%	
2,734	0,222	3,157	327,8	1,0218	2,733	0,221	3,267	329,074	0,04%	0,45%	-3,37%	-0,39%	
2,742	0,234	1,026	303,844	1,0216	2,742	0,233	1146	305,154	0,00%	0,43%	-10,47%	-0,43%	
2,749	0,246	-1,238	279,888	1,0215	2,748	0,245	-1,107	281,234	0,04%	0,41%	11,83%	-0,48%	
2,754	0,258	-3,657	255,932	1,0213	2,753	0,257	-3,513	257,314	0,04%	0,39%	4,10%	-0,54%	
2,756	0,271	-6,258	231,977	1,0212	2,756	0,27	-6,098	233,394	0,00%	0,37%	2,62%	-0,61%	
2,757	0,283	-9,075	208,021	0	2,757	0,283	-8,897	209,474	0,00%	0,00%	2,00%	-0,69%	

Tabela 7.5: Evolução do título, temperatura e pressão ao longo do tubo capilar para T₁=40°C e Δ Tsub=4,5°C

		Cenári	o 5			С	enário 6		Variação			
z	х	Т	р	Fpd	z	х	Т	р	var z	var x	var T	var p
0	0	36	1012,884	1			36	1012,831	0,00%	0,00%	0,00%	0,01%
1,209	0,001	35,176	891,183	1,0264	1,188	0,001	35,195	891,67	1,77%	0,00%	-0,05%	-0,05%
1,414	0,009	34,164	866,695	1,0262	1,395	0,009	34,185	867,217	1,36%	0,00%	-0,06%	-0,06%
1,587	0,016	33,14	842,208	1,026	1,57	0,016	33,164	842,764	1,08%	0,00%	-0,07%	-0,07%
1,734	0,025	32,094	817,72	1,0258	1,719	0,025	32,12	818,311	0,87%	0,00%	-0,08%	-0,07%
1,86	0,033	31,025	793,232	1,0256	1,847	0,033	31,052	793,859	0,70%	0,00%	-0,09%	-0,08%
1,97	0,042	29,93	768,744	1,0253	1,959	0,042	29,96	769,406	0,56%	0,00%	-0,10%	-0,09%
2,066	0,05	28,808	744,257	1,0251	2,056	0,05	28,841	744,953	0,49%	0,00%	-0,11%	-0,09%
2,151	0,059	27,659	719,769	1,0249	2,142	0,059	27,693	720,5	0,42%	0,00%	-0,12%	-0,10%
2,227	0,068	26,479	695,281	1,0247	2,219	0,068	26,517	696,048	0,36%	0,00%	-0,14%	-0,11%
2,294	0,078	25,268	670,793	1,0245	2,286	0,078	25,308	671,595	0,35%	0,00%	-0,16%	-0,12%
2,353	0,087	24,023	646,306	1,0243	2,347	0,087	24,066	647,142	0,26%	0,00%	-0,18%	-0,13%
2,407	0,097	22,742	621,818	1,0241	2,401	0,096	22,788	622,689	0,25%	1,04%	-0,20%	-0,14%
2,455	0,106	21,422	597,33	1,0239	2,449	0,106	21,472	598,237	0,24%	0,00%	-0,23%	-0,15%
2,497	0,116	20,061	572,842	1,0237	2,493	0,116	20,114	573,784	0,16%	0,00%	-0,26%	-0,16%
2,536	0,126	18,655	548,355	1,0235	2,532	0,126	18,712	549,331	0,16%	0,00%	-0,30%	-0,18%
2,57	0,136	17,2	523,867	1,0233	2,566	0,136	17,261	524,878	0,16%	0,00%	-0,35%	-0,19%
2,601	0,147	15,693	499,379	1,0231	2,598	0,146	15,759	500,426	0,12%	0,68%	-0,42%	-0,21%
2,628	0,157	14,129	474,892	1,0229	2,625	0,157	14,2	475,973	0,11%	0,00%	-0,50%	-0,23%
2,652	0,168	12,502	450,404	1,0227	2,65	0,167	12,578	451,52	0,08%	0,60%	-0,60%	-0,25%
2,673	0,179	10,807	425,916	1,0225	2,671	0,178	10,888	427,068	0,07%	0,56%	-0,74%	-0,27%
2,692	0,19	9,035	401,428	1,0223	2,69	0,189	9,123	402,615	0,07%	0,53%	-0,96%	-0,29%
2,708	0,201	7,179	376,941	1,0221	2,706	0,201	7,274	378,162	0,07%	0,00%	-1,31%	-0,32%
2,721	0,213	5,229	352,453	1,022	2,72	0,212	5,331	353,709	0,04%	0,47%	-1,91%	-0,36%
2,732	0,225	3,172	327,965	1,0218	2,731	0,224	3,283	329,257	0,04%	0,45%	-3,38%	-0,39%
2,742	0,237	0,993	303,477	1,0216	2,741	0,236	1,114	304,804	0,04%	0,42%	-10,86%	-0,44%
2,748	0,249	-1,326	278,99	1,0214	2,748	0,249	-1,193	280,351	0,00%	0,00%	11,15%	-0,49%
2,753	0,262	-3,807	254,502	1,0213	2,753	0,261	-3,66	255,898	0,00%	0,38%	4,02%	-0,55%
2,756	0,275	-6,48	230,014	1,0211	2,756	0,274	-6,317	231,446	0,00%	0,36%	2,58%	-0,62%
2,757	0,288	-9,383	205,526	0	2,757	0,287	-9,202	206,993	0,00%	0,35%	1,97%	-0,71%

Tabela 7.6: Evolução do título, temperatura e pressão ao longo do tubo capilar para T₁=40°C e Δ Tsub=4,0°C

		Cenári	o 7			C	enário 8			Va	iriação	
z	х	Т	р	Fpd	z	х	Т	р	var z	var x	var T	var p
0	0	36,5	1012,994	1			36,5	1012,939	0,00%	0,00%	0,00%	0,01%
1,115	0,001	35,692	903,992	1,0264	1,094	0,001	35,712	904,511	1,92%	0,00%	-0,06%	-0,06%
1,332	0,009	34,668	878,958	1,0262	1,313	0,009	34,691	879,51	1,45%	0,00%	-0,07%	-0,06%
1,515	0,016	33,633	853,924	1,026	1,498	0,016	33,657	854,508	1,13%	0,00%	-0,07%	-0,07%
1,671	0,025	32,574	828,89	1,0258	1,656	0,025	32,601	829,507	0,91%	0,00%	-0,08%	-0,07%
1,805	0,033	31,492	803,856	1,0256	1,792	0,033	31,52	804,506	0,73%	0,00%	-0,09%	-0,08%
1,922	0,042	30,384	778,822	1,0254	1,91	0,042	30,414	779,504	0,63%	0,00%	-0,10%	-0,09%
2,024	0,051	29,248	753,788	1,0251	2,014	0,051	29,281	754,503	0,50%	0,00%	-0,11%	-0,09%
2,114	0,06	28,084	728,754	1,0249	2,105	0,06	28,119	729,502	0,43%	0,00%	-0,12%	-0,10%
2,194	0,069	26,889	703,72	1,0247	2,186	0,069	26,927	704,5	0,37%	0,00%	-0,14%	-0,11%
2,265	0,078	25,662	678,686	1,0245	2,258	0,078	25,702	679,499	0,31%	0,00%	-0,16%	-0,12%
2,329	0,088	24,4	653,652	1,0243	2,322	0,088	24,444	654,497	0,30%	0,00%	-0,18%	-0,13%
2,385	0,098	23,102	628,618	1,0241	2,38	0,097	23,148	629,496	0,21%	1,03%	-0,20%	-0,14%
2,436	0,107	21,763	603,584	1,0239	2,431	0,107	21,813	604,495	0,21%	0,00%	-0,23%	-0,15%
2,482	0,117	20,382	578,55	1,0237	2,477	0,117	20,435	579,493	0,20%	0,00%	-0,26%	-0,16%
2,522	0,128	18,955	553,516	1,0235	2,518	0,127	19,012	554,492	0,16%	0,79%	-0,30%	-0,18%
2,559	0,138	17,478	528,482	1,0233	2,555	0,138	17,539	529,491	0,16%	0,00%	-0,35%	-0,19%
2,591	0,148	15,948	503,448	1,0231	2,588	0,148	16,012	504,489	0,12%	0,00%	-0,40%	-0,21%
2,62	0,159	14,358	478,414	1,0229	2,617	0,159	14,427	479,488	0,11%	0,00%	-0,48%	-0,22%
2,646	0,17	12,704	453,38	1,0227	2,643	0,17	12,778	454,486	0,11%	0,00%	-0,58%	-0,24%
2,668	0,181	10,979	428,346	1,0225	2,666	0,181	11,059	429,485	0,08%	0,00%	-0,72%	-0,27%
2,688	0,193	9,175	403,312	1,0223	2,686	0,192	9,261	404,484	0,07%	0,52%	-0,93%	-0,29%
2,705	0,204	7,283	378,278	1,0221	2,703	0,204	7,376	379,482	0,07%	0,00%	-1,26%	-0,32%
2,719	0,216	5,294	353,244	1,0219	2,718	0,216	5,394	354,481	0,04%	0,00%	-1,85%	-0,35%
2,731	0,228	3,193	328,21	1,0218	2,73	0,228	3,302	329,48	0,04%	0,00%	-3,30%	-0,39%
2,741	0,241	0,965	303,176	1,0216	2,74	0,24	1,085	304,478	0,04%	0,42%	-11,06%	-0,43%
2,748	0,253	-1,409	278,143	1,0214	2,747	0,253	-1,278	279,477	0,04%	0,00%	10,25%	-0,48%
2,753	0,266	-3,953	253,109	1,0213	2,753	0,266	-3,81	254,475	0,00%	0,00%	3,75%	-0,54%
2,756	0,279	-6,7	228,075	1,0211	2,756	0,279	-6,541	229,474	0,00%	0,00%	2,43%	-0,61%
2,757	0,293	-9,692	203,041	0	2,757	0,292	-9,514	204,473	0,00%	0,34%	1,87%	-0,70%

Tabela 7.7: Evolução do título, temperatura e pressão ao longo do tubo capilar para T₁=40°C e Δ Tsub=3,5°C

	Cenário 9					Ce	nário 10		Variação			
z	х	Т	р	Fpd	z	х	Т	р	var z	var x	var T	var p
0	0	37	1013,106	1			37	1013,05	0,00%	0,00%	0,00%	0,01%
1,011	0,001	36,221	917,282	1,0264	0,99	0,001	36,243	917,831	2,12%	0,00%	-0,06%	-0,06%
1,241	0,009	35,185	891,67	1,0262	1,222	0,009	35,209	892,257	1,55%	0,00%	-0,07%	-0,07%
1,435	0,016	34,137	866,057	1,026	1,419	0,016	34,163	866,682	1,13%	0,00%	-0,08%	-0,07%
1,601	0,025	33,066	840,445	1,0258	1,586	0,025	33,094	841,107	0,95%	0,00%	-0,08%	-0,08%
1,744	0,033	31,97	814,832	1,0256	1,731	0,033	32	815,533	0,75%	0,00%	-0,09%	-0,09%
1,869	0,042	30,847	789,22	1,0254	1,857	0,042	30,88	789,958	0,65%	0,00%	-0,11%	-0,09%
1,978	0,051	29,697	763,607	1,0252	1,967	0,051	29,732	764,383	0,56%	0,00%	-0,12%	-0,10%
2,074	0,06	28,517	737,995	1,025	2,065	0,06	28,555	738,809	0,44%	0,00%	-0,13%	-0,11%
2,159	0,07	27,306	712,382	1,0247	2,151	0,069	27,347	713,234	0,37%	1,45%	-0,15%	-0,12%
2,234	0,079	26,062	686,769	1,0245	2,227	0,079	26,106	687,659	0,31%	0,00%	-0,17%	-0,13%
2,302	0,089	24,782	661,157	1,0243	2,296	0,089	24,829	662,085	0,26%	0,00%	-0,19%	-0,14%
2,362	0,099	23,465	635,544	1,0241	2,356	0,098	23,515	636,51	0,25%	1,02%	-0,21%	-0,15%
2,416	0,109	22,106	609,932	1,0239	2,411	0,108	22,161	610,935	0,21%	0,93%	-0,25%	-0,16%
2,465	0,119	20,704	584,319	1,0237	2,46	0,118	20,762	585,361	0,20%	0,85%	-0,28%	-0,18%
2,508	0,129	19,255	558,707	1,0235	2,504	0,129	19,317	559,786	0,16%	0,00%	-0,32%	-0,19%
2,546	0,14	17,754	533,094	1,0233	2,543	0,139	17,821	534,211	0,12%	0,72%	-0,38%	-0,21%
2,581	0,15	16,198	507,482	1,0231	2,578	0,15	16,27	508,637	0,12%	0,00%	-0,44%	-0,23%
2,612	0,161	14,581	481,869	1,0229	2,609	0,161	14,658	483,062	0,11%	0,00%	-0,53%	-0,25%
2,639	0,172	12,897	456,257	1,0227	2,636	0,172	12,98	457,487	0,11%	0,00%	-0,64%	-0,27%
2,663	0,184	11,14	430,644	1,0225	2,66	0,183	11,229	431,913	0,11%	0,55%	-0,79%	-0,29%
2,683	0,195	9,301	405,031	1,0223	2,682	0,195	9,397	406,338	0,04%	0,00%	-1,02%	-0,32%
2,701	0,207	7,371	379,419	1,0221	2,7	0,207	7,475	380,763	0,04%	0,00%	-1,39%	-0,35%
2,717	0,219	5,339	353,806	1,0219	2,715	0,219	5,452	355,189	0,07%	0,00%	-2,07%	-0,39%
2,729	0,232	3,191	328,194	1,0217	2,728	0,231	3,314	329,614	0,04%	0,43%	-3,71%	-0,43%
2,739	0,244	0,910	302,581	1,0216	2,739	0,244	1,044	304,039	0,00%	0,00%	-12,84%	-0,48%
2,747	0,257	-1,524	276,969	1,0214	2,747	0,257	-1,377	278,465	0,00%	0,00%	10,68%	-0,54%
2,753	0,271	-4,139	251,356	1,0212	2,752	0,27	-3,976	252,89	0,04%	0,37%	4,10%	-0,61%
2,756	0,284	-6,968	225,744	1,0211	2,756	0,283	-6,787	227,315	0,00%	0,35%	2,67%	-0,69%
2,757	0,298	-10,06	200,131	0	2,757	0,297	-9,856	201,741	0,00%	0,34%	2,06%	-0,80%

Tabela 7.8: Evolução do título, temperatura e pressão ao longo do tubo capilar para T₁=40°C e Δ Tsub=3,0°C

	Cenário 11				Cenário 12				Variação			
z	х	Т	р	Fpd	z	х	Т	р	var z	var x	var T	var p
0	0	37,5	1013,221	1			37,51	1013,166	0,00%	0,00%	-0,03%	0,01%
0,894	0,001	36,768	931,157	1,0265	0,871	0,001	36,801	932,014	2,64%	0,00%	-0,09%	-0,09%
1,138	0,008	35,72	904,946	1,0263	1,118	0,008	35,755	905,83	1,79%	0,00%	-0,10%	-0,10%
1,346	0,016	34,659	878,734	1,0261	1,328	0,016	34,696	879,647	1,36%	0,00%	-0,11%	-0,10%
1,523	0,025	33,574	852,523	1,0258	1,507	0,025	33,614	853,463	1,06%	0,00%	-0,12%	-0,11%
1,676	0,033	32,464	826,311	1,0256	1,662	0,033	32,506	827,28	0,84%	0,00%	-0,13%	-0,12%
1,809	0,042	31,327	800,1	1,0254	1,796	0,042	31,371	801,097	0,72%	0,00%	-0,14%	-0,12%
1,925	0,051	30,162	773,888	1,0252	1,914	0,051	30,208	774,913	0,57%	0,00%	-0,15%	-0,13%
2,028	0,061	28,967	747,676	1,025	2,018	0,06	29,015	748,73	0,50%	1,67%	-0,17%	-0,14%
2,119	0,07	27,739	721,465	1,0248	2,11	0,07	27,791	722,546	0,43%	0,00%	-0,19%	-0,15%
2,2	0,08	26,478	695,253	1,0245	2,192	0,079	26,532	696,363	0,36%	1,27%	-0,20%	-0,16%
2,272	0,089	25,18	669,042	1,0243	2,265	0,089	25,237	670,18	0,31%	0,00%	-0,23%	-0,17%
2,336	0,099	23,844	642,83	1,0241	2,33	0,099	23,904	643,996	0,26%	0,00%	-0,25%	-0,18%
2,394	0,11	22,465	616,618	1,0239	2,388	0,109	22,529	617,813	0,25%	0,92%	-0,28%	-0,19%
2,445	0,12	21,042	590,407	1,0237	2,44	0,12	21,109	591,629	0,20%	0,00%	-0,32%	-0,21%
2,491	0,13	19,57	564,195	1,0235	2,487	0,13	19,641	565,446	0,16%	0,00%	-0,36%	-0,22%
2,533	0,141	18,045	537,984	1,0233	2,529	0,141	18,121	539,263	0,16%	0,00%	-0,42%	-0,24%
2,569	0,152	16,463	511,772	1,0231	2,566	0,152	16,543	513,079	0,12%	0,00%	-0,48%	-0,25%
2,602	0,163	14,818	485,561	1,0229	2,599	0,163	14,903	486,896	0,12%	0,00%	-0,57%	-0,27%
2,631	0,174	13,104	459,349	1,0227	2,628	0,174	13,195	460,713	0,11%	0,00%	-0,69%	-0,30%
2,656	0,186	11,314	433,137	1,0225	2,654	0,186	11,412	434,529	0,08%	0,00%	-0,86%	-0,32%
2,679	0,198	9,44	406,926	1,0223	2,677	0,197	9,544	408,346	0,07%	0,51%	-1,09%	-0,35%
2,698	0,21	7,471	380,714	1,0221	2,696	0,209	7,583	382,162	0,07%	0,48%	-1,48%	-0,38%
2,714	0,222	5,396	354,503	1,0219	2,713	0,222	5,516	355,979	0,04%	0,00%	-2,18%	-0,41%
2,727	0,235	3,2	328,291	1,0217	2,726	0,234	3,329	329,796	0,04%	0,43%	-3,88%	-0,46%
2,738	0,248	0,864	302,079	1,0215	2,737	0,247	1,005	303,612	0,04%	0,40%	-14,03%	-0,50%
2,747	0,261	-1,632	275,868	1,0214	2,746	0,261	-1,479	277,429	0,04%	0,00%	10,34%	-0,56%
2,753	0,275	-4,319	249,656	1,0212	2,752	0,274	-4,15	251,245	0,04%	0,36%	4,07%	-0,63%
2,756	0,289	-7,234	223,445	1,021	2,756	0,288	-7,047	225,062	0,00%	0,35%	2,65%	-0,72%
2,757	0,303	-10,43	197,233	0	2,757	0,302	-10,22	198,879	0,00%	0,33%	2,06%	-0,83%

Tabela 7.9: Evolução do título, temperatura e pressão ao longo do tubo capilar para T₁=40°C e Δ Tsub=2,5°C

	Cenário 15					Ce	enário 16		Variação			
z	х	Т	р	Fpd	z	х	Т	р	var z	var x	var T	var p
0	0	50,5	1484,81	1			50,5	1484,717	0,00%	0,00%	0,00%	0,01%
1,177	0,001	49,146	1289,647	1,026	1,155	0,001	49,18	1290,766	1,90%	0,00%	-0,07%	-0,09%
1,364	0,01	48,028	1253,926	1,0258	1,344	0,01	48,064	1255,073	1,49%	0,00%	-0,07%	-0,09%
1,528	0,019	46,897	1218,204	1,0255	1,51	0,019	46,934	1219,381	1,19%	0,00%	-0,08%	-0,10%
1,672	0,029	45,74	1182,482	1,0253	1,656	0,029	45,779	1183,688	0,97%	0,00%	-0,09%	-0,10%
1,799	0,039	44,556	1146,761	1,025	1,785	0,039	44,598	1147,996	0,78%	0,00%	-0,09%	-0,11%
1,911	0,049	43,345	1111,039	1,0248	1,899	0,049	43,389	1112,303	0,63%	0,00%	-0,10%	-0,11%
2,011	0,06	42,104	1075,317	1,0246	2	0,059	42,149	1076,611	0,55%	1,69%	-0,11%	-0,12%
2,1	0,07	40,832	1039,595	1,0243	2,09	0,07	40,88	1040,918	0,48%	0,00%	-0,12%	-0,13%
2,18	0,081	39,527	1003,874	1,0241	2,171	0,081	39,576	1005,226	0,41%	0,00%	-0,12%	-0,13%
2,252	0,092	38,186	968,152	1,0238	2,243	0,092	38,239	969,533	0,40%	0,00%	-0,14%	-0,14%
2,316	0,103	36,807	932,43	1,0236	2,309	0,103	36,863	933,841	0,30%	0,00%	-0,15%	-0,15%
2,373	0,114	35,389	896,709	1,0234	2,367	0,114	35,447	898,148	0,25%	0,00%	-0,16%	-0,16%
2,425	0,126	33,927	860,987	1,0231	2,42	0,125	33,988	862,455	0,21%	0,80%	-0,18%	-0,17%
2,472	0,137	32,419	825,265	1,0229	2,467	0,137	32,484	826,763	0,20%	0,00%	-0,20%	-0,18%
2,514	0,149	30,861	789,543	1,0227	2,51	0,149	30,929	791,07	0,16%	0,00%	-0,22%	-0,19%
2,552	0,161	29,25	753,822	1,0225	2,548	0,16	29,321	755,378	0,16%	0,63%	-0,24%	-0,21%
2,585	0,173	27,579	718,1	1,0223	2,582	0,172	27,654	719,685	0,12%	0,58%	-0,27%	-0,22%
2,615	0,185	25,845	682,378	1,022	2,612	0,185	25,925	683,993	0,11%	0,00%	-0,31%	-0,24%
2,641	0,197	24,041	646,657	1,0218	2,639	0,197	24,126	648,3	0,08%	0,00%	-0,35%	-0,25%
2,665	0,21	22,16	610,935	1,0216	2,663	0,21	22,251	612,608	0,08%	0,00%	-0,41%	-0,27%
2,685	0,223	20,195	575,213	1,0215	2,683	0,222	20,29	576,915	0,07%	0,45%	-0,47%	-0,30%
2,703	0,236	18,134	539,491	1,0213	2,701	0,236	18,236	541,223	0,07%	0,00%	-0,56%	-0,32%
2,718	0,249	15,968	503,77	1,0211	2,716	0,249	16,077	505,53	0,07%	0,00%	-0,68%	-0,35%
2,73	0,263	13,681	468,048	1,0209	2,729	0,262	13,799	469,838	0,04%	0,38%	-0,86%	-0,38%
2,74	0,277	11,258	432,326	1,0207	2,739	0,276	11,385	434,145	0,04%	0,36%	-1,12%	-0,42%
2,748	0,291	8,677	396,605	1,0206	2,747	0,29	8,814	398,452	0,04%	0,34%	-1,55%	-0,46%
2,753	0,305	5,912	360,883	1,0204	2,753	0,304	6,062	362,76	0,00%	0,33%	-2,47%	-0,52%
2,756	0,32	2,929	325,161	1,0203	2,756	0,319	3,094	327,067	0,00%	0,31%	-5,33%	-0,58%
2,757	0,334	0	289,439	0	2,757	0,333	-0,134	291,375	0,00%	0,30%	137,31%	-0,66%

Tabela 7.10: Evolução do título, temperatura e pressão ao longo do tubo capilar para T₁=55°C e Δ Tsub=4,5°C

	Cenário 17					Ce	enário 18		Variação			
z	х	Т	р	Fpd	z	х	Т	р	var z	var x	var T	var p
0	0	51	1484,965	1			51	1484,871	0,00%	0,00%	0,00%	0,01%
1,093	0,001	49,702	1307,859	1,026	1,071	0,001	49,737	1309,01	2,05%	0,00%	-0,07%	-0,09%
1,29	0,01	48,573	1271,391	1,0258	1,27	0,01	48,609	1272,571	1,57%	0,00%	-0,07%	-0,09%
1,462	0,019	47,429	1234,922	1,0255	1,444	0,019	47,468	1236,132	1,25%	0,00%	-0,08%	-0,10%
1,613	0,029	46,26	1198,454	1,0253	1,597	0,029	46,3	1199,693	1,00%	0,00%	-0,09%	-0,10%
1,747	0,039	45,064	1161,986	1,0251	1,733	0,039	45,106	1163,254	0,81%	0,00%	-0,09%	-0,11%
1,865	0,049	43,839	1125,517	1,0248	1,853	0,049	43,884	1126,814	0,65%	0,00%	-0,10%	-0,12%
1,971	0,06	42,585	1089,049	1,0246	1,959	0,06	42,631	1090,375	0,61%	0,00%	-0,11%	-0,12%
2,065	0,071	41,298	1052,581	1,0243	2,055	0,07	41,347	1053,936	0,49%	1,43%	-0,12%	-0,13%
2,149	0,082	39,978	1016,112	1,0241	2,14	0,081	40,028	1017,497	0,42%	1,23%	-0,12%	-0,14%
2,224	0,093	38,621	979,644	1,0238	2,216	0,092	38,674	981,058	0,36%	1,09%	-0,14%	-0,14%
2,292	0,104	37,226	943,176	1,0236	2,285	0,104	37,282	944,619	0,31%	0,00%	-0,15%	-0,15%
2,353	0,115	35,79	906,707	1,0234	2,347	0,115	35,849	908,18	0,26%	0,00%	-0,16%	-0,16%
2,407	0,127	34,31	870,239	1,0231	2,402	0,126	34,372	871,74	0,21%	0,79%	-0,18%	-0,17%
2,457	0,138	32,783	833,771	1,0229	2,452	0,138	32,848	835,301	0,20%	0,00%	-0,20%	-0,18%
2,501	0,15	31,204	797,302	1,0227	2,497	0,15	31,273	798,862	0,16%	0,00%	-0,22%	-0,20%
2,54	0,162	29,571	760,834	1,0225	2,537	0,162	29,643	762,423	0,12%	0,00%	-0,24%	-0,21%
2,576	0,175	27,877	724,366	1,0222	2,572	0,174	27,953	725,984	0,16%	0,57%	-0,27%	-0,22%
2,607	0,187	26,117	687,897	1,022	2,604	0,187	26,199	689,545	0,12%	0,00%	-0,31%	-0,24%
2,635	0,2	24,287	651,429	1,0218	2,633	0,199	24,372	653,105	0,08%	0,50%	-0,35%	-0,26%
2,66	0,212	22,376	614,961	1,0216	2,658	0,212	22,468	616,666	0,08%	0,00%	-0,41%	-0,28%
2,681	0,226	20,379	578,492	1,0214	2,679	0,225	20,476	580,227	0,07%	0,44%	-0,47%	-0,30%
2,7	0,239	18,284	542,024	1,0212	2,698	0,238	18,387	543,788	0,07%	0,42%	-0,56%	-0,32%
2,715	0,252	16,079	505,555	1,0211	2,714	0,252	16,19	507,349	0,04%	0,00%	-0,69%	-0,35%
2,728	0,266	13,749	469,087	1,0209	2,727	0,266	13,869	470,91	0,04%	0,00%	-0,87%	-0,39%
2,739	0,28	11,278	432,619	1,0207	2,738	0,28	11,407	434,471	0,04%	0,00%	-1,13%	-0,43%
2,747	0,295	8,643	396,15	1,0206	2,746	0,294	8,783	398,031	0,04%	0,34%	-1,59%	-0,47%
2,753	0,309	5,815	359,682	1,0204	2,752	0,309	5,969	361,592	0,04%	0,00%	-2,58%	-0,53%
2,756	0,324	2,759	323,214	1,0203	2,756	0,323	2,928	325,153	0,00%	0,31%	-5,77%	-0,60%
2,757	0,339	-6E-04	286,745	0	2,757	0,338	-4E-04	288,714	0,00%	0,30%	48,58%	-0,68%

Tabela 7.11: Evolução do título, temperatura e pressão ao longo do tubo capilar para T₁=55°C e Δ Tsub=4,0°C

	Cenário 19					Ce	enário 20		Variação			
z	x	Т	р	Fpd	z	х	Т	р	var z	var x	var T	var p
0	0	51,5	1485,123	1			51,5	1485,027	0,00%	0,00%	0,00%	0,01%
1,001	0,001	50,272	1326,728	1,026	0,979	0,001	50,307	1327,912	2,25%	0,00%	-0,07%	-0,09%
1,208	0,01	49,131	1289,467	1,0258	1,188	0,01	49,168	1290,698	1,68%	0,00%	-0,08%	-0,10%
1,389	0,019	47,974	1252,207	1,0256	1,372	0,019	48,014	1253,483	1,24%	0,00%	-0,08%	-0,10%
1,549	0,029	46,792	1214,946	1,0253	1,533	0,029	46,835	1216,269	1,04%	0,00%	-0,09%	-0,11%
1,69	0,039	45,582	1177,685	1,0251	1,676	0,039	45,627	1179,055	0,84%	0,00%	-0,10%	-0,12%
1,815	0,05	44,344	1140,424	1,0248	1,803	0,049	44,391	1141,841	0,67%	2,04%	-0,11%	-0,12%
1,927	0,06	43,074	1103,163	1,0246	1,915	0,06	43,125	1104,627	0,63%	0,00%	-0,12%	-0,13%
2,026	0,071	41,772	1065,902	1,0243	2,016	0,071	41,826	1067,413	0,50%	0,00%	-0,13%	-0,14%
2,115	0,082	40,435	1028,642	1,0241	2,106	0,082	40,492	1030,199	0,43%	0,00%	-0,14%	-0,15%
2,195	0,093	39,062	991,381	1,0238	2,186	0,093	39,122	992,985	0,41%	0,00%	-0,15%	-0,16%
2,266	0,105	37,649	954,12	1,0236	2,259	0,104	37,712	955,771	0,31%	0,96%	-0,17%	-0,17%
2,33	0,116	36,194	916,859	1,0233	2,324	0,116	36,261	918,557	0,26%	0,00%	-0,18%	-0,18%
2,388	0,128	34,694	879,598	1,0231	2,383	0,128	34,766	881,343	0,21%	0,00%	-0,21%	-0,20%
2,44	0,14	33,146	842,337	1,0229	2,435	0,139	33,222	844,129	0,21%	0,72%	-0,23%	-0,21%
2,487	0,152	31,545	805,077	1,0227	2,482	0,151	31,625	806,914	0,20%	0,66%	-0,25%	-0,23%
2,529	0,164	29,888	767,816	1,0224	2,525	0,164	29,973	769,7	0,16%	0,00%	-0,28%	-0,24%
2,566	0,176	28,169	730,555	1,0222	2,562	0,176	28,259	732,486	0,16%	0,00%	-0,32%	-0,26%
2,599	0,189	26,382	693,294	1,022	2,596	0,189	26,479	695,272	0,12%	0,00%	-0,37%	-0,28%
2,629	0,202	24,522	656,033	1,0218	2,626	0,201	24,625	658,058	0,11%	0,50%	-0,42%	-0,31%
2,654	0,215	22,58	618,773	1,0216	2,652	0,214	22,69	620,844	0,08%	0,47%	-0,48%	-0,33%
2,677	0,228	20,548	581,512	1,0214	2,675	0,228	20,666	583,63	0,07%	0,00%	-0,57%	-0,36%
2,697	0,242	18,415	544,251	1,0212	2,695	0,241	18,542	546,416	0,07%	0,41%	-0,68%	-0,40%
2,713	0,256	16,168	506,99	1,021	2,712	0,255	16,304	509,202	0,04%	0,39%	-0,83%	-0,43%
2,727	0,27	13,792	469,729	1,0209	2,726	0,269	13,94	471,988	0,04%	0,37%	-1,06%	-0,48%
2,738	0,284	11,268	432,468	1,0207	2,737	0,283	11,429	434,774	0,04%	0,35%	-1,41%	-0,53%
2,747	0,299	8,572	395,208	1,0205	2,746	0,298	8,748	397,56	0,04%	0,34%	-2,01%	-0,59%
2,753	0,314	5,675	357,947	1,0204	2,752	0,313	5,869	360,345	0,04%	0,32%	-3,31%	-0,67%
2,756	0,329	2,537	320,686	1,0202	2,756	0,328	2,752	323,131	0,00%	0,30%	-7,81%	-0,76%
2,757	0,343	-0,895	283,425	0	2,757	0,342	-0,654	285,917	0,00%	0,29%	36,85%	-0,87%

Tabela 7.12: Evolução do título, temperatura e pressão ao longo do tubo capilar para T₁=55°C e Δ Tsub=3,5°C

	Cenário 21					Ce	enário 22		Variação			
z	х	Т	р	Fpd	z	х	Т	р	var z	var x	var T	var p
0	0	52	1485,285	1			52	1485,187	0,00%	0,00%	0,00%	0,01%
9E-04	0,001	50,859	1346,369	1,0261	9E-04	0,001	50,894	1347,572	2,50%	0,00%	-0,07%	-0,09%
1,118	0,01	49,705	1308,299	1,0258	1,099	0,01	49,743	1309,54	1,73%	0,00%	-0,08%	-0,09%
1,31	0,019	48,537	1270,229	1,0256	1,292	0,019	48,576	1271,508	1,39%	0,00%	-0,08%	-0,10%
1,478	0,029	47,342	1232,159	1,0253	1,463	0,029	47,383	1233,477	1,03%	0,00%	-0,09%	-0,11%
1,627	0,039	46,119	1194,089	1,0251	1,614	0,039	46,163	1195,445	0,81%	0,00%	-0,10%	-0,11%
1,76	0,05	44,866	1156,019	1,0248	1,748	0,05	44,912	1157,414	0,69%	0,00%	-0,10%	-0,12%
1,878	0,06	43,582	1117,949	1,0246	1,867	0,06	43,631	1119,382	0,59%	0,00%	-0,11%	-0,13%
1,983	0,071	42,264	1079,88	1,0243	1,973	0,071	42,316	1081,351	0,51%	0,00%	-0,12%	-0,14%
2,077	0,082	40,912	1041,81	1,0241	2,069	0,082	40,966	1043,319	0,39%	0,00%	-0,13%	-0,14%
2,162	0,094	39,522	1003,74	1,0238	2,154	0,094	39,579	1005,288	0,37%	0,00%	-0,14%	-0,15%
2,237	0,105	38,091	965,67	1,0236	2,231	0,105	38,152	967,256	0,27%	0,00%	-0,16%	-0,16%
2,306	0,117	36,618	927,6	1,0233	2,299	0,117	36,682	929,225	0,30%	0,00%	-0,17%	-0,17%
2,367	0,129	35,099	889,53	1,0231	2,361	0,129	35,166	891,193	0,25%	0,00%	-0,19%	-0,19%
2,422	0,141	33,53	851,46	1,0229	2,417	0,141	33,601	853,162	0,21%	0,00%	-0,21%	-0,20%
2,471	0,153	31,907	813,39	1,0227	2,467	0,153	31,982	815,13	0,16%	0,00%	-0,23%	-0,21%
2,515	0,166	30,226	775,32	1,0224	2,512	0,165	30,306	777,099	0,12%	0,61%	-0,26%	-0,23%
2,555	0,178	28,482	737,251	1,0222	2,552	0,178	28,567	739,067	0,12%	0,00%	-0,30%	-0,25%
2,59	0,191	26,669	699,181	1,022	2,587	0,191	26,759	701,035	0,12%	0,00%	-0,34%	-0,26%
2,621	0,204	24,78	661,111	1,0218	2,619	0,204	24,876	663,004	0,08%	0,00%	-0,39%	-0,29%
2,649	0,217	22,807	623,041	1,0216	2,646	0,217	22,909	624,972	0,11%	0,00%	-0,45%	-0,31%
2,672	0,231	20,741	584,971	1,0214	2,671	0,23	20,85	586,941	0,04%	0,43%	-0,52%	-0,34%
2,693	0,245	18,57	546,901	1,0212	2,691	0,244	18,687	548,909	0,07%	0,41%	-0,63%	-0,37%
2,711	0,259	16,282	508,831	1,021	2,709	0,258	16,408	510,878	0,07%	0,39%	-0,77%	-0,40%
2,725	0,273	13,859	470,761	1,0208	2,724	0,272	13,996	472,846	0,04%	0,37%	-0,98%	-0,44%
2,737	0,288	11,283	432,691	1,0207	2,736	0,287	11,431	434,815	0,04%	0,35%	-1,29%	-0,49%
2,746	0,303	8,528	394,622	1,0205	2,745	0,302	8,69	396,783	0,04%	0,33%	-1,86%	-0,54%
2,752	0,318	5,562	356,552	1,0204	2,752	0,317	5,74	358,752	0,00%	0,32%	-3,10%	-0,61%
2,756	0,333	2,343	318,482	1,0202	2,756	0,332	2,54	320,72	0,00%	0,30%	-7,76%	-0,70%
2,757	0,348	-1,187	280,412	0	2,757	0,347	-0,966	282,689	0,00%	0,29%	22,88%	-0,81%

Tabela 7.13: Evolução do título, temperatura e pressão ao longo do tubo capilar para T₁=55°C e Δ Tsub=3,0°C

	Cenário 23					Ce	enário 24		Variação			
z	х	Т	р	Fpd	z	х	Т	р	var z	var x	var T	var p
0	0	52,5	1485,452	1			52,5	1485,351	0,00%	0,00%	0,00%	0,01%
8E-04	0,001	51,466	1366,93	1,0261	8E-04	0,001	51,501	1368,132	2,60%	0,00%	-0,07%	-0,09%
1,019	0,01	50,3	1328,007	1,0258	1	0,01	50,338	1329,248	1,90%	0,00%	-0,08%	-0,09%
1,221	0,019	49,119	1289,084	1,0256	1,204	0,019	49,158	1290,365	1,41%	0,00%	-0,08%	-0,10%
1,4	0,029	47,91	1250,161	1,0254	1,385	0,029	47,952	1251,482	1,08%	0,00%	-0,09%	-0,11%
1,558	0,039	46,673	1211,238	1,0251	1,545	0,039	46,717	1212,598	0,84%	0,00%	-0,09%	-0,11%
1,698	0,05	45,406	1172,315	1,0249	1,687	0,05	45,452	1173,715	0,65%	0,00%	-0,10%	-0,12%
1,824	0,061	44,106	1133,392	1,0246	1,813	0,06	44,155	1134,831	0,61%	1,67%	-0,11%	-0,13%
1,936	0,072	42,773	1094,469	1,0243	1,926	0,071	42,825	1095,948	0,52%	1,41%	-0,12%	-0,13%
2,036	0,083	41,404	1055,546	1,0241	2,027	0,083	41,458	1057,065	0,44%	0,00%	-0,13%	-0,14%
2,125	0,094	39,996	1016,623	1,0238	2,118	0,094	40,054	1018,181	0,33%	0,00%	-0,14%	-0,15%
2,206	0,106	38,548	977,7	1,0236	2,199	0,106	38,608	979,298	0,32%	0,00%	-0,16%	-0,16%
2,278	0,118	37,055	938,777	1,0234	2,272	0,118	37,119	940,414	0,26%	0,00%	-0,17%	-0,17%
2,343	0,13	35,515	899,854	1,0231	2,338	0,13	35,583	901,531	0,21%	0,00%	-0,19%	-0,19%
2,402	0,142	33,925	860,931	1,0229	2,397	0,142	33,996	862,647	0,21%	0,00%	-0,21%	-0,20%
2,454	0,154	32,279	822,008	1,0226	2,45	0,154	32,355	823,764	0,16%	0,00%	-0,23%	-0,21%
2,501	0,167	30,574	783,085	1,0224	2,497	0,167	30,654	784,881	0,16%	0,00%	-0,26%	-0,23%
2,543	0,18	28,804	744,162	1,0222	2,539	0,18	28,889	745,997	0,16%	0,00%	-0,29%	-0,25%
2,58	0,193	26,963	705,239	1,022	2,577	0,193	27,053	707,114	0,12%	0,00%	-0,33%	-0,27%
2,613	0,206	25,043	666,316	1,0218	2,61	0,206	25,139	668,23	0,11%	0,00%	-0,38%	-0,29%
2,642	0,22	23,037	627,393	1,0216	2,64	0,219	23,14	629,347	0,08%	0,46%	-0,45%	-0,31%
2,667	0,233	20,935	588,47	1,0214	2,665	0,233	21,045	590,463	0,08%	0,00%	-0,52%	-0,34%
2,689	0,247	18,724	549,547	1,0212	2,688	0,247	18,843	551,58	0,04%	0,00%	-0,63%	-0,37%
2,708	0,262	16,392	510,624	1,021	2,706	0,261	16,52	512,697	0,07%	0,38%	-0,77%	-0,40%
2,723	0,276	13,921	471,701	1,0208	2,722	0,276	14,059	473,813	0,04%	0,00%	-0,98%	-0,45%
2,736	0,291	11,289	432,778	1,0206	2,735	0,291	11,439	434,93	0,04%	0,00%	-1,31%	-0,49%
2,745	0,307	8,471	393,855	1,0205	2,745	0,306	8,635	396,046	0,00%	0,33%	-1,90%	-0,55%
2,752	0,322	5,431	354,932	1,0203	2,751	0,321	5,612	357,163	0,04%	0,31%	-3,23%	-0,62%
2,756	0,338	2,124	316,009	1,0202	2,756	0,337	2,325	318,28	0,00%	0,30%	-8,65%	-0,71%
2,757	0,353	-1,512	277,086	0	2,757	0,352	-1,286	279,396	0,00%	0,28%	17,57%	-0,83%

Tabela 7.14: Evolução do título, temperatura e pressão ao longo do tubo capilar para T₁=55°C e Δ Tsub=2,5°C

7.3. Influência sobre a vazão mássica em função do grau de subresfriamento

Foi investigada a variação da vazão mássica do tubo capilar em função do grau de subresfriamento com e sem o fator de impacto. Fixando a temperatura de condensação em 40°C, houve perda de em média 0,77% do valor do fluxo necessário devido à presença de nanopartículas, como mostra a Tabela 7.15 e a Figura 7.3. A Tabela 7.16 e a Figura 7.4 mostram que a perda porcentual é aproximadamente a mesma (0,77%) para os cenários em que a temperatura de condensação é 55°C, o que indicaria que a perda dependeria exclusivamente ou primordialmente do grau de resfriamento, e não das temperaturas absolutas de entrada no tubo capilar.

Pode-se observar também que a diferença entre o fluxo de massa com e sem a nanopartícula aumenta percentualmente quanto menor o grau de subresfriamento. Isso se deve provavelmente ao fato de que a variação de temperatura (e pressão) a ser vencida é menor quanto maior é o grau de subresfriamento.

Cenários com Fpd	1	3	5	7	9	11
ΔTsub	5	4,5	4	3,5	3	2,6
Delta p	23,44	23,96	24,49	25,03	25,61	26,21
G	2427	2390	2353	2314	2274	2233
Cenários sem Fpd	2	4	6	8	10	12
ΔTsub	5	4,5	4	3,5	3	2,5
Delta p	23,41	23,92	24,45	25	25,57	26,18
G	2443	2407	2371	2333	2293	2252
Var p	-0,13%	-0,17%	-0,16%	-0,12%	-0,16%	-0,11%
Var G	0,66%	0,71%	0,76%	0,82%	0,84%	0,85%

Tabela 7.15: Fluxos de massa e diferença de pressão entre a entrada e a saída do tubo capilar em função do grau de subresfriamento para $T_1=40^{\circ}C$

Tabela 7.16: Fluxos de massa e diferença de pressão entre a entrada e a saída do tubo capilar em função do grau de subresfriamento para $T_1=55^{\circ}C$

Cenários com Fpd	13	15	17	19	21	23
ΔTsub	50	50,5	51	51,5	52	52,5
Delta p	34,99	35,72	36,47	37,26	38,07	38,92
G	3121	3082	3041	2999	2956	2911
Cenários sem Fpd	14	16	18	20	22	24
ΔTsub	50	50,5	51	51,5	52	52,5
Delta p	34,96	35,69	36,44	37,21	38,03	38,88
G	3143	3104	3064	3023	2980	2936
Var p	-0,09%	-0,08%	-0,08%	-0,13%	-0,11%	-0,10%
Var G	0,70%	0,71%	0,76%	0,80%	0,81%	0,86%

Figura 7.3: Variação do fluxo de massa em função do grau de subresfriamento para T₁=40°C

Figura 7.4: Variação do fluxo de massa em função do grau de subresfriamento para T1=55°C

7.4. Influência sobre a temperatura do fluido ao longo do tubo capilar

Analogamente ao título em função do comprimento do tubo capilar, o fator de impacto afeta a posição na qual as temperaturas começam a decrescer, evidenciando o atraso de vaporização do fluido que é intensificado com a presença de óxido de cobre. A Figura 7.5 indica a temperatura correspondente a uma determinada posição no tubo capilar. Devido à proximidade dos valores plotados, o gráfico foi ampliado para melhor entendimento.

Figura 7.5: Início de vaporização no trecho ampliado do gráfico de temperatura em função da posição do tubo capilar para $T_1=40^{\circ}C$ e $\Delta Tsub=2,5^{\circ}C$

7.5. Influência sobre a vazão mássica em função do título de entrada

Assim como na análise de Fiorelli, observa-se que o fluxo de massa decresce com o aumento do título de entrada. Ao variar a fração de título na entrada do tubo capilar, foi observada uma modificação no fluxo de massa média aproximadamente constante 0,67% menor quando há presença de nanopartículas, como indica a Figura 7.6. Destaca-se também o fato de que o aumento do título na entrada foi o fator mais importante para queda do fluxo de massa, dentro da faixa de valores e dos parâmetros analisados. A diferença entre o fluxo de massa para título de entrada nulo e x=0,1 chegou a 33%.

Percebe-se também pela Figura 7.7 e pela Tabela 7.17 que o fator de impacto se reduz gradativamente no sentido do escoamento do fluido no tubo. Além disso, o fator de impacto diminui com o aumento do título na entrada do tubo. A redução do efeito das nanopartículas com o aumento do título poderia ser justificada pelo fato do fenômeno de mistura entre as fases líquida e vapor no tubo afetar mais drasticamente o escoamento e as propriedades do fluido no tubo, sendo, portanto, mais relevante para eventuais perdas de carga. Por esse raciocínio, a nanopartícula teria um efeito maior quando a mistura for "menos" bifásica, que é o que se observa nos resultados da simulação.

Figura 7.6: Variação do fluxo mássico em função do título na entrada do tubo capilar

Figura 7.7: Variação do fator de impacto em função da posição do tubo capilar para vários valores de título na entrada

53

Cenário 25	x	Cenário 27	x	Cenário 29	x	Cenário 31	х	Cenário 33	х
Z	0,02	z	0,04	Z	0,06	z	0,08	z	0,1
0	1	0	1	0	1	0	1	0	1
1,263	1,0256	1,264	1,0252	1,26	1,0248	1,253	1,0244	1,246	1,024
1,425	1,0254	1,413	1,025	1,4	1,0246	1,388	1,0242	1,375	1,0238
1,569	1,0251	1,55	1,0247	1,532	1,0244	1,516	1,024	1,501	1,0237
1,699	1,0249	1,675	1,0245	1,653	1,0242	1,634	1,0238	1,617	1,0235
1,815	1,0247	1,788	1,0243	1,764	1,0239	1,744	1,0236	1,726	1,0233
1,92	1,0244	1,891	1,0241	1,866	1,0237	1,845	1,0234	1,826	1,0231
2,014	1,0242	1,985	1,0239	1,96	1,0235	1,939	1,0232	1,92	1,0229
2,1	1,024	2,07	1,0236	2,046	1,0233	2,025	1,023	2,006	1,0227
2,177	1,0237	2,149	1,0234	2,125	1,0231	2,104	1,0228	2,087	1,0226
2,246	1,0235	2,22	1,0232	2,197	1,0229	2,178	1,0226	2,161	1,0224
2,309	1,0233	2,285	1,023	2,264	1,0227	2,245	1,0225	2,229	1,0222
2,367	1,0231	2,344	1,0228	2,324	1,0225	2,307	1,0223	2,292	1,022
2,418	1,0229	2,398	1,0226	2,38	1,0223	2,364	1,0221	2,351	1,0219
2,465	1,0226	2,446	1,0224	2,43	1,0221	2,416	1,0219	2,404	1,0217
2,507	1,0224	2,491	1,0222	2,476	1,022	2,464	1,0218	2,453	1,0216
2,545	1,0222	2,531	1,022	2,518	1,0218	2,507	1,0216	2,497	1,0214
2,579	1,022	2,567	1,0218	2,556	1,0216	2,546	1,0214	2,538	1,0213
2,61	1,0218	2,599	1,0216	2,59	1,0214	2,582	1,0213	2,574	1,0211
2,637	1,0216	2,628	1,0214	2,62	1,0213	2,613	1,0211	2,607	1,021
2,661	1,0215	2,654	1,0213	2,647	1,0211	2,641	1,021	2,636	1,0208
2,682	1,0213	2,676	1,0211	2,671	1,021	2,666	1,0208	2,662	1,0207
2,7	1,0211	2,696	1,0209	2,692	1,0208	2,688	1,0207	2,685	1,0206
2,716	1,0209	2,712	1,0208	2,709	1,0207	2,706	1,0206	2,704	1,0205
2,729	1,0208	2,726	1,0206	2,724	1,0205	2,722	1,0204	2,72	1,0203
2,739	1,0206	2,737	1,0205	2,736	1,0204	2,735	1,0203	2,734	1,0202
2,747	1,0205	2,746	1,0204	2,745	1,0203	2,745	1,0202	2,744	1,0202
2,753	1,0203	2,752	1,0202	2,752	1,0202	2,752	1,0201	2,751	1,0201
2,756	1,0202	2,756	1,0201	2,756	1,0201	2,756	1,02	2,756	1,02
2,757	0	2,757	0	2,757	0	2,757	0	2,757	0

Tabela 7.17: Evolução do fator de impacto ao longo do tubo capilar para diferentes valores de título na entrada

7.6. Influência sobre o diâmetro do tubo capilar em função do fluxo de massa

A Figura 7.8 mostra a tendência do fluxo mássico de diminuir à medida que o diâmetro do tubo é reduzido. Além disso, nota-se que o fator de impacto tem maior impacto na vazão mássica quanto maior for o diâmetro do tubo. Para o diâmetro de referência de 0,792 mm, a redução da vazão foi de cerca de 0,70% enquanto que para um diâmetro menor de 0,500 mm há uma redução do fluxo de massa de 0,51% com a introdução de nanopartículas.

Figura 7.8: Fluxo de massa em função do diâmetro do tubo capilar

Cenários com Fpd	39	37	35	13	41
Di	0,0005	0,0006	0,0007	0,000792	0,0009
delta p	33,04	34,49	34,97	34,99	34,79
G	2563	2754	2946	3121	3321
Cenários sem Fpd	40	38	36	14	42
Di	0,0005	0,0006	0,0007	0,000792	0,0009
delta p	33,11	34,52	34,96	34,96	34,72
G	2576	2770	2965	3143	3345
var p	0,21%	0,09%	-0,03%	-0,09%	-0,20%
var G	0,51%	0,58%	0,64%	0,70%	0,72%

Tabela 7.18: Variação do fluxo de massa e da perda de carga em função do diâmetro do tubo capilar

7.7. Influência sobre o comprimento do tubo em função do fluxo de massa

Observa-se pela Figura 7.9 que a vazão mássica decresce com o aumento do comprimento do tubo, como previsto por Fiorelli. O fator de impacto, nesse caso, causa uma variação no fluxo mássico aproximadamente constante de 0,70% em média como indicado na Tabela 7.19.

Tabela 7.19: Variação do fluxo de massa e da perda de carga em função do comprimento do tubo capilar

Cenários com Fpd	43	45	47	49
z	2,8	2,7	2,6	2,5
Delta p	35,03	34,94	34,86	34,79
G	3100	3150	3203	3258
Cenários sem Fpd	44	46	48	50
z	2,8	2,7	2,6	2,5
Delta p	34,99	34,91	34,82	34,76
G	3122	3172	3225	3281
Var p	-0,11%	-0,09%	-0,11%	-0,09%
Var G	0,71%	0,70%	0,69%	0,71%

Figura 7.9: Fluxo de massa em função do comprimento do tubo capilar

7.8. Influência da fração mássica de nanopartículas

A fração de nanopartículas presentes no fluido-base tem efeito significativo na perda de carga no tubo capilar. As Figuras 7.10 e 7.11 e as Tabelas 7.20 e 7.21 mostram que uma variação de 0,1% a 0,4% na quantidade de nanopartículas reduz em 1,93% o fluxo de massa afetando o funcionamento do sistema.

	Cenário 13			Cenário 51				Cenário 52					
z	x	т	р	Fpd	z	x	т	р	Fpd	z	x	т	р
0	0	50	1484,658	1	0	0	50	1484,744	1	0	0	50	1484,91
1,254	0,001	48,602	1272,006	1,026	1,276	0,001	48,569	1270,945	1,0506	1,32	0,001	48,502	1268,797
1,433	0,01	47,495	1237,012	1,0258	1,453	0,01	47,461	1235,922	1,0503	1,493	0,01	47,391	1233,721
1,589	0,019	46,376	1202,018	1,0255	1,607	0,019	46,34	1200,9	1,0501	1,643	0,019	46,266	1198,645
1,726	0,029	45,231	1167,023	1,0253	1,742	0,029	45,193	1165,877	1,0498	1,775	0,029	45,117	1163,569
1,847	0,039	44,06	1132,029	1,025	1,861	0,039	44,021	1130,854	1,0496	1,891	0,039	43,941	1128,493
1,953	0,049	42,862	1097,034	1,0248	1,967	0,049	42,821	1095,831	1,0493	1,993	0,049	42,737	1093,417
2,048	0,059	41,635	1062,04	1,0245	2,06	0,059	41,591	1060,808	1,0491	2,084	0,06	41,504	1058,341
2,133	0,07	40,377	1027,046	1,0243	2,144	0,07	40,331	1025,785	1,0488	2,165	0,07	40,239	1023,265
2,209	0,08	39,087	992,051	1,0241	2,218	0,081	39,039	990,762	1,0486	2,238	0,081	38,942	988,189
2,277	0,091	37,762	957,057	1,0238	2,285	0,091	37,711	955,74	1,0483	2,303	0,092	37,61	953,112
2,338	0,102	36,4	922,063	1,0236	2,346	0,102	36,347	920,717	1,0481	2,361	0,103	36,241	918,036
2,393	0,113	34,999	887,068	1,0234	2,4	0,113	34,943	885,694	1,0479	2,414	0,114	34,832	882,96
2,442	0,124	33,555	852,074	1,0231	2,448	0,125	33,497	850,671	1,0476	2,461	0,125	33,38	847,884
2,486	0,136	32,067	817,079	1,0229	2,492	0,136	32,005	815,648	1,0474	2,503	0,137	31,882	812,808
2,526	0,147	30,53	782,085	1,0227	2,531	0,148	30,464	780,625	1,0472	2,541	0,148	30,335	777,732
2,562	0,159	28,94	747,091	1,0225	2,566	0,159	28,871	745,602	1,0469	2,575	0,16	28,734	742,656
2,594	0,171	27,293	712,096	1,0223	2,598	0,171	27,22	710,58	1,0467	2,605	0,172	27,076	707,58
2,622	0,183	25,583	677,102	1,0221	2,625	0,183	25,506	675,557	1,0465	2,632	0,184	25,354	672,504
2,647	0,195	23,806	642,107	1,0219	2,65	0,196	23,725	640,534	1,0463	2,656	0,196	23,563	637,428
2,669	0,208	21,954	607,113	1,0217	2,672	0,208	21,868	605,511	1,0461	2,677	0,209	21,696	602,352
2,689	0,22	20,02	572,119	1,0215	2,691	0,221	19,928	570,488	1,0459	2,695	0,222	19,745	567,276
2,705	0,233	17,994	537,124	1,0213	2,707	0,234	17,896	535,465	1,0457	2,711	0,234	17,701	532,199
2,72	0,246	15,865	502,13	1,0211	2,721	0,247	15,76	500,443	1,0455	2,724	0,248	15,552	497,123
2,731	0,26	13,621	467,136	1,0209	2,733	0,26	13,508	465,42	1,0454	2,735	0,261	13,284	462,047
2,741	0,273	11,245	432,141	1,0208	2,742	0,274	11,123	430,397	1,0452	2,744	0,275	10,881	426,971
2,748	0,287	8,717	397,147	1,0206	2,749	0,288	8,585	395,374	1,045	2,75	0,289	8,323	391,895
2,753	0,301	6,014	362,152	1,0205	2,754	0,302	5,869	360,351	1,0449	2,755	0,303	5,584	356,819
2,756	0,315	3,102	327,158	1,0203	2,756	0,316	2,943	325,328	1,0447	2,757	0,317	2,63	321,743

Tabela 7.20: Evolução do título, temperatura e pressão em função da fração mássica de nanopartículas de CuO

Variação							
var z	var x	var T	var p	var Fpd 13-51	var Fpd 13-52		
0,00%	0,00%	0,00%	-0,01%	0,00%	0,00%		
-3,33%	0,00%	0,14%	0,17%	2,40%	7,35%		
-2,68%	0,00%	0,15%	0,18%	2,39%	7,35%		
-2,19%	0,00%	0,16%	0,19%	2,40%	7,35%		
-1,86%	0,00%	0,17%	0,20%	2,39%	7,35%		
-1,59%	0,00%	0,18%	0,21%	2,40%	7,36%		
-1,30%	0,00%	0,20%	0,22%	2,39%	7,35%		
-1,15%	-1,67%	0,21%	0,23%	2,40%	7,36%		
-0,97%	0,00%	0,23%	0,25%	2,39%	7,35%		
-0,89%	0,00%	0,25%	0,26%	2,39%	7,35%		
-0,78%	-1,09%	0,27%	0,28%	2,39%	7,35%		
-0,64%	-0,97%	0,29%	0,29%	2,39%	7,36%		
-0,58%	-0,88%	0,32%	0,31%	2,39%	7,35%		
-0,53%	0,00%	0,35%	0,33%	2,39%	7,36%		
-0,44%	-0,73%	0,39%	0,35%	2,40%	7,35%		
-0,39%	0,00%	0,43%	0,37%	2,40%	7,35%		
-0,35%	-0,63%	0,48%	0,40%	2,39%	7,35%		
-0,27%	-0,58%	0,53%	0,42%	2,39%	7,35%		
-0,27%	-0,54%	0,60%	0,45%	2,39%	7,35%		
-0,23%	0,00%	0,69%	0,49%	2,39%	7,35%		
-0,19%	-0,48%	0,79%	0,52%	2,39%	7,35%		
-0,15%	-0,45%	0,93%	0,57%	2,39%	7,35%		
-0,15%	0,00%	1,10%	0,61%	2,39%	7,35%		
-0,11%	-0,40%	1,34%	0,67%	2,39%	7,35%		
-0,07%	-0,38%	1,69%	0,73%	2,40%	7,36%		
-0,07%	-0,36%	2,22%	0,80%	2,39%	7,35%		
-0,04%	-0,35%	3,15%	0,89%	2,39%	7,35%		
-0,04%	-0,33%	5,10%	0,99%	2,39%	7,35%		
-0,04%	-0,32%	11,90%	1,11%	2,39%	7,35%		
0,00%	-0,30%	-59,45%	1,27%	0,00%	0,00%		

Tabela 7.21:	Variação	dos parâmetros	s investigados na	Tabela 7.15
--------------	----------	----------------	-------------------	-------------

Figura 7.10: Variação do fluxo de massa em função da fração mássica de CuO

CuO

8. CONCLUSÕES

A primeira parte do trabalho buscou inicialmente abranger da maneira mais clara possível o contexto atual da aplicação de nanopartículas em fluidos refrigerantes. Tendo em vista as limitações bibliográficas desse ramo expoente da engenharia de refrigeração, foi necessário realizar uma análise mais detalhada das premissas utilizadas pelos pesquisadores nesse assunto.

Focou-se na publicação do grupo de pesquisa de Peng et al. (2009), o qual foi identificado como um dos únicos trabalhos experimentais que procuram descrever o efeito da perda de carga por atrito devido à introdução de nanopartículas no fluido refrigerante. Em seguida, compararam-se os dados obtidos por estes autores com os dados obtidos por Fiorelli (2000).

As primeiras análises realizadas sobre a fração de vazio, o gradiente de pressão e o fator de impacto mostram que os resultados do experimento de Li e o modelo proposto por estes autores estão dentro das expectativas tanto dos próprios quanto para aplicação no modelo numérico de Fiorelli.

Em seguida, foi feito o estudo e a adaptação do programa em EES para tubos capilares desenvolvido pelo Prof. Fiorelli. Este modelo numérico do fluxo de refrigerante em tubos lisos serviu como referência para as adaptações a serem feitas no programa de modo a acrescentar a presença de nanopartículas de CuO.

Devido às distintas condições operacionais entre o experimento de Peng e o de Fiorelli, percebeu-se a limitação da correlação de perda de carga de Peng e estabeleceu-se uma nova expressão que satisfez tanto as condições de baixo fluxo de massa (G=100 a 200 kg/m²s) até fluxos de massa encontrados em tubos capilares de refrigeração (G=2000 a 10000 kg/m²s).

Diversos cenários foram simulados de modo a determinar os principais parâmetros que são afetados pela presença das nanopartículas. A partir dos dados coletados, pode-se concluir que o nanofluido efetivamente contribuiria para a perda de carga no tubo, uma vez que é exigida uma vazão mássica menor para realizar a mesma queda de pressão (fixadas as pressões de condensação na entrada e evaporação na saída do

tubo). Vale destacar que em todos os casos estudado foi observada a ocorrência de blocagem na saída do tubo, ou seja, o escoamento é crítico e, portanto, o efeito da pressão (e temperatura) de evaporação na saída do tubo capilar pode ser considerado irrelevante.

Dentre as características que mais contribuem para o aumento da perda de carga (e consequente redução da vazão mássica) devido à presença de nanopartículas, destacam-se as dimensões do tubo capilar (comprimento e diâmetro), o título e o grau de subresfriamento na entrada. Os dois últimos parâmetros contribuem diretamente com o comprimento do trecho líquido no tubo e o consequente início da vaporização, chegando a um atraso de vaporização de até 2,65% para uma fração mássica de CuO de 0,1%. Enquanto isso, dentro da faixa de operação analisada, o comprimento e o diâmetro do tubo podem reduzir o fluxo de massa em até 0,72%. Além disso, a tendência é que essa redução aumente quanto maior for o diâmetro do tubo.

9. REFERÊNCIAS BIBLIOGRÁFICAS

2008 ASHRAE handbook heating, ventilating, and air-conditioning systems and equipment. SI ed. Atlanta, GA : ASHRAE, c2008.

Cheng, Lixin; Bandarra Filho, Enio P.; Thome, John R. Nanofluid Two-Phase Flow and Thermal Physics: A New Research Frontier of Nanotechnology and Its Challenges. Journal of Nanoscience and Nanotechnology.

Collier, J.G.; Thome, J.R. Convective Boiling and Condensation. 3rd ed. Oxford Science Publications, Oxford, 1996.

Das, S.K., Putra, N., Roetzel, W., 2003. Pool boiling characteristics of nanofluids. Int. J. Heat and Mass Transfer 46 (5), 851–862.

Ding, Guo-Liang1; Jiang, Wei-Ting1; Wang, Kai-Jian2; Gao, Yi-Feng3. Prediction method for nanorefrigerants' thermal conductivities based on aggregation theory. Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, v 28, n 6, p 916-918, November 2007

Fiorelli, Flavio A.S. Análise do escoamento de fluidos refrigerantes alternativos ao HCFC 22 em tubos capilares adiabáticos. São Paulo, 2000.

Friedel, L., 1979. Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow. European Two-Phase Flow Group Meeting, Paper E2, June, Ispra, Italy.

Hong Lin, Yuan-Yuan Duan, Qi Min. Gradient theory modeling of surface tension for pure fluids and binary mixtures. Fluid Phase Equilibria, Volume 254, Issues 1-2, 15 June 2007, Pages 75-90.

Hwang YJ, Ahn YC, Shin HS, Lee CG, Kim GT, Park HS, Lee JK. Investigation on characteristics of thermal conductivity enhancement of nanofluids. Current Applied Physics 2006;6:1068–71 Jiang, Weiting1; Ding, Guoliang1; Peng, Hao1. Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants. International Journal of Thermal Sciences, v 48, n 6, p 1108-1115, June 2009

Lazarus Godson, B. Raja, D. Mohan Lal and S. Wongwises. Enhancement of heat transfer using nanofluids—An overview. Renewable and Sustainable Energy Reviews, Volume 14, Issue 2, February 2010, Pages 629-641

Lockhart, R.W., Martinelli, R.C., 1949. Proposed correlation of data for isothermal two-phase two-component flow in pipes. Chemical Engineering Progress 45, 39–45.

National Institute of Standards and Technology. *NIST Chemistry WebBook*. <u>http://webbook.nist.gov/cgi/fluid.cgi?TLow=250&THigh=350&TInc=10&Apple</u> <u>t=on&Digits=5&ID=C76131&Action=Load&Type=SatP&TUnit=K&PUnit=MP</u> <u>a&DUnit=mol/l&HUnit=kJ/mol&WUnit=m/s&VisUnit=uPa*s&STUnit=N/m&</u> <u>RefState=ASH</u>. Acessado em 25/05/2010.

Premoli, A., Di Francesco, D. and Prina A. Una correlazione adimensionale per la determinazione della densità di miscele bifasiche. La Termotecnica 25(1971).

Peng, H (Peng, Hao); Ding, GL (Ding, Guoliang); Jiang, WT (Jiang, Weiting); Hu, HT (Hu, Haitao); Gao, YF (Gao, Yifeng). Measurement and correlation of frictional pressure drop of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube. INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 32 (7): 1756-1764 NOV 2009

Soares, Marco. Fluidos V-50: Dinâmica dos fluidos viscosos <u>http://www.mspc.eng.br/fldetc/fluid_0550.shtml</u>. Acessado em 26/05/2010.

Steiner, D., 1993. Heat Transfer to Boiling Saturated Liquids. VDI-Warmeatlas (VDI Heat Atlas), Verein Deutscher Ingenieure, VDI-Gessellschaft Verfahrenstechnik und Chemieingenieurwesen (GCV), Dusseldorf, Germany.

Whalley, P.B. Two-Phase Flow and Heat Transfer. Oxford Science Publications, Oxford, 1996.