UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA MECÂNICA

ESTUDO DO ENCURVAMENTO EM TUBOS CAPILARES DE SISTEMAS DE REFRIGERAÇÃO

Fernando Martins Pedro

São Paulo

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA MECÂNICA

ESTUDO DO ENCURVAMENTO EM TUBOS CAPILARES DE SISTEMAS DE REFRIGERAÇÃO

Trabalho de formatura apresentado à Escola Politécnica da Universidade de São Paulo para a obtenção do título de Graduação em Engenharia

Fernando Martins Pedro

Orientador:

Prof. Dr. Flávio Augusto S. Fiorelli

Área de Concentração: Engenharia Mecânica

São Paulo

2011

FICHA CATALOGRÁFICA

Pedro, Fernando Martins

Estudo do encurvamento em tubos capilares de sistemas de refrigeração / F.M. Pedro. – São Paulo, 2011. 55 p.

Trabalho de Formatura - Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia Mecânica.

1. Tubulações 2. Sistemas de refrigeração e ar condicionado 3. Refrigeração I. Universidade de São Paulo. Escola Politécnica. Departamento de Engenharia Mecânica II. t.

RESUMO

O projeto em questão consiste no estudo dos efeitos do encurvamento de tubos capilares nas características de um sistema de refrigeração. A partir de modelos matemáticos encontrados na literatura e de suas respectivas implementações, desejase verificar a validade dos resultados obtidos com um modelo computacional do programa EES variando-se parâmetros tais como dimensões e propriedades do fluido de teste. No atual relatório são apresentados levantamentos bibliográficos relativos a: função dos tubos capilares; modelos matemáticos adotados para a representação de tubos capilares; resultados empíricos realizados em tubos capilares encurvados com diferentes fluidos refrigerantes, geometrias e condições de teste. Em seguida são apresentados os resultados obtidos a partir da rotina computacional desenvolvida e é confirmada a aplicabilidade do modelo, tendo-se em conta os limites de utilização.

Palavras-chave: Tubos capilares. Dispositivo de expansão. Refrigeração. Encurvamento.

ABSTRACT

In the present work a study of capillary tubes coiling effects in a refrigeration system

is presented. From mathematical models found in literature and their implemen-

tations, the work validates the results obtained with a computational model at EES

software with a parametric analysis of dimensions, flow boundary conditions and

thermodynamic properties of the test fluids. The text shows some previous

researches related to: role of capillary tubes; their modeling; their empirical results.

At the same time, the text shows numerical results of the computational routine

developed, confirming the applicability of the model.

Keywords: Capillary tubes. Expansion device. Refrigeration. Coiling.

LISTA DE TABELAS

Tabela 1 – Dados experimentais adaptados de Wei et al. (2000)
Tabela 2 - Dados adaptados de Kim et al. (2002) apud García-Valladares (2006).
Condições de teste: d_i =1,5mm, $T_{condensador}$ =45°C, L=1 m, (ϵ/d_i) =6.10 ⁻⁵ 20
Tabela 3 - Vazão mássica variando-se grau de subresfriamento e diâmetro de
encurvamento para R22
Tabela 4 - Vazão mássica variando-se grau de subresfriamento e diâmetro de
encurvamento R407C
Tabela 5 - Vazão mássica variando-se grau de subresfriamento e diâmetro de
encurvamento R410A
Tabela 6 – Vazão mássica variando-se Dc e temperatura de condensação para R22 27
Tabela 7 – Vazão mássica variando-se Dc e temperatura de condensação para R407C
28
Tabela 8 – Vazão mássica variando-se <i>Dc</i> e temperatura de condensação para R410A
29
Tabela 9 – Perfil de temperaturas ao longo do tubo para R2231
Tabela 10 – Perfil de temperaturas ao longo do tubo para R407C32
Tabela 11 – Perfil de temperaturas ao longo do tubo para R410A 33
Tabela 12 – Comprimentos necessários para diferentes diâmetros de encurvamento 35
Tabela 13 – Coeficientes angulares das linhas de tendência para os valores
calculados e os medidos39

LISTA DE FIGURAS

Figura 1 – Ciclo padrão de refrigeração por compressão de vapor (Adaptad	lo de
Hernandez Neto et al., 2009)	10
Figura 2 – Tubo capilar helicoidal (Zhou & Zhang, 2010)	11
Figura 3 - Diagrama esquemático do tubo capilar helicoidal (Adaptado	o de
Chingulpitak & Wongwises, 2010)	12
Figura 4 – Variação da vazão mássica em função do diâmetro de encurvamento	e do
grau de subresfriamento para R22 (erro médio = 7,0%; erro máximo = 8,7%	.37
Figura 5 – Variação da vazão mássica em função do diâmetro de encurvamento	e do
grau de subresfriamento para R22 (erro médio = 3,6%; erro máximo = 6,2%).37
Figura 6 – Variação da vazão mássica em função do diâmetro de encurvamento	e do
grau de subresfriamento para R22 (erro médio = 0,2%; erro máximo = 2,8%).38
Figura 7 - Comportamento para R22 para diferentes diâmetros de encurvamento	nto e
diferentes graus de subresfriamento	39
Figura 8 – Comportamento para R407C para diferentes diâmetros de encurvame	nto e
diferentes graus de subresfriamento	40
Figura 9 - Comportamento do R410A para diferentes diâmetros de encurvame	nto e
diferentes graus de subresfriamento	40
Figura 10 – Comportamento de R22 com Dc tendendo ao infinito	41
Figura 11 – Comportamento de R407C com Dc tendendo ao infinito	42
Figura 12 – Comportamento de R410A com Dc tendendo ao infinito	42
Figura 13 - Comportamento do R22 para diferentes diâmetros de encurvamento	nto e
diferentes temperaturas de condensação	43
Figura 14 – Comportamento do R407C para diferentes diâmetros de encurvame	nto e
diferentes temperaturas de condensação	44
Figura 15 – Comportamento do R410A para diferentes diâmetros de encurvame	nto e
diferentes temperaturas de condensação	44
Figura 16 – Perfil de temperaturas ao longo do tubo para R22	45
Figura 17 – Perfil de temperaturas ao longo do tubo para R407C	46
Figura 18 – Perfil de temperaturas ao longo do tubo para R410A	46

Figura 19 – Detalhe da região de transição entre escoamento monofásico e bi	fásico
para R22	47
Figura 20 – Detalhe da região de transição entre escoamento monofásico e bi	fásico
para R407C	48
Figura 21 – Detalhe da região de transição entre escoamento monofásico e bi	fásico
para R410A	48
Figura 22 – Relação entre L e D c para R22	49
Figura 23 – Relação entre <i>L</i> e <i>Dc</i> para R407C	50
Figura 24 – Relação entre <i>L</i> e <i>Dc</i> para R410A	50

SUMÁRIO

LISTA	DE TABELAS	5
LISTA	DE FIGURAS	6
1. IN'	TRODUÇÃO	9
2. RE	EVISÃO BIBLIOGRÁFICA – MODELO MATEMÁTICO	10
2.1.	Modelagem do escoamento em tubos capilares encurvados	12
2.2.	Modelagem de escoamento para mistura	17
3. RE	EVISÃO BIBLIOGRÁFICA – DADOS EXPERIMENTAIS	19
3.1.	Wei et al. (2000)	19
3.2.	Kim et al. (2002)	19
4. IM	IPLEMENTAÇÃO DO MODELO	21
5. RE	SULTADOS	22
5.1.	Efeito do grau de subresfriamento	22
5.2.	Efeito da temperatura de condensação	26
5.3.	Perfil de temperaturas	30
5.4.	Comprimento de tubo equivalente	34
6. AN	NÁLISE DOS RESULTADOS	36
6.1.	Comparação com valores experimentais – Kim et al. (2002)	36
6.2.	Efeito do encurvamento	39
6.3.	Dc tendendo ao infinito	41
6.4.	Efeito da temperatura de condensação	43
6.5.	Perfil de temperaturas	45
6.6.	Comprimento de tubo equivalente	49
7. CC	ONCLUSÕES	52
8 RF	SFERÊNCIAS BIBLIOGRÁFICAS	54

1. INTRODUÇÃO

O desenvolvimento de pesquisas relacionadas ao uso de alternativas para o fluido refrigerante HCFC 22, o qual é gradativamente eliminado conforme exigiu o Protocolo de Montreal de 1987, é cada vez maior. Tal protocolo visava a eliminação de compostos halogenados ligados à redução da camada de ozônio estratosférica, tal qual o refrigerante em questão (Fiorelli, 2000).

As principais alternativas buscadas para a substituição do fluido referem-se à utilização de misturas de fluidos refrigerantes zeotrópicas, como o R-407C, quase azeotrópicas, tal qual o R-410A, ou substâncias puras, como o HFC 134a (Fiorelli, 2000).

Em pequenos sistemas de refrigeração e na refrigeração doméstica (capacidades de refrigeração menores que 10 kW), ou seja, os aparelhos de arcondicionado comumente utilizados em residências e escritórios, os tubos capilares desempenham um importante papel. Estes configuram a principal alternativa para a realização da expansão do fluido refrigerante no ciclo, pois apresentam baixo custo, baixo torque de partida e pouca manutenção. Além disso, quando os tubos se apresentam encurvados, possuem a vantagem de ocupar um espaço reduzido, característica essencial para o tipo de equipamento citado (Chingulpitak & Wongwises, 2010).

No âmbito de se obterem melhores índices de desempenho dos tubos capilares, faz-se necessário um estudo aprofundado sobre os efeitos do encurvamento dos mesmos nas características do escoamento. No entanto, a maior parte dos estudos já realizados com o dispositivo de expansão em questão foi feita com tubos retilíneos.

Dessa maneira, o objetivo principal do presente trabalho é a análise dos efeitos do encurvamento de tubos capilares sobre o seu desempenho quando atuando com os diversos fluidos refrigerantes alternativos ao HCFC 22, fornecendo assim condições para a otimização de suas geometrias. Para tanto, foram levantados modelos matemáticos da bibliografia para serem adaptados às rotinas computacionais já desenvolvidas no trabalho de Fiorelli (2000), fornecendo assim uma ferramenta prática para posteriores testes e análises de novos fluidos e geometrias.

2. REVISÃO BIBLIOGRÁFICA - MODELO MATEMÁTICO

Ciclo de refrigeração por compressão de vapor é o principal ciclo termodinâmico dos sistemas de refrigeração utilizados atualmente. Esse ciclo, comumente modelado como ciclo padrão de refrigeração por compressão de vapor, é composto por cinco etapas (figura 1):

- $1 \rightarrow 2$: compressão adiabática reversível;
- $2 \rightarrow 2'$: rejeição de calor à pressão constante;
- 2' → 3: rejeição de calor isotermicamente (condensação);
- $3 \rightarrow 4$: expansão isoentálpica;
- $4 \rightarrow 1$: adição de calor isotermicamente (evaporação).

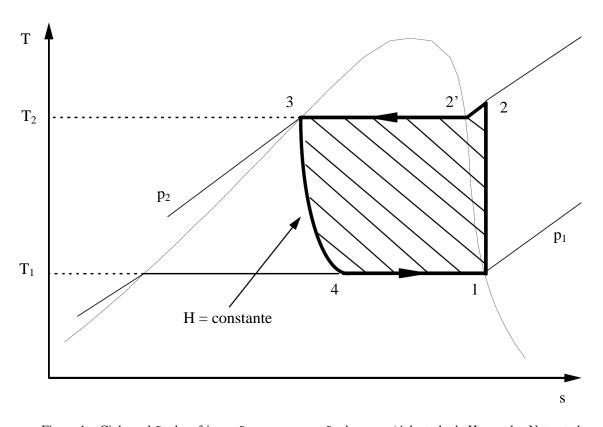


Figura 1 – Ciclo padrão de refrigeração por compressão de vapor (Adaptado de Hernandez Neto et al., 2009)

O dispositivo de expansão é o elemento que cumpre a etapa $3 \rightarrow 4$. Este possui duas finalidades: reduzir a pressão do refrigerante líquido e regular a vazão que entra no evaporador (Stoecker & Jones, 1985). Tal tarefa somente é possível

devido à chamada "perda de carga", que ocorre quando surgem as tensões de cisalhamento entre as camadas do escoamento devidas à rugosidade da parede do tubo.

Além dos tubos capilares, pode-se ainda utilizar como dispositivos de expansão válvulas de expansão termostáticas, válvulas de boia, ou ainda, válvulas de expansão de pressão constante. No entanto, os tubos capilares, objetos de estudo do presente trabalho, possuem vantagens com relação à sua simplicidade, ausência de partes móveis e preço reduzido, de modo que são utilizados em todos os sistemas frigoríficos pequenos, com capacidades da ordem de 10 kW (Stoecker & Jones, 1985).

Por conta da busca pela minimização de espaço, os tubos capilares são comumente dispostos na forma helicoidal (figura 2).

Figura 2 – Tubo capilar helicoidal (Zhou & Zhang, 2010)

No entanto, tal prática diminui a validade da maioria dos modelos matemáticos adotados que, em geral, são desenvolvidos a partir da hipótese de tubo capilar retilíneo. Acredita-se que o formato dos tubos pode afetar consideravelmente a vazão mássica no ciclo de refrigeração. Existe um aumento na queda de pressão de um tubo capilar devido à formação de um escoamento secundário gerado pela força centrífuga (Ito, 1959).

Para a modelagem do escoamento por tubos capilares helicoidais, Chingulpitak e Wongwises (2010) desenvolveram da seguinte maneira:

2.1. Modelagem do escoamento em tubos capilares encurvados

Hipóteses:

- diâmetro de encurvamento do tubo constante ao longo do eixo principal;
- diâmetro interno e rugosidade da superfície constantes ao longo do tubo;
- escoamento bifásico adiabático e homogêneo;
- região de líquido não-metaestável;
- escoamento unidimensional em regime permanente;
- equilíbrio termodinâmico através do tubo.

Sendo o equacionamento dividido em duas partes: região monofásica e região bifásica (figura 3).

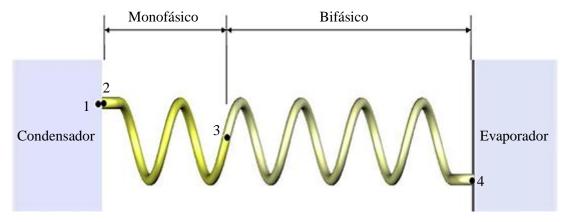


Figura 3 – Diagrama esquemático do tubo capilar helicoidal (Adaptado de Chingulpitak & Wongwises, 2010)

Para a primeira região, $(1 \rightarrow 3 \text{ da figura } 3)$, o modelo possui solução algébrica (assumido escoamento incompressível e adiabático).

Primeiro, pode-se determinar a queda de pressão na entrada do tubo capilar, entre os pontos 1 e 2 (vide figura 3) devida à súbita contração¹:

$$P_1 - P_2 = k \frac{\rho V^2}{2}$$
 (eq. 2.1.1)

Onde:

 P_1 é a pressão no ponto 1 (kPa)

 P_2 é a pressão no ponto 2 (kPa)

k é o coeficiente de perda na entrada (para perfil quadrado, k = 0.5)

 ρ é a massa específica da mistura entre os pontos 1 e 2 (kg/m³)

V é a velocidade média de entrada do fluido no tubo (m/s)

Em seguida, escreve-se a equação da energia do escoamento em regime permanente entre os pontos 2 e 3 (vide figura 3):

$$\frac{P_2}{\rho_2 g} + \frac{{V_2}^2}{2g} + Z_2 = \frac{P_3}{\rho_3 g} + \frac{{V_3}^2}{2g} + Z_3 + H_{perda}$$
 (eq. 2.1.2)

Onde:

 ρ_2 é a massa específica da mistura no ponto 2 (kg/m³)

 ρ_3 é a massa específica da mistura no ponto 3 (kg/m³)

 V_2 é a velocidade média do escoamento no ponto 2 (m/s)

V₃ é a velocidade média do escoamento no ponto 3 (m/s)

 z_2 é a cota do escoamento no ponto 2 (m)

 z_3 é a cota do escoamento no ponto 3 (m)

g é a aceleração da gravidade local (m/s^2)

 H_{perda} é a perda de carga no trecho de escoamento monofásico devido ao atrito (m)

A perda de carga, por sua vez, é determinada por:

¹ No texto original, a expressão encontra-se diferente da aqui apresentada (possui uma aceleração da gravidade dividindo o termo à direita da equação), mas acredita-se que houve um erro de digitação, e portanto, alterou-se a mesma.

$$H_{perda} = f_{mf} \frac{L_{mf} V_{mf}^2}{d_i v_{gg}^2}$$
 (eq. 2.1.3)

Onde:

 f_{mf} é o fator de atrito para o trecho monofásico

 L_{mf} é o comprimento do tubo onde há escoamento monofásico (m)

 d_i é o diâmetro interno do tubo (m)

 V_{mf} é a velocidade média do escoamento no trecho monofásico (m/s)

Para um escoamento incompressível, tem-se que $\rho_2 = \rho_3 = \rho_{mf}$, de modo que:

$$\dot{m} = \rho_2 V_2 A = \rho_3 V_3 A = \rho_{mf} V_{mf} A$$
 (eq. 2.1.4)

Onde:

m é o fluxo mássico do escoamento (kg/s)

 $A = \frac{\pi d_i^2}{4}$ é a área da seção transversal ao escoamento (m²)

Rearranjando-se as equações anteriores, segue:

$$P_2 = P_3 + \rho_{mf}g(z_3 - z_2) + \left(\frac{f_{mf}L_{mf}}{d_i}\right)\left(\frac{\rho_{mf}V_{mf}^2}{2}\right)$$
 (eq. 2.1.5)

Por fim, assumindo-se pequenas variações de cota $(z_2 = z_3)$, obtém-se²:

$$L_{mf} = \left(\frac{d_i}{f_{mf}}\right) \left[k - 2\frac{(P_1 - P_3)}{\rho_{mf} V_{mf}^2}\right]$$
 (eq. 2.1.6)

Sendo o coeficiente de atrito calculado a partir de 26 possíveis modelos (cf. Chingulpitak & Wongwises, 2010). Neste trabalho, o coeficiente de atrito é

Encontra-se:
$$L_{mf} = \frac{d_i}{f_{mf}} \left[\frac{2}{\rho V_{mf}^2} (P_1 - P_3) - (k - 1) \right]$$

² No texto original, a expressão encontra-se diferente da aqui apresentada, mas acredita-se que houve um equívoco quando da digitação, portanto, alterou-se a mesma.

calculado a partir da correlação de Mori e Nakayama (1967) apud Chingulpitak e Wongwises (2010), descrita a seguir:

$$f = \left(\frac{C_1 \left(\frac{d_i}{D_C}\right)^{0.5}}{\left(Re\left(\frac{d_i}{D_C}\right)^{2.5}\right)^{\frac{1}{6}}}\right) \left(1 + \frac{C_2}{\left(Re\left(\frac{d_i}{D_C}\right)^{2.5}\right)^{\frac{1}{6}}}\right)$$
 (eq. 2.1.7)

$$C_1 = 1,88411177 \cdot 10^{-1} + 85,2472168 \left(\frac{\varepsilon}{d_i}\right) - 4,63030629 \cdot 10^4 \left(\frac{\varepsilon}{d_i}\right)^2 + 1,31570014 \cdot 10^7 \left(\frac{\varepsilon}{d_i}\right)^3$$

$$C_2 = 6,79778633 \cdot 10^{-2} + 25,3880380 \left(\frac{\varepsilon}{d_i}\right) - 1,06133140 \cdot 10^4 \left(\frac{\varepsilon}{d_i}\right)^2 + 2,54555343 \cdot 10^6 \left(\frac{\varepsilon}{d_i}\right)^3$$

Onde:

f é o fator de atrito

 d_i é o diâmetro interno do tubo (m)

 D_C é o diâmetro de encurvamento do tubo (m)

Re é o número de Reynolds

 $\left(\frac{\varepsilon}{d_i}\right)$ é a rugosidade relativa interna do tubo

Para o trecho de escoamento bifásico, Chingulpitak e Wongwises (2010) propõem que a modelagem seja feita dividindo-se o tubo em um determinado número de elementos, de maneira a se obter o equacionamento diferencial.

Dessa forma, a conservação da massa é obtida por:

$$\dot{m} = \frac{AV_{bf_i}}{v_{bf_i}} = \frac{AV_{bf_{i+1}}}{v_{bf_{i+1}}}$$
 (eq. 2.1.8)

Onde:

 V_{bf_i} é a velocidade média do escoamento no trecho bifásico num ponto i (m/s) v_{bf_i} é o volume específico da mistura no trecho bifásico num ponto i (m³/kg) $V_{bf_{i+1}}$ é a velocidade média do escoamento no trecho bifásico num ponto i+1 (m/s) $v_{bf_{i+1}}$ é o volume específico da mistura no trecho bifásico num ponto i+1 (m³/kg) i+1 representa o ponto do escoamento distante dL do ponto i

Assumindo-se pequenas variações de cota, a conservação da energia em condições de escoamento adiabático em regime permanente sem a realização de trabalho externo fica:

$$\left(h_{bf_i} + \frac{v_{bf_i}^2}{2}\right) = \left(h_{bf_{i+1}} + \frac{v_{bf_{i+1}}^2}{2}\right) = \left(h_{bf} + \frac{v_{bf}^2}{2}\right) = cte \text{ (eq. 2.1.9)}$$

Onde:

 h_{bf_i} é a entalpia específica da mistura no trecho bifásico num ponto i (kJ/kg)

 $h_{bf}{}_{i+1}$ é a entalpia específica da mistura no trecho bifásico num ponto i+1 (kJ/kg)

Na região bifásica (de saturação líquido-vapor), tem-se:

$$h_i = h_{l_i}(1 - x_i) + h_{v_i}x_i$$
 (eq. 2.1.10)

$$v_i = v_{l_i}(1 - x_i) + v_{v_i}x_i$$
 (eq. 2.1.11)

Onde:

x é o título

Os índices l e v referem-se à saturação de, respectivamente, líquido e vapor

Aplicando o balanço de energia entre o ponto 3 (vide figura 3) e outro ponto qualquer do escoamento bifásico, obtém-se:

$$h_{3} + \frac{v_{3}^{2}}{2} = h_{l} + x(h_{v} - h_{l}) + \frac{Q^{2}}{2} [v_{l}(1 - x) + v_{v}x]^{2} \quad (eq. 2.1.12)$$

$$\left[(v_{v} - v_{l})^{2} \frac{Q^{2}}{2} \right] x^{2} + \left[Q^{2} v_{l} (v_{v} - v_{l}) + (h_{v} - h_{l}) \right] x + \left[\frac{Q^{2} v_{l}^{2}}{2} - h_{3} - \frac{v_{3}^{2}}{2} + h_{l} \right] = 0 \quad (eq. 2.1.13)$$

Onde:

 $Q = \frac{V}{v}$ é a vazão volumétrica do escoamento (m³/s)

A conservação da quantidade de movimento para um trecho de tubo de comprimento dL, por sua vez, fornece (sendo feita uma expansão em Série de Taylor de primeira ordem):

$$P\frac{\pi d_i^2}{4} - (P + dP)\frac{\pi d_i^2}{4} - \tau_p d_i \pi dL = \dot{m} dV$$
 (eq. 2.1.14)

Onde:

$$\tau_p = \frac{f_{bf} \rho V^2}{8}$$
 é a tensão cisalhante (kg/(m.s²))

 f_{bf} é o fator de atrito para o trecho bifásico

Rearranjando, e fazendo:

$$-\frac{dV}{V} = \frac{d\rho}{\rho}$$
 (eq. 2.1.15)

Obtém-se³:

$$dL = 2 \frac{d_i}{f_{bf}} \left[\left(\frac{dP}{\rho_{bf} V_{bf}^2} \right) - \frac{d\rho}{\rho_{bf}} \right]$$
 (eq.2.1.16)

Sendo o coeficiente de atrito, novamente, calculado a partir de 26 possíveis modelos (cf. Chingulpitak & Wongwises, 2010). Neste trabalho, o coeficiente de atrito é calculado a partir da correlação de Mori e Nakayama (1967) apud Chingulpitak e Wongwises (2010), eq 2.1.7.

2.2. Modelagem de escoamento para mistura

O trabalho de Fiorelli (2000) apresenta o desenvolvimento da modelagem matemática para o escoamento de misturas de fluidos refrigerantes ao longo de tubos capilares retilíneos, ou seja, aplicável a fluidos como o R-407C e o R-410A. Esta

Encontra-se: $dL = \frac{2d_i}{f_{bf}} \left(\frac{-\rho_{bf}dP}{\rho_{bf}V_{bf}^2} + \frac{d\rho}{\rho_{bf}} \right)$

-

³ No texto original, a expressão encontra-se diferente da aqui apresentada, mas acredita-se que houve um equívoco quando da digitação, portanto, alterou-se a mesma.

modelagem diferencia-se da desenvolvida por Chingulpitak e Wongwises (2010) à medida que considera a existência de mais de um tipo de substância para o cálculo da perda de carga localizada na entrada e à medida que determina um modelo para o cálculo da viscosidade bifásica da mistura, necessária para a obtenção do número de Reynolds e do fator de atrito.

Para a perda de carga localizada na entrada devida à contração, tem-se (Collier e Thome, 1996):

$$P_{cd} - P_1 = \frac{G^2 v_l}{2} \left[\left(\frac{1}{C_C} - 1 \right)^2 + \left(1 - \frac{1}{\sigma_{cd}^2} \right) \right] \left(1 + x \frac{v_v - v_l}{v_l} \right) \quad \text{(eq. 2.1.17)}$$

Onde:

 P_{cd} é a pressão no condensador (kPa)

 P_1 é a pressão no ponto 1 (kPa)

G é o fluxo mássico por unidade de área (kg/(s.m²))

 v_l é o volume específico do líquido (m³/kg)

 v_v é o volume específico do vapor (m³/kg)

 $\sigma_{cd} = \frac{A_{cd}}{A_i}$ é a relação de áreas de seção do condensador e do tubo capilar

x é o título

 $C_C = f(\sigma_{cd})$ é um coeficiente de contração

Já para a viscosidade bifásica, o modelo utilizado é a correlação de Duckler et al. (1964):

$$\mu = \mu_l (1 - \alpha) + \mu_v \alpha$$
 (eq. 2.1.18)

$$\alpha = \frac{x v_v}{x v_v + (1 - x) v_l}$$

Onde:

 α é a fração de vazio

 μ_l é a viscosidade do líquido

 μ_v é a viscosidade do vapor

3. REVISÃO BIBLIOGRÁFICA – DADOS EXPERIMENTAIS

A fim de se comparar os valores calculados utilizando-se os modelos levantados por este trabalho e a rotina computacional aplicada ao programa Engineering Equation Solver (EES), levantaram-se dados de testes experimentais da bibliografia.

3.1. Wei et al. (2000)

Os dados do trabalho de Wei et al. foram dispostos na tabela 1 a seguir:

Tabela 1 – Dados experimentais adaptados de Wei et al. (2000)

Teste de R22	1	2	3	4
Diâm. Interno (mm)	1,6	1	1,6	1
Diâm. Encurv. (mm)	130	52	52	130
Comprimento do tubo (mm)	1000	1000	1000	1000
$\dot{m}_{curvilineo}/\dot{m}_{retilineo}$	0,95 - 0,97	0,94 - 0,98	0,94 - 1,02	0,96 - 0,99

3.2. Kim et al. (2002)

Os dados do trabalho de Kim et al. foram dispostos na tabela 2 a seguir:

Tabela 2 – Dados adaptados de Kim et al. (2002) apud García-Valladares (2006). Condições de teste: $d_i{=}1,5mm,\,T_{condensador}{=}45^{\circ}C,\,L{=}1\,m,\,(\epsilon/d_i){=}6.10^{\text{-}5}$

Fluido	Pcondensador (bar)	ΔTsub (°C)	Dencurvamento (mm)	ṁ (kg/h)
		1,5	200	50,652
		5	200	55,044
		10	200	61,848
		1,5	120	49,104
R22	17,2923	5	120	53,676
		10	120	60,264
		1,5	40	47,556
		5	40	52,2
		10	40	58,356
		1,5	200	50,904
		5	200	56,268
R407C		10	200	63,252
23% de R32		1,5	120	48,852
25% de R32 25% de R125	19,7234	5	120	53,496
52% de R134a		10	120	61,056
(em massa)		1,5	40	47,844
		5	40	53,1
		10	40	59,4
		1,5	200	62,352
		5	200	68,328
R410A		10	200	76,68
		1,5	120	59,58
50% de R32	27,3354	5	120	66,78
50% de R125		10	120	75,42
(em massa)		1,5	40	57,456
		5	40	61,992
		10	40	72

4. IMPLEMENTAÇÃO DO MODELO

Com base no modelo matemático desenvolvido por Chingulpitak e Wongwises (2010) para o escoamento em tubos capilares curvilíneos e apresentado no capítulo 2 deste trabalho (eq. 2.1.6 e eq. 2.1.16), pode-se criar uma rotina computacional para a realização dos cálculos envolvidos.

Utilizando-se o programa de computador Engineering Equations Solver – EES (EES, 1997) e lançando mão das propriedades termodinâmicas e de transporte calculadas por rotinas da base de dados REFPROP versão 5.23, desenvolvida pelo NIST (NIST, 1996), torna-se possível a implementação do modelo. Baseou-se no programa criado no trabalho realizado por Fiorelli (2000).

Para que fosse possível a comparação do presente modelo com os dados experimentais de Kim et al. (2002), assumiram-se as seguintes hipóteses adicionais:

- o escoamento encontra-se blocado na seção de descarga, o que é válido na grande maioria dos escoamentos de fluidos refrigerantes em tubos capilares;
- o diâmetro do condensador foi considerado como sendo $D_{cd} = 10 \, mm$ (valor típico), a fim de se determinar a perda de carga localizada na entrada do tubo capilar;
- os efeitos sobre o escoamento das propriedades termodinâmicas no evaporador são desprezados (como já observado no trabalho de Fiorelli, 2000), sendo assim adotados para fins de cálculo valores típicos, bem como o diâmetro do evaporador.

5. RESULTADOS

Com base no modelo computacional criado para o modelo matemático apresentado realizaram-se simulações para os fluidos R-22, R-407C e R-410A conforme descrito a seguir.

5.1. Efeito do grau de subresfriamento

Foram variados os valores para D_C (diâmetro de encurvamento), ΔT_{sub} (grau de subresfriamento) e os refrigerantes utilizados, mantendo-se fixados:

 $d_i = 1,5 \ mm \ (diâmetro interno do tubo)$

 $T_{cd} = 45^{\circ}C$ (temperatura do fluido no condensador)

L = 1 m (comprimento total do tubo)

 $D_{cd} = 10 \ mm$ (diâmetro do condensador)

 $\frac{\varepsilon}{d_i}$ = 0,00006 (rugosidade interna relativa do tubo)

Os resultados foram dispostos nas tabela 3, 4 e 5 a seguir:

Tabela 3 – Vazão mássica variando-se grau de subresfriamento e diâmetro de encurvamento para R22

	R22: \dot{m} (kg/h)															
AT (0.5°		$D_{\mathcal{C}}$ (mm)														
ΔT_{sub} (°C)	40	80	120	160	200	240	280	320	360	400	2000	3600	5200	6800	8400	10000
1,0	43,933	44,682	45,093	45,370	45,576	45,738	45,869	45,979	46,073	46,155	47,014	47,098	47,070	47,007	46,930	46,848
1,5	44,593	45,354	45,772	46,054	46,263	46,427	46,561	46,673	46,768	46,851	-	-	-	-	-	-
2,0	45,245	46,018	46,442	46,729	46,942	47,109	47,245	47,358	47,455	47,539	-	-	-	-	-	-
2,5	45,888	46,673	47,106	47,397	47,613	47,782	47,920	48,035	48,133	48,218	-	-	-	-	-	-
3,0	46,524	47,322	47,760	48,056	48,275	48,447	48,587	48,704	48,804	48,890	-	-	-	-	-	-
3,5	47,151	47,962	48,408	48,707	48,929	49,104	49,246	49,365	49,466	49,554	-	-	-	-	-	-
4,0	47,764	48,596	49,047	49,352	49,578	49,755	49,899	50,019	50,122	50,211	-	-	-	-	-	-
4,5	48,373	49,221	49,680	49,989	50,218	50,398	50,544	50,666	50,770	50,860	-	-	-	-	-	-
5,0	48,992	49,841	50,306	50,620	50,852	51,035	51,183	51,307	51,412	51,504	52,449	52,524	52,478	52,395	52,297	52,195
5,5	49,593	50,453	50,925	51,243	51,480	51,664	51,814	51,940	52,047	52,140	-	-	-	-	-	-
6,0	50,186	51,060	51,539	51,861	52,100	52,288	52,440	52,568	52,676	52,770	-	-	-	-	-	-
6,5	50,774	51,660	52,146	52,473	52,714	52,905	53,060	53,189	53,299	53,394	-	-	-	-	-	-
7,0	51,356	52,252	52,747	53,078	53,325	53,517	53,674	53,805	53,916	54,013	-	-	-	-	-	-
7,5	51,932	52,840	53,342	53,678	53,926	54,123	54,282	54,415	54,528	54,625	-	-	-	-	-	-
8,0	52,502	53,424	53,932	54,273	54,525	54,724	54,885	55,019	55,133	55,233	-	-	-	-	-	-
8,5	53,067	53,998	54,516	54,862	55,118	55,319	55,482	55,618	55,734	55,835	-	-	-	-	-	-
9,0	53,628	54,576	55,095	55,446	55,705	55,909	56,074	56,212	56,330	56,432	-	-	-	-	-	-
9,5	54,183	55,143	55,670	56,025	56,288	56,494	56,662	56,802	56,921	57,024	-	-	-	-	-	-
10,0	54,733	55,706	56,240	56,600	56,866	57,075	57,244	57,386	57,507	57,612	58,678	58,750	58,685	58,578	58,458	58,332
10,5	55,278	56,264	56,805	57,169	57,438	57,651	57,823	57,967	58,089	58,194	-	-	-	-	-	-
11,0	55,819	56,817	57,366	57,735	58,009	58,223	58,398	58,543	58,667	58,774	-	-	-	-	-	-
11,5	56,356	57,367	57,923	58,297	58,573	58,791	58,968	59,115	59,241	59,349	-	-	_	_	-	-

Tabela 4 – Vazão mássica variando-se grau de subresfriamento e diâmetro de encurvamento R407C

						-	R407C: 1	n (kg/h)								
A.T. (0.C)								D_{C} (mm)							
ΔT_{sub} (°C)	40	80	120	160	200	240	280	320	360	400	2000	3600	5200	6800	8400	10000
1,0	46,147	46,903	47,317	47,596	47,804	47,967	48,100	48,211	48,306	48,388	48,959	49,080	49,068	49,011	48,936	48,854
1,5	46,835	47,599	48,020	48,303	48,513	48,678	48,813	48,926	49,022	49,105	-	-	-	-	-	-
2,0	47,511	48,287	48,713	49,000	49,213	49,380	49,517	49,631	49,728	49,813	-	-	-	-	-	-
2,5	48,178	48,965	49,397	49,688	49,904	50,073	50,211	50,327	50,425	50,511	-	-	-	-	-	-
3,0	48,837	49,634	50,072	50,367	50,586	50,757	50,897	51,014	51,114	51,200	-	-	-	-	-	-
3,5	49,487	50,295	50,739	51,037	51,259	51,433	51,574	51,693	51,794	51,881	-	-	-	-	-	-
4,0	50,129	50,948	51,397	51,700	51,924	52,100	52,243	52,363	52,465	52,554	ı	ı	-	-	-	-
4,5	50,763	51,592	52,048	52,354	52,581	52,759	52,904	53,025	53,129	53,218	ı	1	-	-	-	-
5,0	51,389	52,229	52,690	53,001	53,230	53,411	53,557	53,680	53,784	53,875	54,830	54,925	54,898	54,830	54,747	54,658
5,5	52,008	52,859	53,326	53,640	53,872	54,054	54,203	54,327	54,433	54,524	ı	ı	-	-	-	-
6,0	52,620	53,481	53,954	54,271	54,505	54,691	54,841	54,967	55,074	55,166	ı	1	-	-	-	-
6,5	53,225	54,097	54,575	54,896	55,134	55,321	55,473	55,599	55,708	55,801	-	-	-	-	-	-
7,0	53,823	54,705	55,189	55,514	55,755	55,944	56,097	56,225	56,335	56,429	-	-	-	-	-	-
7,5	54,415	55,307	55,797	56,125	56,369	56,560	56,715	56,845	56,955	57,051	-	-	-	-	-	-
8,0	55,000	55,903	56,398	56,730	56,977	57,170	57,327	57,458	57,569	57,666	-	-	-	-	-	-
8,5	55,580	56,493	56,993	57,329	57,578	57,773	57,932	58,064	58,177	58,275	-	-	-	-	-	-
9,0	56,153	57,076	57,582	57,922	58,173	58,371	58,531	58,665	58,779	58,878	-	-	-	-	-	-
9,5	56,720	57,654	58,165	58,509	58,763	58,962	59,124	59,260	59,375	59,475	ı	ı	-	-	-	-
10,0	57,282	58,226	58,743	59,090	59,347	59,548	59,712	59,849	59,965	60,066	61,111	61,200	61,155	61,068	60,966	60,858
10,5	57,838	58,789	59,315	59,666	59,925	60,129	60,294	60,432	60,550	60,652						-
11,0	58,389	59,353	59,881	60,236	60,498	60,704	60,871	61,011	61,129	61,232	-	-	-	-	-	-
11,5	58,935	59,909	60,443	60,801	61,066	61,274	61,443	61,583	61,703	61,807	-	-	_	-	-	-

Tabela 5 – Vazão mássica variando-se grau de subresfriamento e diâmetro de encurvamento R410A

							R410A: 1	<i>i</i> n (kg/h)								
AT (0C)								$D_{\mathcal{C}}$ (mm)							
ΔT_{sub} (°C)	40	80	120	160	200	240	280	320	360	400	2000	3600	5200	6800	8400	10000
1,0	58,666	59,743	60,341	60,746	61,048	61,289	61,481	61,649	61,790	61,912	63,280	63,471	63,485	63,435	63,359	63,271
1,5	59,435	60,529	61,134	61,547	61,854	62,097	62,295	62,463	62,606	62,716	-	-	-	-	-	-
2,0	60,196	61,305	61,922	62,340	62,652	62,898	63,099	63,269	63,386	63,540	-	-	-	-	-	-
2,5	60,949	62,076	62,701	63,122	63,440	63,691	63,895	64,066	64,213	64,341	-	-	-	-	-	-
3,0	61,615	62,837	63,471	63,902	64,223	64,476	64,680	64,858	65,007	65,136	ı	1	-	1	1	-
3,5	62,434	63,588	64,236	64,672	64,997	65,254	65,464	65,641	65,792	65,924	-	-	-	-	-	-
4,0	63,166	64,338	64,948	65,435	65,765	66,025	66,238	66,417	66,571	66,704	ı	1	-	1	1	-
4,5	63,880	65,077	65,743	66,191	66,526	66,790	67,006	67,187	67,342	67,477	ı	1	-	ı	1	ı
5,0	64,609	65,817	66,486	66,941	67,280	67,547	67,765	67,949	68,107	68,244	69,753	69,951	69,950	69,883	69,800	69,679
5,5	65,273	66,536	67,223	67,684	68,027	68,298	68,520	68,705	68,866	68,988	ı	1	-	1	1	-
6,0	66,022	67,267	67,953	68,419	68,769	69,043	69,268	69,457	69,618	69,758	ı	1	-	ı	1	ı
6,5	66,715	67,980	68,677	69,150	69,504	69,782	70,009	70,201	70,364	70,507	-	-	-	-	-	-
7,0	67,419	68,692	69,396	69,875	70,233	70,515	70,745	70,939	71,104	71,248	-	-	-	-	-	-
7,5	68,106	69,390	70,110	70,595	70,955	71,243	71,476	71,671	71,840	71,985	-	-	-	-	-	-
8,0	68,787	70,092	70,816	71,308	71,675	71,964	72,200	72,399	72,569	72,717	ı	1	-	1	1	-
8,5	69,463	70,785	71,517	72,016	72,386	72,680	72,920	73,121	73,293	73,443	ı	ı	-	ı	ı	ı
9,0	70,133	71,471	72,214	72,718	73,094	73,392	73,634	73,837	74,012	74,163	-	-	-	-	-	-
9,5	70,799	72,155	72,905	73,416	73,797	74,098	74,343	74,549	74,726	74,879	-	-	-	-	-	-
10,0	71,460	72,832	73,593	74,109	74,495	74,787	75,047	75,256	75,435	75,590	77,291	77,500	77,487	77,399	77,281	77,165
10,5	72,116	73,502	74,274	74,797	75,187	75,495	75,747	75,958	76,139	76,296	-	-	-	1	-	-
11,0	72,573	74,171	74,951	75,480	75,875	76,187	76,442	76,656	76,832	76,995	-	-	-	-	-	-
11,5	73,412	74,833	75,622	76,160	76,559	76,875	77,133	77,350	77,535	77,687	-	-	-	-	-	-

5.2. Efeito da temperatura de condensação

Também foram calculados valores para a variação da temperatura de condensação, mantendo-se fixos os seguintes valores:

 $d_i = 1,5 \ mm \ (diâmetro interno do tubo)$

 $\Delta T_{sub} = 5^{\circ}C$ (grau de subresfriamento)

L = 1 m (comprimento total do tubo)

 $D_{cd} = 10 \; mm \; ({
m diâmetro \; do \; condensador})$

 $\frac{\varepsilon}{d_i}$ = 0,00006 (rugosidade interna relativa do tubo)

Os resultados foram colocados nas tabelas 6, 7 e 8 a seguir:

Tabela 6 – Vazão mássica variando-se $\boldsymbol{D_c}$ e temperatura de condensação para R22

		R22: n	ı (kg/h)		
D (mm)			T_{cd}		
D_C (mm)	35°C	40°C	45°C	50°C	55°C
20	41,807	44,897	48,099	51,405	54,815
30	42,255	45,391	48,621	51,974	55,415
40	42,577	45,730	48,993	52,364	55,835
50	42,822	45,994	49,273	52,668	56,156
60	43,014	46,201	49,499	52,909	56,413
70	43,174	46,375	49,688	53,108	56,627
80	43,311	46,523	49,846	53,278	56,808
90	43,429	46,650	49,985	53,427	56,968
100	43,535	46,763	50,106	53,557	57,108
110	43,628	46,864	50,215	53,674	57,233
120	43,712	46,954	50,312	53,779	57,345
130	43,788	47,036	50,401	53,875	57,448
140	43,857	47,112	50,482	53,962	57,542
150	43,921	47,182	50,557	54,042	57,628
160	43,980	47,246	50,626	54,116	57,708
170	44,035	47,305	50,690	54,185	57,782
180	44,085	47,360	50,750	54,250	57,851
190	44,133	47,412	50,806	54,310	57,916
200	44,180	47,461	50,858	54,367	57,977
210	44,222	47,506	50,908	54,420	58,034
220	44,262	47,550	50,955	54,471	58,088
230	44,299	47,590	50,999	54,518	58,140
240	44,334	47,629	51,041	54,563	58,188
250	44,368	47,666	51,081	54,606	58,234
260	44,401	47,701	51,118	54,647	58,279
270	44,431	47,734	51,155	54,686	58,321
280	44,460	47,766	51,189	54,724	58,361
290	44,488	47,797	51,222	54,759	58,399
300	44,515	47,826	51,253	54,793	58,436
310	44,541	47,854	51,283	54,826	58,471
320	44,566	47,881	51,313	54,857	58,505
330	44,590	47,906	51,340	54,888	58,538
340	44,613	47,931	51,368	54,917	58,569
350	44,634	47,955	51,394	54,945	58,599
360	44,655	47,978	51,419	54,972	58,628
370	44,676	48,000	51,443	54,998	58,657
380	44,695	48,021	51,466	55,023	58,684
390	44,714	48,042	51,488	55,047	58,710
400	44,733	48,062	51,510	55,071	58,735

Tabela 7 – Vazão mássica variando-se ${\it D}_{\it c}$ e temperatura de condensação para R407C

R407C: ṁ (kg/h)										
D (mm)			T_{cd}							
$D_{\mathcal{C}}$ (mm)	35°C	40°C	45°C	50°C	55°C					
20	44,224	47,376	50,581	53,837	57,133					
30	44,692	47,878	51,111	54,386	57,721					
40	45,024	48,221	51,477	54,777	58,127					
50	45,275	48,486	51,755	55,072	58,436					
60	45,475	48,697	51,976	55,307	58,683					
70	45,641	48,873	52,161	55,503	58,889					
80	45,782	49,022	52,318	55,669	59,064					
90	45,904	49,151	52,455	55,814	59,215					
100	46,012	49,265	52,576	55,941	59,349					
110	46,108	49,367	52,683	56,054	59,469					
120	46,194	49,458	52,780	56,157	59,577					
130	46,273	49,542	52,868	56,250	59,675					
140	46,344	49,618	52,948	56,335	59,765					
150	46,410	49,687	53,022	56,413	59,848					
160	46,471	49,752	53,091	56,485	59,924					
170	46,528	49,812	53,154	56,552	59,995					
180	46,580	49,868	53,213	56,615	60,061					
190	46,630	49,920	53,269	56,674	60,123					
200	46,676	49,969	53,321	56,729	60,181					
210	46,719	50,015	53,370	56,781	60,236					
220	46,761	50,059	53,416	56,830	60,288					
230	46,799	50,100	53,460	56,876	60,337					
240	46,836	50,139	53,501	56,920	60,384					
250	46,871	50,177	53,541	56,962	60,428					
260	46,904	50,212	53,578	57,001	60,470					
270	46,936	50,246	53,614	57,039	60,510					
280	46,966	50,278	53,648	57,076	60,549					
290	46,995	50,309	53,681	57,110	60,585					
300	47,023	50,338	53,712	57,143	60,621					
310	47,050	50,366	53,742	57,175	60,654					
320	47,075	50,393	53,771	57,206	60,687					
330	47,100	50,419	53,799	57,235	60,718					
340	47,123	50,444	53,825	57,264	60,748					
350	47,146	50,469	53,851	57,291	60,777					
360	47,168	50,492	53,876	57,317	60,805					
370	47,189	50,514	53,900	57,343	60,832					
380	47,209	50,536	53,923	57,367	60,858					
390	47,229	50,557	53,945	57,391	60,883					
400	47,248	50,577	53,967	57,414	60,907					

Tabela 8 – Vazão mássica variando-se $\boldsymbol{\textit{D}}_{\textit{c}}$ e temperatura de condensação para R410A

		R410A:	m (kg/h)		
D_C (mm)			T_{cd}		
$D_{\mathcal{C}}$ (IIIIII)	35°C	40°C	45°C	50°C	55°C
20	-	57,899	61,817	65,828	-
30	-	58,531	62,504	66,565	-
40	-	58,989	63,005	67,075	-
50	-	59,325	63,357	67,460	-
60	-	59,602	63,651	67,772	-
70	-	59,828	63,908	68,036	-
80	-	60,022	64,117	68,261	-
90	-	60,192	64,298	68,453	-
100	-	60,341	64,458	68,624	-
110	-	60,474	64,600	68,777	=
120	-	60,594	64,729	68,915	-
130	-	60,703	64,846	69,040	-
140	-	60,803	64,954	69,155	-
150	-	60,896	65,053	69,263	-
160	-	60,981	65,144	69,361	=
170	-	61,060	65,229	69,453	-
180	-	61,134	65,310	69,538	-
190	-	61,203	65,384	69,619	-
200	-	61,268	65,454	69,694	-
210	-	61,330	65,520	69,765	-
220	-	61,387	65,583	69,829	-
230	-	61,442	65,642	69,893	-
240	-	61,494	65,698	69,954	-
250	-	61,545	65,752	70,013	-
260	-	61,592	65,802	70,068	-
270	-	61,637	65,851	70,113	=
280	-	61,680	65,897	70,164	-
290	-	61,721	65,940	70,218	=
300	-	61,754	65,984	70,264	-
310	-	61,798	66,025	70,308	-
320	-	61,835	66,065	70,351	-
330	-	61,870	66,103	70,391	-
340	-	61,904	66,139	70,430	-
350	-	61,931	66,175	70,468	-
360	-	61,968	66,208	70,505	-
370	-	61,998	66,241	70,540	-
380	-	62,027	66,273	70,574	-
390	-	62,056	66,304	70,607	-
400	-	62,083	66,334	70,639	-

5.3. Perfil de temperaturas

O terceiro tipo de resultado obtido neste trabalho a partir das rotinas matemáticas foi o de perfil de temperaturas ao longo do tubo capilar. Para este, fixaram-se novamente os valores abaixo:

 $d_i = 1,5 \ mm \ (diâmetro interno do tubo)$

 $\Delta T_{sub} = 5^{\circ}C$ (grau de subresfriamento)

 $T_{cd} = 45^{\circ}C$ (temperatura do fluido no condensador)

L = 1 m (comprimento total do tubo)

 $D_{cd} = 10 \; mm \; ({
m diâmetro \; do \; condensador})$

 $\frac{\varepsilon}{d_i}$ = 0,00006 (rugosidade interna relativa do tubo)

Os resultados foram colocados nas tabelas 9, 10 e 11 a seguir, onde z representa o comprimento de tubo capilar percorrido pelo fluido até o ponto (em metros):

Tabela 9 – Perfil de temperaturas ao longo do tubo para R22

	R22: <i>ṁ</i> (kg/h)																		
$D_c =$	20 mm	$D_c =$	60 mm	$D_c = 1$	100 mm	$D_c = 1$	40 mm	$D_c = 1$	180 mm	$D_c = 2$	220 mm	$D_c = 2$	260 mm	$D_c = 3$	300 mm	$D_c = 3$	340 mm	$D_c = 3$	380 mm
z (m)	T (°C)	z (m)	T (°C)	z (m)	T (°C)	z (m)	T (°C)	z (m)	T (°C)	z (m)	T (°C)	z (m)	T (°C)	z (m)	T (°C)	z (m)	T (°C)	z (m)	T (°C)
0,00	40,0	0,00	40,0	0,00	40,0	0,00	40,0	0,00	40,0	0,00	40,0	0,00	40,0	0,00	40,0	0,00	40,0	0,00	40,0
0,38	40,0	0,38	40,0	0,38	40,0	0,39	40,0	0,39	40,0	0,39	40,0	0,39	40,0	0,39	40,0	0,39	40,0	0,39	40,0
0,44	39,2	0,44	39,2	0,44	39,2	0,44	39,2	0,44	39,2	0,44	39,2	0,44	39,2	0,44	39,2	0,44	39,2	0,44	39,2
0,49	38,3	0,50	38,4	0,50	38,4	0,50	38,4	0,50	38,4	0,50	38,4	0,50	38,4	0,50	38,4	0,50	38,4	0,50	38,4
0,54	37,5	0,54	37,5	0,55	37,5	0,55	37,5	0,55	37,6	0,55	37,6	0,55	37,6	0,55	37,6	0,55	37,6	0,55	37,6
0,59	36,6	0,59	36,7	0,59	36,7	0,59	36,7	0,59	36,7	0,59	36,7	0,59	36,7	0,59	36,7	0,59	36,7	0,59	36,7
0,63	35,7	0,63	35,8	0,63	35,8	0,63	35,8	0,63	35,9	0,63	35,9	0,63	35,9	0,63	35,9	0,63	35,9	0,63	35,9
0,67	34,8	0,67	34,9	0,67	34,9	0,67	35,0	0,67	35,0	0,67	35,0	0,67	35,0	0,67	35,0	0,67	35,0	0,67	35,0
0,70	33,9	0,70	34,0	0,70	34,0	0,70	34,1	0,70	34,1	0,70	34,1	0,70	34,1	0,70	34,2	0,70	34,2	0,70	34,2
0,73	33,0	0,73	33,1	0,74	33,1	0,74	33,2	0,74	33,2	0,74	33,2	0,74	33,3	0,74	33,3	0,74	33,3	0,74	33,3
0,76	32,0	0,76	32,2	0,77	32,2	0,77	32,3	0,77	32,3	0,77	32,3	0,77	32,3	0,77	32,4	0,77	32,4	0,77	32,4
0,79	31,1	0,79	31,3	0,79	31,3	0,79	31,3	0,79	31,4	0,79	31,4	0,79	31,4	0,79	31,4	0,79	31,4	0,79	31,5
0,82	30,1	0,82	30,3	0,82	30,3	0,82	30,4	0,82	30,5	0,82	30,5	0,82	30,5	0,82	30,5	0,82	30,5	0,82	30,5
0,84	29,1	0,84	29,4	0,84	29,4	0,84	29,4	0,84	29,5	0,84	29,5	0,84	29,5	0,84	29,6	0,84	29,6	0,84	29,6
0,86	28,1	0,86	28,4	0,86	28,4	0,86	28,5	0,86	28,5	0,86	28,5	0,86	28,6	0,86	28,6	0,86	28,6	0,86	28,6
0,88	27,0	0,88	27,3	0,88	27,4	0,88	27,5	0,88	27,5	0,88	27,6	0,88	27,6	0,88	27,6	0,88	27,6	0,88	27,6
0,90	26,0	0,90	26,3	0,90	26,3	0,90	26,4	0,90	26,5	0,90	26,5	0,90	26,6	0,90	26,6	0,90	26,6	0,90	26,6
0,91	24,9	0,91	25,3	0,92	25,3	0,92	25,4	0,91	25,5	0,92	25,5	0,92	25,5	0,92	25,6	0,92	25,6	0,92	25,6
0,93	23,8	0,93	24,2	0,93	24,2	0,93	24,3	0,93	24,4	0,93	24,4	0,93	24,5	0,93	24,5	0,93	24,5	0,93	24,6
0,94	22,6	0,94	23,1	0,94	23,1	0,94	23,2	0,94	23,3	0,94	23,4	0,94	23,4	0,94	23,4	0,94	23,4	0,94	23,5
0,95	21,5	0,95	22,0	0,95	22,0	0,95	22,1	0,95	22,2	0,95	22,3	0,95	22,3	0,95	22,3	0,95	22,3	0,95	22,4
0,96	20,3	0,96	20,8	0,96	20,8	0,96	21,0	0,96	21,1	0,96	21,1	0,96	21,2	0,96	21,2	0,96	21,2	0,96	21,3
0,97	19,1	0,97	19,6	0,97	19,6	0,97	19,8	0,97	19,9	0,97	20,0	0,97	20,0	0,97	20,1	0,97	20,1	0,97	20,1
0,98	17,8	0,98	18,4	0,98	18,4	0,98	18,6	0,98	18,7	0,98	18,8	0,98	18,8	0,98	18,9	0,98	18,9	0,98	19,0
0,99	16,5	0,99	17,2	0,99	17,2	0,99	17,4	0,99	17,5	0,99	17,6	0,99	17,6	0,99	17,7	0,99	17,7	0,99	17,8
0,99	15,2	0,99	15,9	0,99	15,9	0,99	16,1	0,99	16,3	0,99	16,3	0,99	16,4	0,99	16,5	0,99	16,5	0,99	16,5
0,99	13,8	0,99	14,6	1,00	14,6	1,00	14,8	0,99	15,0	1,00	15,1	1,00	15,1	1,00	15,2	1,00	15,2	1,00	15,3
1,00	12,4	1,00	13,2	1,00	13,3	1,00	13,5	1,00	13,7	1,00	13,8	1,00	13,8	1,00	13,9	1,00	13,9	1,00	14,0
1,00	11,0	1,00	11,9	1,00	11,9	1,00	12,1	1,00	12,3	1,00	12,4	1,00	12,5	1,00	12,5	1,00	12,5	1,00	12,6
1,00	9,5	1,00	10,4	1,00	10,4	1,00	10,7	1,00	10,9	1,00	11,0	1,00	11,1	1,00	11,1	1,00	11,1	1,00	11,2

Tabela 10 – Perfil de temperaturas ao longo do tubo para R407C

									R407C:	m (kg/h)								
$D_c =$	20 mm	$D_c =$	60 mm	$D_c = 1$	100 mm	$D_c = 1$	140 mm	$D_c = 1$	180 mm	$D_c = 2$	220 mm	$D_c = 2$	260 mm	$D_c = 3$	300 mm	$D_c = 3$	340 mm	$D_c = 3$	380 mm
z (m)	T (°C)	z (m)	T (°C)	z (m)	T (°C)	z (m)	T (°C)	z (m)	T (°C)	z (m)	T (°C)	z (m)	T (°C)	z (m)	T (°C)	z (m)	T (°C)	z (m)	T (°C)
0,00	40,0	0,00	40,0	0,00	40,0	0,00	40,0	0,00	40,0	0,00	40,0	0,00	40,0	0,00	40,0	0,00	40,0	0,00	40,0
0,39	40,0	0,39	40,0	0,40	40,0	0,40	40,0	0,40	40,0	0,40	40,0	0,40	40,0	0,40	40,0	0,40	40,0	0,40	40,0
0,46	38,9	0,47	38,9	0,47	38,9	0,47	38,9	0,47	38,9	0,47	38,9	0,47	38,9	0,47	38,9	0,47	38,9	0,47	38,9
0,52	38,0	0,53	38,0	0,53	38,0	0,54	38,0	0,54	38,0	0,54	38,0	0,54	38,0	0,54	38,0	0,54	38,0	0,54	38,0
0,58	37,0	0,59	37,0	0,59	37,0	0,59	37,0	0,60	37,0	0,60	37,0	0,60	37,0	0,60	37,0	0,60	37,0	0,60	37,0
0,63	36,0	0,64	36,0	0,64	36,0	0,65	36,0	0,65	36,0	0,65	36,0	0,65	36,0	0,65	36,0	0,65	36,0	0,65	36,0
0,68	35,0	0,69	35,0	0,69	35,0	0,69	35,0	0,70	35,0	0,70	35,0	0,70	35,0	0,70	35,0	0,70	35,0	0,70	35,0
0,72	33,9	0,73	33,9	0,74	33,9	0,74	33,9	0,74	33,9	0,74	33,9	0,74	33,9	0,74	33,9	0,74	33,9	0,74	33,9
0,76	32,9	0,77	32,9	0,77	32,9	0,78	32,9	0,78	32,9	0,78	32,9	0,78	32,9	0,78	32,9	0,78	32,9	0,78	32,9
0,80	31,8	0,80	31,8	0,81	31,8	0,81	31,8	0,81	31,8	0,81	31,8	0,82	31,8	0,82	31,8	0,82	31,8	0,82	31,8
0,83	30,7	0,84	30,7	0,84	30,7	0,84	30,7	0,84	30,7	0,85	30,7	0,85	30,7	0,85	30,7	0,85	30,7	0,85	30,7
0,86	29,5	0,86	29,5	0,87	29,5	0,87	29,5	0,87	29,5	0,87	29,5	0,88	29,5	0,88	29,5	0,88	29,5	0,88	29,5
0,88	28,4	0,89	28,4	0,89	28,4	0,90	28,4	0,90	28,4	0,90	28,4	0,90	28,4	0,90	28,4	0,90	28,4	0,90	28,4
0,90	27,2	0,91	27,2	0,92	27,2	0,92	27,2	0,92	27,2	0,92	27,2	0,92	27,2	0,92	27,2	0,93	27,2	0,93	27,2
0,92	25,9	0,93	25,9	0,94	26,0	0,94	26,0	0,94	26,0	0,94	26,0	0,94	26,0	0,94	26,0	0,95	26,0	0,95	26,0
0,94	24,7	0,95	24,7	0,95	24,7	0,96	24,7	0,96	24,7	0,96	24,7	0,96	24,7	0,96	24,7	0,96	24,7	0,96	24,7
0,96	23,4	0,97	23,4	0,97	23,4	0,97	23,4	0,97	23,4	0,97	23,4	0,98	23,4	0,98	23,4	0,98	23,4	0,98	23,4
0,97	22,1	0,98	22,1	0,98	22,1	0,98	22,1	0,99	22,1	0,99	22,1	0,99	22,1	0,99	22,1	0,99	22,1	0,99	22,1
0,98	20,7	0,99	20,7	0,99	20,7	1,00	20,7	1,00	20,7	1,00	20,7	1,00	20,7	1,00	20,7	1,00	20,7	1,00	20,7
0,99	19,3	1,00	19,3	1,00	19,3	1,01	19,3	1,01	19,3	1,01	19,3	1,01	19,3	1,01	19,3	1,01	19,3	1,01	19,3
1,00	17,8	1,01	17,9	1,01	17,9	1,01	17,9	1,01	17,9	1,02	17,9	1,02	17,9	1,02	17,9	1,02	17,9	1,02	17,9
1,01	16,3	1,01	16,3	1,02	16,4	1,02	16,4	1,02	16,4	1,02	16,4	1,02	16,4	1,02	16,4	1,02	16,4	1,02	16,4
1,01	14,8	1,02	14,8	1,02	14,8	1,02	14,8	1,02	14,8	1,02	14,8	1,02	14,8	1,03	14,8	1,03	14,8	1,03	14,8
1,01	13,2	1,02	13,2	1,02	13,2	1,02	13,2	1,02	13,2	1,03	13,2	1,03	13,2	1,03	13,2	1,03	13,2	1,03	13,2
1,02	11,5	1,02	11,5	1,02	11,5	1,02	11,5	1,02	11,5	1,03	11,5	1,03	11,5	1,03	11,5	1,03	11,5	1,03	11,5
1,02	9,7	1,02	9,7	1,02	9,8	1,02	9,8	1,02	9,8	1,02	9,8	1,02	9,8	1,02	9,8	1,03	9,8	1,03	9,8
1,01	7,9	1,02	7,9	1,02	7,9	1,02	7,9	1,02	7,9	1,02	7,9	1,02	8,0	1,02	8,0	1,02	8,0	1,02	8,0
1,01	6,0	1,01	6,0	1,01	6,0	1,01	6,0	1,02	6,0	1,02	6,0	1,02	6,0	1,02	6,0	1,02	6,0	1,02	6,1
1,01	4,0	1,01	4,0	1,01	4,0	1,01	4,0	1,01	4,0	1,01	4,0	1,01	4,0	1,01	4,0	1,01	4,0	1,01	4,0
1,00	1,8	1,00	1,9	1,00	1,9	1,00	1,9	1,00	1,9	1,00	1,9	1,00	1,9	1,00	1,9	1,00	1,9	1,00	1,9

Tabela 11 – Perfil de temperaturas ao longo do tubo para R410A

									R410A:	m (kg/h)								
$D_c = 1$	20 mm	$D_c =$	60 mm	$D_c = 1$	00 mm	$D_c = 1$	40 mm	$D_c = 1$	180 mm	$D_c = 2$	20 mm	$D_c = 2$	260 mm	$D_c = 3$	300 mm	$D_c = 3$	340 mm	$D_c = 3$	380 mm
z (m)	T (°C)	z (m)	T (°C)	z (m)	T (°C)	z (m)	T (°C)	z (m)	T (°C)	z (m)	T (°C)	z (m)	T (°C)	z (m)	T (°C)	z (m)	T (°C)	z (m)	T (°C)
0,00	40,0	0,00	40,0	0,00	40,0	0,00	40,0	0,00	40,0	0,00	40,0	0,00	40,0	0,00	40,0	0,00	40,0	0,00	40,0
0,33	40,0	0,34	40,0	0,34	40,0	0,34	40,0	0,34	40,0	0,34	40,0	0,34	40,0	0,34	40,0	0,34	40,0	0,34	40,0
0,39	39,1	0,40	39,1	0,39	39,1	0,40	39,1	0,39	39,2	0,40	39,1	0,40	39,2	0,40	39,2	0,40	39,2	0,40	39,2
0,45	38,2	0,45	38,2	0,45	38,3	0,45	38,3	0,45	38,3	0,45	38,3	0,45	38,3	0,45	38,3	0,45	38,3	0,45	38,3
0,50	37,3	0,50	37,4	0,50	37,4	0,50	37,4	0,50	37,5	0,50	37,4	0,50	37,4	0,50	37,4	0,50	37,4	0,50	37,4
0,55	36,4	0,55	36,4	0,55	36,5	0,55	36,5	0,54	36,6	0,55	36,5	0,55	36,5	0,55	36,5	0,55	36,6	0,55	36,6
0,59	35,5	0,59	35,5	0,59	35,6	0,59	35,6	0,58	35,8	0,59	35,6	0,59	35,6	0,59	35,6	0,59	35,7	0,59	35,7
0,63	34,5	0,63	34,6	0,63	34,7	0,63	34,7	0,62	34,9	0,63	34,7	0,63	34,7	0,63	34,7	0,63	34,8	0,63	34,8
0,67	33,6	0,67	33,6	0,67	33,8	0,67	33,8	0,66	34,0	0,67	33,8	0,67	33,8	0,67	33,8	0,67	33,9	0,67	33,8
0,70	32,6	0,71	32,6	0,70	32,8	0,70	32,8	0,70	33,1	0,70	32,8	0,70	32,8	0,70	32,9	0,70	32,9	0,70	32,9
0,73	31,6	0,74	31,7	0,74	31,8	0,74	31,8	0,73	32,2	0,74	31,9	0,74	31,9	0,74	31,9	0,74	32,0	0,74	31,9
0,76	30,6	0,77	30,6	0,77	30,8	0,77	30,8	0,76	31,2	0,77	30,9	0,77	30,9	0,77	30,9	0,77	31,0	0,77	31,0
0,79	29,5	0,80	29,6	0,79	29,8	0,79	29,8	0,78	30,2	0,79	29,9	0,80	29,9	0,80	29,9	0,79	30,0	0,79	30,0
0,82	28,5	0,82	28,6	0,82	28,8	0,82	28,8	0,81	29,3	0,82	28,8	0,82	28,9	0,82	28,9	0,82	29,0	0,82	29,0
0,84	27,4	0,85	27,5	0,84	27,7	0,84	27,8	0,83	28,3	0,84	27,8	0,84	27,8	0,84	27,8	0,84	28,0	0,84	27,9
0,86	26,3	0,87	26,4	0,86	26,7	0,86	26,7	0,86	27,2	0,87	26,7	0,87	26,8	0,87	26,8	0,86	26,9	0,87	26,9
0,88	25,2	0,89	25,3	0,88	25,6	0,88	25,6	0,88	26,2	0,89	25,6	0,89	25,7	0,89	25,7	0,88	25,8	0,89	25,8
0,90	24,0	0,90	24,1	0,90	24,5	0,90	24,5	0,89	25,1	0,90	24,5	0,90	24,6	0,90	24,6	0,90	24,7	0,90	24,7
0,92	22,8	0,92	22,9	0,92	23,3	0,92	23,3	0,91	24,0	0,92	23,4	0,92	23,4	0,92	23,4	0,92	23,6	0,92	23,6
0,93	21,6	0,94	21,7	0,93	22,1	0,93	22,2	0,93	22,9	0,93	22,2	0,93	22,3	0,93	22,3	0,93	22,5	0,93	22,4
0,94	20,3	0,95	20,5	0,95	20,9	0,95	21,0	0,94	21,8	0,95	21,0	0,95	21,1	0,95	21,1	0,95	21,3	0,95	21,2
0,96	19,1	0,96	19,2	0,96	19,7	0,96	19,7	0,95	20,6	0,96	19,8	0,96	19,8	0,96	19,9	0,96	20,1	0,96	20,0
0,97	17,8	0,97	17,9	0,97	18,4	0,97	18,5	0,96	19,4	0,97	18,6	0,97	18,6	0,97	18,6	0,97	18,9	0,97	18,8
0,98	16,4	0,98	16,6	0,98	17,1	0,98	17,2	0,97	18,2	0,98	17,3	0,98	17,3	0,98	17,3	0,98	17,6	0,98	17,5
0,98	15,0	0,98	15,2	0,98	15,8	0,98	15,8	0,98	17,0	0,98	15,9	0,98	16,0	0,98	16,0	0,98	16,3	0,98	16,2
0,99	13,6	0,99	13,8	0,99	14,4	0,99	14,5	0,99	15,7	0,99	14,6	0,99	14,6	0,99	14,7	0,99	15,0	0,99	14,9
0,99	12,1	0,99	12,3	0,99	13,0	0,99	13,0	0,99	14,3	0,99	13,2	0,99	13,2	0,99	13,3	0,99	13,6	0,99	13,5
1,00	10,6	1,00	10,8	1,00	11,6	1,00	11,6	1,00	13,0	1,00	11,7	1,00	11,8	1,00	11,8	1,00	12,2	1,00	12,0
1,00	9,0	1,00	9,2	1,00	10,0	1,00	10,1	1,00	11,6	1,00	10,2	1,00	10,3	1,00	10,3	1,00	10,7	1,00	10,6
1,00	7,3	1,00	7,6	1,00	8,5	1,00	8,5	1,00	10,1	1,00	8,7	1,00	8,7	1,00	8,8	1,00	9,2	1,00	9,0

5.4. Comprimento de tubo equivalente

A quarta e última série de cálculos realizada pelas rotinas matemáticas foi a obtenção do comprimento total de tubo capilar necessária para atender determinada condição de operação, variando-se o diâmetro de encurvamento. Para isso, fixaramse as seguintes condições de operação:

```
d_i=1,5~mm (diâmetro interno do tubo) T_{cd}=45^{\circ}C (temperatura do fluido no condensador) D_{cd}=10~mm (diâmetro do condensador) \frac{\varepsilon}{d_i}=0,00006 (rugosidade interna relativa do tubo) \dot{m}_{R22}=50,859~kg/h (vazão mássica para R22) \dot{m}_{R407C}=53,321~kg/h (vazão mássica para R407C) \dot{m}_{R410A}=67,375~kg/h (vazão mássica para R410A)
```

Os resultados obtidos foram colocados na tabela 12 a seguir:

Tabela 12 – Comprimentos necessários para diferentes diâmetros de encurvamento

D ()	L (m)								
D_c (mm)	R410A	R407C	R22						
50,0	0,917	0,919	0,920						
59,0	0,927	0,929	0,930						
68,0	0,936	0,937	0,938						
77,1	0,944	0,945	0,946						
86,1	0,951	0,952	0,952						
95,1	0,957	0,958	0,958						
104,1	0,962	0,963	0,963						
113,1	0,967	0,968	0,968						
122,1	0,972	0,972	0,973						
131,2	0,976	0,976	0,977						
140,2	0,980	0,980	0,980						
149,2	0,983	0,984	0,984						
158,2	0,987	0,987	0,987						
167,2	0,990	0,990	0,990						
176,3	0,993	0,993	0,993						
185,3	0,996	0,996	0,996						
194,3	0,998	0,998	0,998						
203,3	1,001	1,001	1,001						
212,3	1,003	1,003	1,003						
221,3	1,006	1,005	1,005						
230,4	1,008	1,008	1,007						
239,4	1,010	1,010	1,009						
248,4	1,012	1,012	1,011						
257,4	1,014	1,014	1,013						
266,4	1,016	1,015	1,015						
275,5	1,018	1,017	1,017						

D ()		L (m)	
D_c (mm)	R410A	R407C	R22
284,5	1,019	1,019	1,018
293,5	1,021	1,020	1,020
302,5	1,023	1,022	1,021
311,5	1,024	1,023	1,023
320,5	1,026	1,025	1,024
329,6	1,027	1,026	1,026
338,6	1,028	1,027	1,027
347,6	1,030	1,029	1,028
356,6	1,031	1,030	1,029
365,6	1,032	1,031	1,031
374,6	1,034	1,032	1,032
383,7	1,035	1,034	1,033
392,7	1,036	1,035	1,034
401,7	1,037	1,036	1,035
410,7	1,038	1,037	1,036
419,7	1,039	1,038	1,037
428,8	1,040	1,039	1,038
437,8	1,041	1,040	1,039
446,8	1,042	1,041	1,040
455,8	1,043	1,042	1,041
464,8	1,044	1,043	1,042
473,8	1,045	1,043	1,042
482,9	1,046	1,044	1,043
491,9	1,047	1,045	1,044
500,0	1,048	1,046	1,045

6. ANÁLISE DOS RESULTADOS

Uma vez dispostos todos os valores calculados através das rotinas matemáticas, pode-se fazer a análise destes resultados visando:

- validação do modelo computacional através da comparação com dados experimentais da literatura;
- determinação dos limites de uso do modelo computacional;
- análise do comportamento do escoamento de fluidos refrigerantes em tubos capilares encurvados de modo geral.

Estes três pontos serão melhor discutidos no capítulo 7 deste trabalho.

6.1. Comparação com valores experimentais – Kim et al. (2002)

Para fins de comparação com os valores medidos da tabela 2, plotaram-se os gráficos da variação da vazão mássica em função do diâmetro de encurvamento e do grau de subresfriamento a partir das tabelas 3, 4 e 5 sobre os pontos medidos por Kim et al. (2002) apud García-Valladares (2006). Tais gráficos encontram-se nas figuras 4, 5 e 6 a seguir, cujos erros citados nas legendas foram calculados conforme:

$$erro = \frac{[(valor\ calculado)\ -\ (valor\ experimental)]}{(valor\ experimental)} \times 100\%$$
 (eq. 6.1)

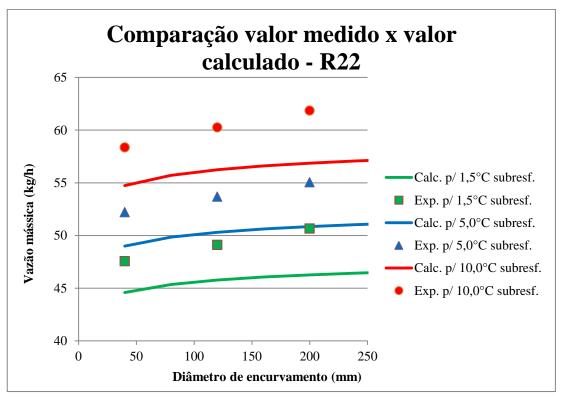


Figura 4 – Variação da vazão mássica em função do diâmetro de encurvamento e do grau de subresfriamento para R22 (erro médio = 7,0%; erro máximo = 8,7%)

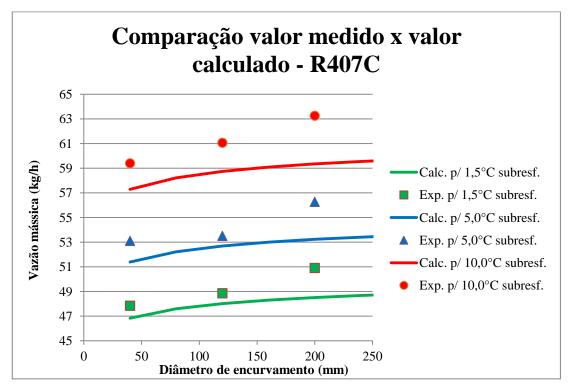


Figura 5 – Variação da vazão mássica em função do diâmetro de encurvamento e do grau de subresfriamento para R22 (erro médio = 3,6%; erro máximo = 6,2%)

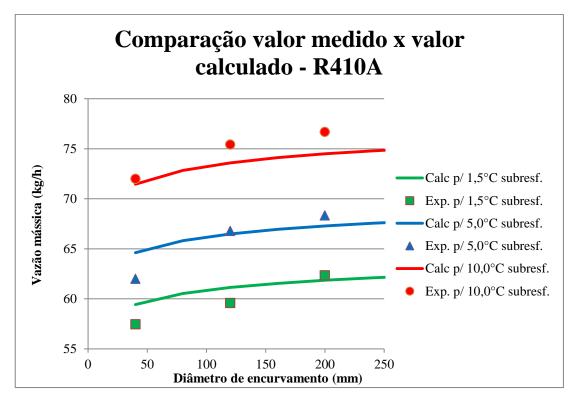


Figura 6 – Variação da vazão mássica em função do diâmetro de encurvamento e do grau de subresfriamento para R22 (erro médio = 0,2%; erro máximo = 2,8%)

A partir das figuras 4, 5 e 6, nota-se que a diferença entre os valores experimentais de Kim et al. (2002) e aqueles encontrados a partir do modelo computacional apresentado por este trabalho são sempre menores que 8,7%. Além disso, observa-se tanto para as curvas plotadas a partir dos valores calculados quanto para os pontos medidos que o comportamento do fluido é o mesmo (vazão estritamente crescente e coeficientes de reta aproximados, conforme tabela 13 a seguir).

fluido	ΔT_{sub}	Coef. ang. exp.	Coef. ang. calc.	Diferença
R22	1,5°C	0,0193	0,0080	-0,0113
	5,0°C	0,0178	0,0089	-0,0089
	10,0°C	0,0218	0,0102	-0,0116
R407C	1,5°C	0,0191	0,0080	-0,0111
	5,0°C	0,0198	0,0088	-0,0110
	10,0°C	0,0241	0,0099	-0,0142
R410A	1,5°C	0,0306	0,0117	-0,0189
	5,0°C	0,0396	0,0129	-0,0267
	10.0°C	0.0292	0.0146	-0.0146

Tabela 13 – Coeficientes angulares das linhas de tendência para os valores calculados e os medidos

6.2. Efeito do encurvamento

Extrapolando-se agora o cálculo até o diâmetro de encurvamento de 400 mm, e para o grau de subresfriamento de 1,0 até 11,5°C, plotam-se os gráficos das figuras 7, 8 e 9 a seguir a partir das tabelas 3, 4 e 5 de modo a fornecer uma melhor visão do comportamento do escoamento em tubos encurvados e da qualidade dos dados gerados a partir das rotinas matemáticas:

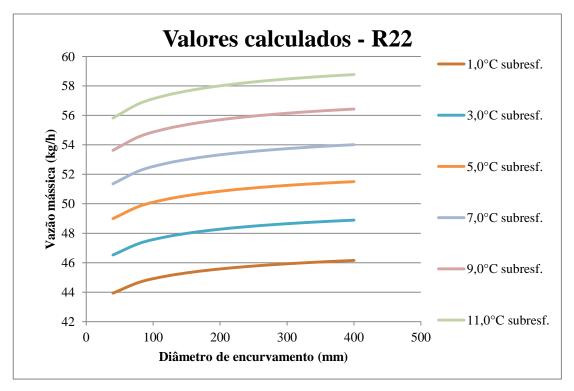


Figura 7 – Comportamento para R22 para diferentes diâmetros de encurvamento e diferentes graus de subresfriamento

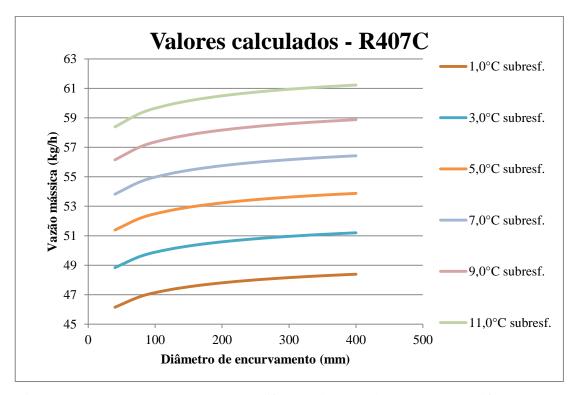


Figura 8 – Comportamento para R407C para diferentes diâmetros de encurvamento e diferentes graus de subresfriamento

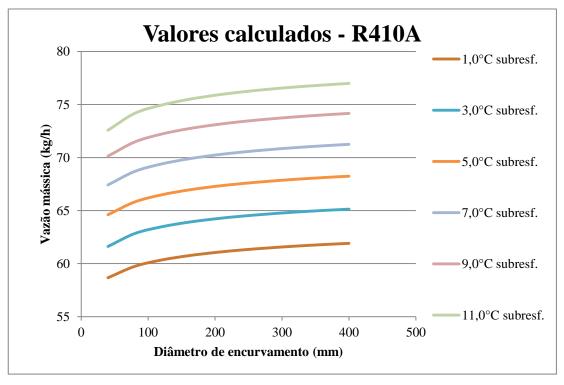


Figura 9 – Comportamento do R410A para diferentes diâmetros de encurvamento e diferentes graus de subresfriamento

Nota-se a partir dos gráficos das figuras 7, 8 e 9 que todas as curvas de vazão em função do diâmetro de encurvamento possuem um comportamento crescente logarítmico à medida que se aumenta o diâmetro de encurvamento. No entanto, é de se esperar que exista um valor limite para quando se calcula com D_c tendendo ao infinito, uma vez que este caso se aproximaria cada vez mais de um tubo retilíneo.

Além disso, nota-se que para valores maiores de grau de subresfriamento, a vazão mássica é maior.

6.3. D_c tendendo ao infinito

Também para fins de análise da qualidade dos dados gerados a partir das rotinas matemáticas, extrapolam-se ainda mais as curvas, agora para valores de diâmetro de encurvamento além de 400 mm, chegando até 10 m. Observe os gráficos das figuras 10, 11 e 12 plotados a partir das tabelas 3, 4 e 5 a seguir:

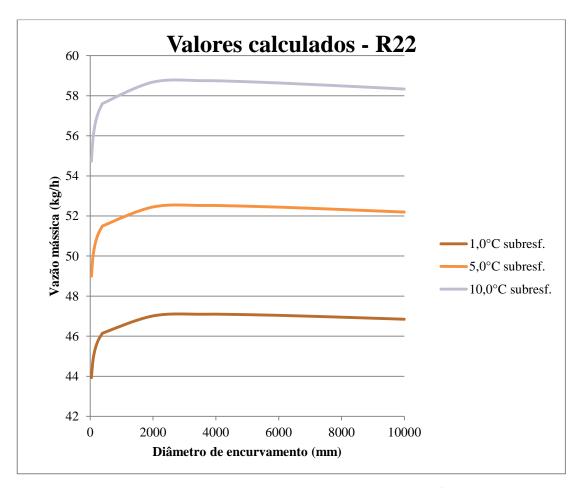


Figura 10 – Comportamento de R22 com D_c tendendo ao infinito

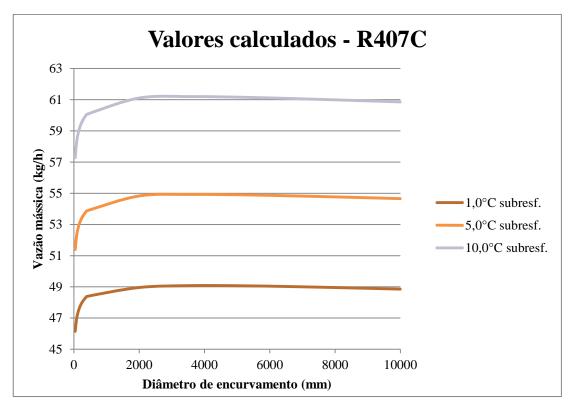


Figura 11 – Comportamento de R407C com $\boldsymbol{D_c}$ tendendo ao infinito

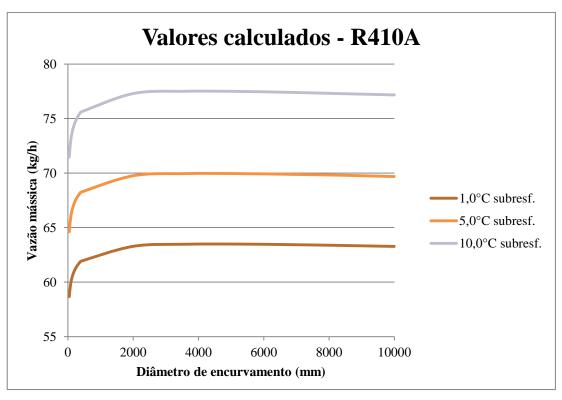


Figura 12 – Comportamento de R410A com $\boldsymbol{D_c}$ tendendo ao infinito

A partir da análise dos gráficos mostrados nas figuras 10, 11 e 12, observa-se um inesperado comportamento decrescente das curvas a partir de valores de diâmetro de 3 m.

6.4. Efeito da temperatura de condensação

De maneira análoga à apresentada no item 6.2 deste trabalho, pode-se analisar o efeito da variação da temperatura de condensação em conjunto com a variação do diâmetro de encurvamento. Plotam-se os gráficos das figuras 13, 14 e 15 a partir dos valores das tabelas 6, 7 e 8:

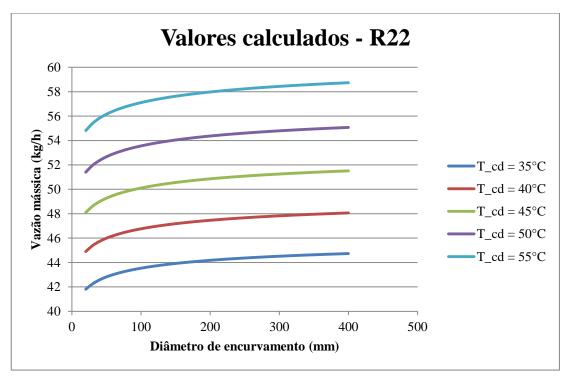


Figura 13 – Comportamento do R22 para diferentes diâmetros de encurvamento e diferentes temperaturas de condensação

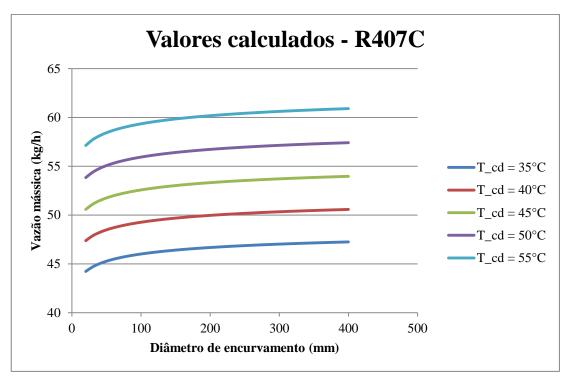


Figura 14 – Comportamento do R407C para diferentes diâmetros de encurvamento e diferentes temperaturas de condensação

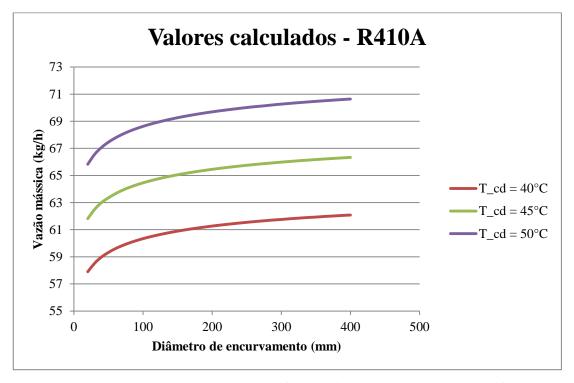


Figura 15 – Comportamento do R410A para diferentes diâmetros de encurvamento e diferentes temperaturas de condensação

Novamente, observa-se que o efeito do encurvamento sobre o escoamento para determinada temperatura de condensação é crescente à medida que se aumenta o diâmetro, de maneira logarítmica. Além disso, nota-se que quanto maior a temperatura de condensação, maior é a vazão mássica.

6.5. Perfil de temperaturas

A partir dos dados das tabelas 9, 10 e 11 pode-se plotar os gráficos das figuras 16, 17 e 18 a seguir:

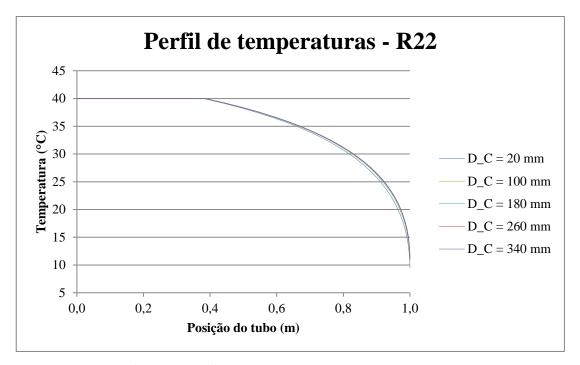


Figura 16 – Perfil de temperaturas ao longo do tubo para R22

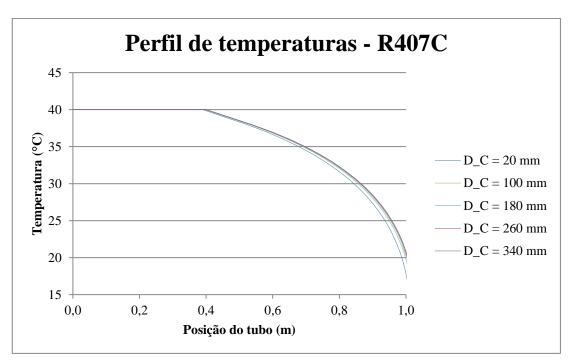


Figura 17 – Perfil de temperaturas ao longo do tubo para R407C

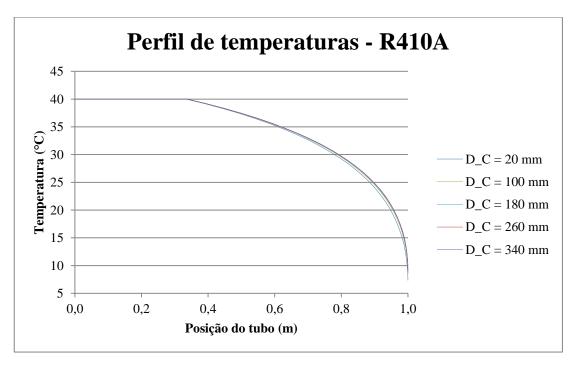


Figura 18 – Perfil de temperaturas ao longo do tubo para R410A

De modo geral, observa-se para as curvas apresentadas nas figuras 16, 17 e 18 que o comportamento do perfil de temperaturas é estritamente decrescente ao longo do tubo capilar, e que as temperaturas são maiores quanto maior for o diâmetro de

encurvamento. A fim de melhor observar as curvas, desenhou-se também um detalhe da região de transição entre escoamento monofásico e escoamento bifásico (figuras 19, 20 e 21):

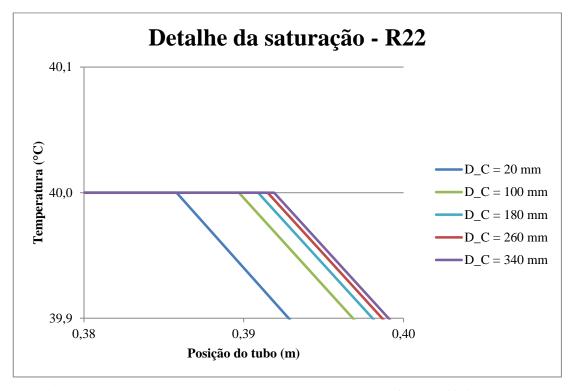


Figura 19 – Detalhe da região de transição entre escoamento monofásico e bifásico para R22

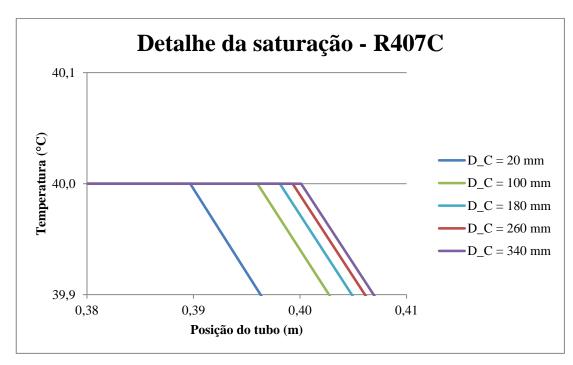


Figura 20 – Detalhe da região de transição entre escoamento monofásico e bifásico para R407C

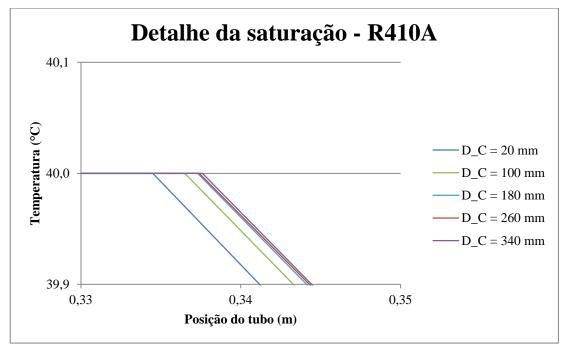


Figura 21 – Detalhe da região de transição entre escoamento monofásico e bifásico para R410A

A partir dos gráficos apresentados nas figuras 19, 20 e 21, observa-se que o ponto de transição entre escoamentos monofásico e bifásico ocorre mais cedo quanto menor for o diâmetro de encurvamento do tubo capilar.

6.6. Comprimento de tubo equivalente

Elaborados os cálculos que resultaram na tabela 12, pode-se desenhar as curvas que representam qual comprimento deve ter o tubo para que os efeitos sobre o escoamento sejam equivalentes a de um outro par $L \times D_c$ da mesma curva. Observe as figuras 22, 23 e 24 a seguir:

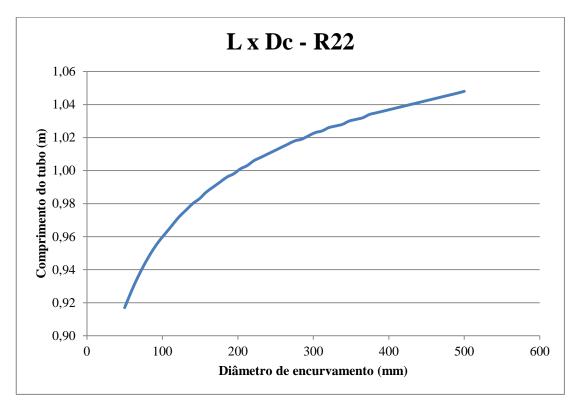


Figura 22 – Relação entre \boldsymbol{L} e $\boldsymbol{D_c}$ para R22

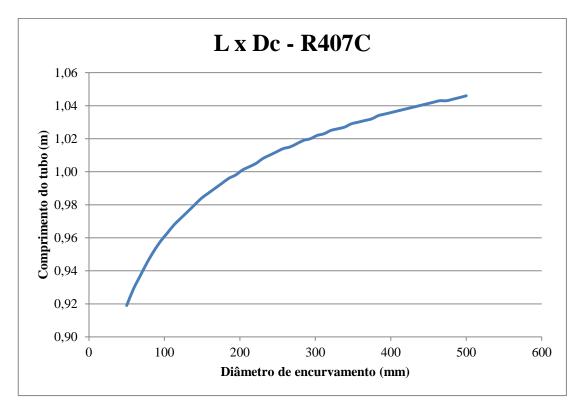


Figura 23 – Relação entre \boldsymbol{L} e $\boldsymbol{D_c}$ para R407C

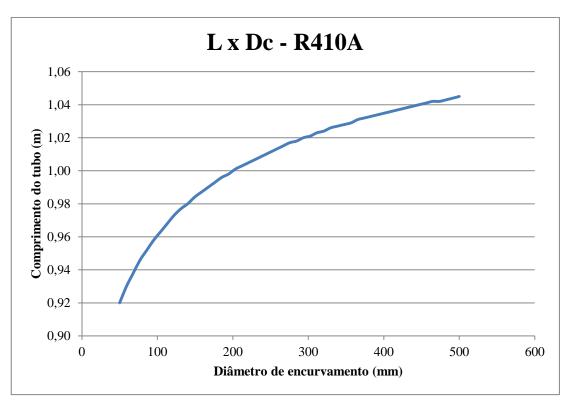


Figura 24 – Relação entre \boldsymbol{L} e $\boldsymbol{D_c}$ para R410A

Nota-se a partir das figuras 22, 23 e 24 que quanto maior for o diâmetro de encurvamento, maior deverá ser o comprimento do tubo de modo a operar sob as mesmas condições.

7. CONCLUSÕES

Ao compararem-se os resultados obtidos pelo modelo matemático aplicado à rotina computacional do EES com os resultados experimentais apresentados na tabela 2 deste trabalho, nota-se que existem desvios entre os valores encontrados e aqueles esperados. No entanto, estes desvios mostraram-se pequenos (menores que 8,7% com relação à diferença pontual de vazão mássica e um desvio no coeficiente angular das retas que aproximam o trecho estudado menor que 0,026), indicando que o modelo computacional representa bem o fenômeno estudado.

No entanto, a literatura carece de dados experimentais para que o modelo possa ser efetivamente validado, havendo ainda a necessidade de se testar novos fluidos, geometrias e condições de contorno.

Com relação às tendências apresentadas pelas curvas mostradas nos itens 6.2, 6.4, 6.5 e 6.6, todas corresponderam ao esperado, feita uma análise prévia:

- A vazão mássica tende a aumentar conforme se eleva o diâmetro de encurvamento, pois a intensidade com que ocorrem escoamentos secundários gerados pelas forças centrífugas diminui, gerando menor perda de pressão do fluido.
 - Isto pode ser observado através da análise da equação 2.1.7, à medida que o fator de atrito diminui com o aumento do diâmetro;
- A vazão mássica aumenta também com o aumento dos valores de grau de subresfriamento e de temperatura de condensação.
 - Estas duas situações têm o mesmo efeito sobre o escoamento, uma vez que causam um maior distanciamento da situação de saturação, e portanto, diminui o trecho do tubo em que o escoamento está sujeito a grandes perdas de pressão;
- É natural que a perda de pressão no trecho monofásico seja mais intensa para menores diâmetros de encurvamento, e que assim, nestes casos a saturação seja atingida antes;
- Uma vez atingida a região de saturação, também é natural que com a redução da pressão ocorra uma queda na temperatura do fluido;

 Por fim, para menores diâmetros de encurvamento, e consequentemente, maiores coeficientes de atrito e maiores perdas de pressão, é justificável que seja necessário um menor comprimento de tubo para satisfazer as mesmas condições de operação (mesma vazão mássica).

A respeito das curvas apresentadas pelas figuras 10, 11 e 12, nas quais ocorre uma queda da vazão mássica a partir de valores maiores que 3 m de diâmetro de encurvamento, tal redução deve ser desconsiderada, tratando-se de resultado de erros numéricos ocorridos quando se realizam simulações com grande variação entre o algarismo mais significativo e o menos significativo de uma mesma variável. Uma vez que os efeitos do encurvamento tornam-se menor à medida que o diâmetro aumenta, recomenda-se que se utilize o máximo valor calculado para a vazão mássica dentro do domínio de diâmetros de encurvamento utilizado (aproximadamente $D_c = 3m$), podendo-se assim considerar este como o valor para tubo capilar retilíneo.

Para que este trabalho tenha continuidade, necessita-se de novos trabalhos empíricos na área a fim de preencher as lacunas existentes, o que impossibilita a efetiva validação do modelo experimentalmente.

8. REFERÊNCIAS BIBLIOGRÁFICAS

Chingulpitak, S.; Wongwises, S.; Two-phase flow model of refrigerants flowing through helically coiled capillary tubes. Applied Thermal Engineering 30 (2010) pp. 1927–1936.

Duckler, A. E.; Wicks, M.; Cleveland, R. G.; Frictional Pressure Drop in Two-phase Flow - Parts A and B. AIChE Journal, vol. 10 n°. 1, pp. 38-51, 1964.

EES. EES Engineering Equation Solver Software User's Guide, F-Chart Software, 1997.

Fiorelli, F. A. S.; Análise do escoamento de fluidos refrigerantes alternativos ao HCFC 22 em tubos capilares adiabáticos. Tese de doutorado. Universidade de São Paulo. Escola Politécnica. São Paulo, 2000. 183 pp.

García-Valladares, O.; Numerical simulation and experimental validation of coiled adiabatic capillary tubes; Applied Thermal Engineering 27 (2007) pp.1062–1071.

Hernandez Neto, A.; Tribess, A.; Volpe, E. V.; Fiorelli, F. A. S.; Máquinas térmicas: experiências de laboratório. 6^a ed. Universidade de São Paulo – Escola Politécnica – Departamento de Engenharia Mecânica. São Paulo, 2009.

Ito, H.; Friction factors for turbulent flow in curved pipes; J. Basic Eng. (1959) pp. 123–134.

McAdams, W. H.;, Wood, W. K., Bryan, R. L.; Vaporization inside horizontal tubes. II, Benzence-oil mixture. Transaction ASME 64 (1942) 193.

Mori, Y., Nakayama, W., Study on forced convective heat transfer in curve pipes II. International Journal of Heat and Mass Transfer 10 (1967), pp. 37–59.

NIST. NIST Thermodynamics Properties of Refrigerants and Refrigerant Mixtures Database (REFPROP) – Version 5.0 – User Guide, National Institute of Standards and Technology, U.S. Dept. of Commerce, Gaithersburg, 1996.

Park, C.; Lee, S.; Kang, H.; Kim, Y.; Experimentation and modeling of refrigerant flow through coiled capillary tubes; International Journal of Refrigeration, xx (2007); pp. 1–8.

Stoecker, W. F.; Jones, J. W.; Refrigeração e Ar Condicionado. McGraw-Hill, São Paulo, 1985.

Wei, C.; Lin, Y.; Wang, C.; A Performance Comparison Between Coiled and Straight Capillary Tubes; Heat Transfer Engineering 21:2 (2000); pp.62–66.

Whalley, P. B.; Two-Phase Flow And Heat Transfer; 1996, 96 pp.

Zhou, G.; Zhang, Y.; Performance of a split-type air conditioner matched with coiled adiabatic capillary tubes using HCFC22 and HC290. Applied Energy 87 (2010) pp. 1522–1528.