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FIGURE 5.5
Logic unit.
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(d) 8-bit logic unit
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An arithmetic-logic unit (ALU) performs the basic arithmetic and logic
operations in a microprocessor. Its arithmetic operations include, for
example, addition, subtraction, increment, and decrement, and its logic
operations include AND, OR, identity, and complement operations.
Since all the arithmetic operations are based on addition, we can de-
sign an ALU simply by modifying the inputs of a ripple-carry or CLA
adder. The modifying logic used for arithmetic operations is sometimes
called an arithmetic extender (AE), and the modifying logic used for
logic operations is called a logic extender (LE). Either one or both of
these extenders is connected to the input of the adder, as indicated by the
dashed lines in Figure 5.6. We now show how to design these extenders
one at a time. ‘
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FIGURE 5.6
4-bit adder with arithmetic (AE) and logic (LE) extenders.

Since our ALU is to perform four arithmetic and four logic op-
erations, we need to introduce a mode control variable M, which will
select either arithmetic or logic operations in such a way that whenever
M = 1, the ALU will perform arithmetic operations, and whenever
M =0, it will perform logic operations. We also need to use two select
variables, S1 and Sp, which will enable us to select any one of the four
arithmetic or four logic operations. The values assigned to S$; and So
for each arithmetic operation are summarized in the functional table in
Figure 5.7(a).

As you can see, this table also shows the value of the ALU output
F, as well as the values for the adder inputs X, Y, and ¢y which are
required to achieve that value of F. Note that according to this table,
the X input of the adder always requires the value of A, while the Y
input can require all 1'’s, B, B’, or all 0’s. These values for the Y input
will be generated by the AE, the truth table for which has been shown
in Figure 5.7(b). This table was obtained from the functional table in
Figure 5.7(a) simply by expanding column Y into columns b; and y;. In
Figure 5.7(c) we show the map representation of the AE, from which
we can see that its Boolean expression would be

yi = MS,b; + MS,pb)

Finally, the logic schematic of this AE is shown in Figure 5.7(d).
Having shown the procedure for designing an AE, we can now turn

to the design of a LE, which starts with the functional table describing its

operations, as shown in Figure 5.8(a). From this table you can see that
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M S So | FUNCTONNAME F. .« X ¥ - ¢

it 0 0 Decrement A-1 A alll’s 0

1 0 1 Add A+B A B 0

1 1 0 Subtract A+B+1 A B 1

71 1 1 Increment A+1_ A all0s 1
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FIGURE 5.7
Arithmetic extender.

the Y and ¢ inputs always require a value of 0 for any one of the logic
operations, whereas the X input requires a different Boolean expression
for each of these operations. On the basis of this functional table, we are
able to develop a truth table for the LE, which is shown in Figure 5.8(b),
and its map representation, which is presented in Figure 5.8(c). From
this map representation we are able to derive the following Boolean
expression to describe the LE:

X; = M’S{S{,aﬁ + M’'S1Sob; + Soa;b; + Sia; + Ma;

Having obtained this expression, we then proceed to construct the logic
schematic for the LE, shown in Figure 5.8(d).

At this point we have obtained logic schematics for both the AE
and the LE, and our next task is to connect them with an adder, thus
forming a complete arithmetic-logic unit like the 4-bit ALU shown in
Figure 5.9(a). Note that in the ALU, the logic operations are performed
in the logic extender, and the FAs are used to pass the LE’s results
without change. In other words, the FAs are used as connections that
have a fixed delay.
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Logic extender.

Note also that the carry-out of the most significant bit represents
an overflow in the case of unsigned arithmetic and that the EX-OR
of the carry-outs of the two most significant bits represents the over-
flow in the case of 2’s-complement arithmetic. If necessary, the 4-
bit ALU shown in Figure 5.9(a) can be extended into an n-bit ALU,
by using an rn-bit adder in conjunction with n AEs and n LEs. The
graphic symbol for such an ALU has been shown in Figure 5.9(b).
In the industry, most ALUs used in real products are constructed in
this fashion, except that they can differ in the type and number of
their arithmetic and logic operations and in the implementation of their
carry chains.
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FIGURE 359
Final ALU design.

5.6 DECODERS

Decoders (sometimes also called demultiplexers) are frequently in-
corporated into larger units for use whenever we need to activate or
enable only one of n subcomponents. In such a case, each subcom-
ponent can be assigned an index between 0 and n — 1 which is rep-
resented by a binary address A. To activate a particular subcompo-
nent at any ‘given time, this address A is decoded into » enable lines,
out of which only one line is equal to 1. In general, an m-to-n de-
N coder has m = log, n input lines, An-1,..., Ao, and n output lines,




