
Uncertainty and information
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1 - Ignorance, uncertainty, distortion, inaccuracy,

vagueness, etc.

• Practical AI systems are constrained to deal with imperfect

knowledge and are thus said to reason approximately under

conditions of ingnorance

• The concept of uncertainty can be understood in the context

of ignorance.

• A taxonomy of ignorance was created by Smithson a.

aM. Smithson, Ignorance and uncertainty: Emerging Paradigms. Springer-

Verlag. New York 1989.
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2 - The taxonomy are not well established

• According to Philippe Smets imprecision, inconsistency and

uncertainty are imperfect information types.

• Imprecision and inconsistency are properties related to the

content of of the statement, i.e., they are properties of the

information.

• Uncertainty is a property that results from a lack of

information about the world for deciding if the statement is

true or false, i.e., it is a property between the information and

our knowledge about the world.
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3 - Imprecision x Uncertainty

• John has at least two children am I am sure about it. Number

of children is imprecise but certain.

• John has three children but I am not sure about it. Number of

children is precise but uncertain.
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4 - Uncertainty x Information

According to George Klir:

• Uncertainty: result of some information deficiency

• Information: uncertainty reduction.
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A fully operation theory requires:

• First level: appropriate mathematical representation of the

conceived type of uncertainty.

• Second level: a calculus for manipulation.

• Third level: a meaningful way of measuring relevant

uncertainty.

• Fourth level: development of a methodology for making

uncertainty principles operational within the theory.
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5 - Precise and Imprecise probabilities

• Precise Probability:

– events are required to be disjoint,

– probability o each event is required to be expressed by a

real number in the unit interval [0,1].

• Imprecise Probability:

– In practice, precise probability is dificult to meet.

– Unavoidable measurement errors, insufficient statistical

information, missing data, conflicting evidence might arise.

– In particular, in many situations we are dependent on

subjective human judgments.
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6 - Imprecise probabilities: are they real ?

• The first throughout study of imprecise probability was taken

by Peter Walley a (1991).

• The main result: reasoning and decision making based on

imprecise probabilities satisfy the principle of coherence and

avoidance of sure loss, which are generally viewed as principles

of rationality.

• Hence, the requirement of precision (or equivalently, the

additivity axiom) cannot be justified as inevitable for

rationality.

aPeter Walley, Statistical reasoning with imprecise probabilities, Chapman-Hall,

1991.

9



7 - The Quantification of Imprecision: Fuzzy Sets

• In the classical theory, sets are crisp in the sense that one

element belongs to it or is excluded from it.

• Zadeh (1965) introduced the idea of fuzzy sets.

• Fuzziness is a property related to the use of vague predicates

like:

– John is Tall.

In this case, we want to express the degree of membership of

the element x = height of John in the fuzzy set A = Tall.

• The function µA(x) specifies the degree of membership of the

element x in the fuzzy set A.
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• In this framework, new concepts like: fuzzy numbers (several,

few), fuzzy quantifiers (most), fuzzy predicates (tall), linguistic

hedges (very), can be formalised.

• Classical set operators like union, intersection and negation

have been generalised:

– Union: µA∪B(x) = max(µA(x), µB(x)).

– Intersection: µA∩B(x) = min(µA(x), µB(x)).

– Negation: µA(x) = 1 − µA(x).
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8 - The Quantification of Uncertainty: Sugeno’s

Fuzzy Measures

• Another concept developed by Sugeno (1977) received the

label fuzzy.

• Sugeno studied functions that express uncertainty with a

statement

x belongs to S,

where S is a crisp set and x is a particular arbitrary element of

the universe Ω.

• The fuzzy measure is a function

g : 2Ω → [0, 1]. (1)

Where 2Ω is the power set of crisp subsets of the universe Ω.
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• In order to qualify as a fuzzy measure the function g must

have certain properties. The following axioms must be verified:

Axiom 1 (boundary conditions) g(∅) = 0 and g(Ω) = 1.

Axiom 2 (monotonicity) For every, A, B ∈ 2Ω, if A ⊆ B then

g(A) ≤ g(B)

Axiom 3 (continuity) For every sequence Ai ∈ 2Ω | i ∈ N of

subsets of X, if either A1 ⊆ A2 ⊆ . . . or A1 ⊇ A2 ⊇ . . . (i.e. the

sequence is monotonic), then

lim
i→∞

g(Ai) = g( lim
i→∞

Ai) (2)

It is applicable only to an infinite universal set. The axiom

requires that for every infinite sequence A1, A2, . . ., of nested

(monotonic) subsets of X that converge to the set

A = lim
i→∞

Ai. (3)
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• The concept of fuzzy measure fits probability measures,

necessity measures, belief functions, etc.

• It has been called fuzzy measure but should not be confused

with fuzzy sets.
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9 - Belief and Plausibility Measures

• The theory of Belief functions provides one way to use

mathematical probability in subjective judgement.

• It was pioneered by Dempster a (1967) and Shafer b (1976).

• It is a generalisation of the Bayesian theory of subjective

probability.

• When we use Bayesian theory to quantify judgements about a

question, we must assign probabilities to the possible answers

to that question.

• The theory of Belief is more flexible, it allows us to derive

degrees of belief for a question from probabilities for a related

question.

aA.P. Dempster, Upper and lower probabilities induced by a multivalued map-

ping, Annals of mathematical Statistics, 38, 325–339, 1967.
bG. Shafer, A mathematical theory of evidence, Princeton University Press,

1976.
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10 - Basic Probability Assignment

• Let q be a variable and Ω be the set of all possible values of q.

• The propositions can be represented as:

– The value of q is in A, where A ⊆ Ω.

• In the Dempster-Shafer theory, Ω is the frame of discernment.

• In Probability theory, it is necessary to designate the degree of

belief for each one of the elements of Ω.

• In Belief theory, the probability assignment is not made over Ω,

but on the space of all subsets of Ω, which is denoted by 2Ω.

• Let m : 2Ω → [0, 1], be a basic assignment of probability function

such that:

1. m(∅) = 0,
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2.
∑

A⊆2Ω

m(A) = 1. (4)

• m is the degree of evidence that X belongs to the set A.

• (Ω, m) is defined as the body of evidence.

• The following figure illustrates these concepts.
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• A hydraulic analogy is used illustrate the basic probability

assignment.

• m({J, S}) 6= 0 means that there is a belief that can be assigned

to {J, S}, but there is no further evidence for a finer

distribution.
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11 - Where is John’s wallet ?

• John has had a very hectic morning visiting three different

places; L1, L2 and L3. In the afternoon, while driving him to

the train station, he has realised that he lost his wallet, but he

is sure that he let the wallet in one of the three places where

he has been, but does not know where exactly. He has left for

his destiny but asked me to help him find his wallet.

• Knowing that the wallet is on one the three places, our frame

of discernment is Ω = {L1, L2, L3}.

• As John has not informed any other information, like the order

which he visited the places, we are in a complete ignorance

state.

• In this context, the basic probability assignment must be

m({L1, L2, L3}) = 1 and for any other subset A ⊂ Ω we must

have m(A) = 0.
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• In probability theory, the probability assignment would be

P (L1) = 1/3, P (L2) = 1/3, P (L3) = 1/3.

• There must be in this case, assignments to all elements of Ω,

therefore our ignorance must be divided in equal parts. It

would be the same to consider the three places equiprobable.

• After John arrived to his destiny, he phones me saying that he

mentally reconstructed his steps during the morning and he

has 40% belief that he let his wallet on L3.
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• In this case:

– m({L1, L2}) = 0.6,

– m(L3) = 0.4,

– m(A) = 0 for all other subset A ⊂ Ω.

• In the case of probability theory, this would be:

– P (L3) = 0.4,

– P (L1) = 0.3,

– P (L2) = 0.3.
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• A belief measure is a function:

Bel : 2Ω → [0, 1], (5)

which can be defined as:

Bel(A) =
∑

B⊆A

m(B). (6)

• It satisfies axioms 1-3 of fuzzy measures and the following

axiom:

Bel(A1 ∪ A2 ∪ . . . ∪ An) ≥
∑

i

Bel(Ai) −
∑

i<j

Bel(Ai ∩ Aj)

+ . . . + (−1)n+1Bel(A1 ∩ A2 ∩ . . . ∩ An)

(7)

for every n ∈ N and every collection of subsets of X.

• m(A) gives the direct evidence support of A, Bel(A) is total

support, direct and indirect, of A.
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• A plausibility measure is a function

Pl : 2Ω → [0, 1], (8)

which can be defined as:

Pl(A) =
∑

B∩A6=∅

m(B). (9)

• It satisfies the axioms 1-3 and the following axiom:

Pl(A1 ∩ A2 ∩ . . . ∩ An) ≥
∑

i

Pl(Ai) −
∑

i<j

Pl(Ai ∪ Aj)

+ . . . + (−1)n+1Pl(A1 ∪ A2 ∪ . . . ∪ An)

(10)

for every n ∈ N and every collection of subsets of X.

• The plausibility measure is the sum of all basic probability

assignment of all subsets with non null intersection with A.

• Therefore, it measures the maximum belief that can be

credited to A.
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12 - Some properties

• It is easy to note that Pl(A) ≥ Bel(A).

• Similarly, Bel(¬A) indicates the total support to ¬A and Pl(¬A)

measures the plasubility of ¬A.

• As Belief and Plausibility functions are dual measures then:

– Pl(A) = 1 − Bel(¬A),

– Bel(A) = 1 − Pl(¬A).

• This can be represented by the following figure.
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13 - Combining Evidences

• Evidences from two different independent sources inside the

same frame of discernment Ω can be combined

• Dempster’s Rule of Combination:

m1,2(A) =

∑

B∩C=A m1(B)m2(C)

1 − K
(11)

for A 6= ∅, where

K =
∑

B∩C=∅

m1(B)m2(C). (12)

• This can be illustrated by the following figure.
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14 - Who murdered Karen ?

• Four persons are locked in a room: Bob, Jim, Sally and Karen.

Suddenly, there is a electricity shortage supply and the room

become dark. When the electricity supply is normalised Bob,

Jim and Sally realises that Karen is dead. A police inspector

arrives and concludes that Karen was murdered, and the

murder is one of the three persons.

• After detailed investigation and based on evidences found in

the room, the inspector produces a basic probability

assignment which reflects his beliefs and doubts.
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•

Ω = {B, J, S}

{B} 0.1

{J} 0.2

{S} 0.1

{B, J} 0.1

{B, S} 0.1

{J, S} 0.3

{B, J, S} 0.1

• The functions Bel e Pl derived from these basic probability

assignment are summarised in the following table:
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m1 Bel1 Pl1

{B} 0.1 0.1 0.4

{J} 0.2 0.2 0.7

{S} 0.1 0.1 0.6

{B, J} 0.1 0.4 0.9

{B, S} 0.1 0.3 0.8

{J, S} 0.3 0.6 0.9

{B, J, S} 0.1 1.0 1.0

• It is easy to verify that Jim is the main suspect, but the

hypothesis of Sally being the murderer is very plausible

Pl({S}) = 0.6.

• Later, based on further evidence, information about the dead

and her personal relationships with the suspects, the inspector

builds up another basic probability assignment m2.
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•

m1 : 2Ω → [0, 1]

Ω = {B, J, S}

{B} 0.1

{J} 0.2

{S} 0.1

{B, J} 0.1

{B, S} 0.1

{J, S} 0.3

{B, J, S} 0.1

m2 : 2Ω → [0, 1]

Ω = {B, J, S}

{B} 0.2

{J} 0.1

{S} 0.05

{B, J} 0.05

{B, S} 0.3

{J, S} 0.1

{B, J, S} 0.2

• Now, using the Dempster’s rule the beliefs of both evidences

can be combined in a new basic probability assignment m12.

• The

following figure illustrates the combination of the two evidences.
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• The results for m12, Bel12, Pl12 are summarised in the following

table.

m12 Bel12 Pl12

{B} 0.225 0.225 0.4

{J} 0.219 0.219 0.485

{S} 0.25 0.25 0.451

{B, J} 0.04 0.515 0.781

{B, S} 0.105 0.549 0.751

{J, S} 0.131 0.6 0.775

{B, J, S} 0.03 1.0 1.0
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15 - The Classical Probability Measure

• When the axiom for belief measures is replaced with a stronger

axiom:

Bel(A ∪ B) = Bel(A) + Bel(B), (13)

whenever A ∩ B = ∅ we obtain a special type of belief measures

the classical probability measures.
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16 - There are many possible interpretations for

probabilities

• The classical theory: as defended by Laplace, assumes the

existence of a fundamental set of equipossible events.

• The relative frequency theory: in this case, probability is

essentially the convergence limit of relative frequencies under

repeated independent trials.

• The subjective (or Bayesian) probability: in this case the

probability measure quantifies the credibility that an event will

occur. It is a subjective, personal measure.
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17 - The Kolmogorov’s axioms

Definition 1 Let Ω be a set of mutually exclusive events.

Definition 2 let F be a set of subsets of Ω such that:

1. Ω ∈ F ,

2. E1,E2 ∈ F ⇒ E1 ∪ E2 ∈ F ,

3. E ∈ F ⇒ ¬E ∈ F .

then F is defined by event algebra related Ω.
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Definition 3 Let Ω, F and a function P which associates a real

number to each E ∈ F If P satisfies the following axioms:

1. P (E) ≥ 0 ∀E ∈ F ,

2. P (Ω) = 1,

3. If E1 e E2 are two subsets with E1 ∩ E2 = ∅ then

P (E1 ∪ E2) = P (E1) + P (E2). The triple (Ω, F, P ) are defined as

probability space, and P is the probability measure of F .
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18 - Some consequences

• According to the third axiom, the probability associated to any

set of events its the sum of probabilities of its disjoint

components.

• Any event event A can be written as (A ∪ B) ∪ (A ∩ ¬B)),

therefore we have:

P (A) = P (A ∪ B) + P (A ∩ ¬B) (14)

.

• This can be extended to n mutually exclusive events

B1, B2, . . . , Bn,

P (A) =
n

∑

i=1

P (A ∪ Bi). (15)

• A direct consequence of this argument is:

P (A) + P (¬A) = 1. (16)
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19 - The Bayesian Theory

• The classical theory, pioneered by J. Neyman, E.S. Pearson e

R.A. Fisher, considers only information obtained by sampling

tohgether with the frequentist concept of probability.

• On the contrary, the subjectivist approach considers that

probabilities are conditioned on prior information.

• Probabilities which are dependent on additional information are

defined as conditional probabilities:

P (E|K) =
P (E, K)

P (K)
. (17)

• If P (A|B) = P (A) then A and B are independent events,

• If P (A|B, C) = P (A|C) then A and B are conditionally

independent on C.
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20 - Thinking axiomatically

• Let (Ω, F, P ) be probability space and E1 ∈ F such that

P (E1) > 0,

• For ∀E2 ∈ F the conditional probability P (E2|E1) can be defined

as:

P (E2|E1) =
P (E2 ∩ E1)

P (E1

. (18)

• Therefore the joint probability can be written as:

P (E2 ∩ E1) = P (E1)P (E2|E1). (19)
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• The probability of an event A can be calculated conditioned on

a mutually exclusive set of events {B1, B2, . . . , Bn}:

P (A) =
n

∑

i=1

P (A|Bi)P (Bi). (20)

• It is possible to write the a posteriori probability as:

P (E2|E1) =
P (E1|E2)P (E2)

P (E1)
. (21)
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21 - Understanding the Bayesian concept in

probabilistic diagrams

• Starting from:

– P (H) = h, P (¬H) = 1 − h,

– P (E|H) = e1/h, P (E|¬H) = e2/(1 − h).

• What does it mean the shadowed area in the figure ?
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– from Ω, it represents P (H ∪ E) = e1/1 = e1.

– from H, i.e., if H is certain then it represents

P (E|H) = e1/h.

– from E, i.e., if E is certain then P (H|E) = e1/(e1 + e2).

• Then a posteriori probability can be written as:

P (H|E) = αP (E|H)P (H). (22)

Where α = P (E) = 1/(e1 + e2) is a normalisation factor.
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22 - The Bayes theorem

• Given the probabilistic space (Ω, F, P ) and a set F of mutually

exclusive events {H1, H2, . . . , Hn} with non null probabilities,

then:

P (Hj |E) =
P (E|Hj)P (Hj)

∑n
i=1

P (E|Hi)P (Hi)
(23)

• This can be summarised in the following figure:
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23 - Bayesian networks

• A Bayesian network is a graphical representation of a

probability distribution.

• Each Bayesian network is comprised of two distinct parts:

1. A directed acyclic graph,

2. a set of probability tables.

• Edges represent direct causal influences between variables, i.e.,

conditional independence.

• it is a parsimonious representation.

• It is possible to infer things like: given that D is true What

state is the most probable state for B or C ?

• This is illustrated in the following example:
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24 - Possibility and Necessity Measures

• Incomplete information such as:

– John’s height is above 1.70m,

implies that any height above 1.70m is possible and any height

equal or below 1.70m is impossible.

• This can be represented by a possibility measure Π(x) defined

on the height domain whose value is:

Π(x) =







0 height < 1.70m

1 height >= 1.70m
(24)

• When the predicate is vague like:

– John is tall,

possibility can admit degrees, the largest the degree the largest

the possibility.
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• Possibility is usually associated with fuzziness, however,

non-fuzzy (crisp) events can admit different degrees of

possibility. Suppose that there is a box where you try to

squeeze soft balls. You can say:

– It is possible to put 20 balls in it, impossible to put 30 balls in

it, quite possible to put 24 balls, but not so possible to put 26

balls, . . .

These degrees of possibility are degrees of realizability and

totally unrelated to any underlying random process.
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A salesman could also forecast about next year sales. He could

say:

– It is possible to sell about 50K, impossible to sell more than

100K, quite possible to sell 70K, hardly possible to sell more

than 90K, . . .

This might express the possible values of sales based on the

sale capacity. On the contrary, he could express what he will

actually sell next year, but this concerns another problem for

which the theories of probability and belief functions are more

adequate.
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25 - Possibility and Necessity Measures: the

definition

• Let Π and N denote a possibility and a necessity measure on

2Ω, respectively. Then,

Π(A ∪ B) = max[Π(A), Π(B)] (25)

and

N(A ∩ B) = min[N(A), N(B)] (26)

for all A, B ∈ 2Ω.

• The necessity and possibility measures are dual measures.

• Let E ⊆ X a certain event, then we can define:

ΠE(A) =







1 A ∩ E 6= ∅

0 A ∪ E = ∅
(27)

ΠE(A) = 1 means that A is a possible event.
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• If A and ¬A are two complementary events then,

max(Π(A), Π(¬A)) = 1. (28)

If two events are complementary at least one of them is

possible.

• Let E ⊆ X a certain event, then we can define:

NE(A) =







1 A ⊆ E

0 A ⊃ E
(29)

NE(A) = 1 means that A is a certain event, i.e., necessarily

true.

• They are related to each other by the equation

N(A) = 1 − Π(¬A), (30)

for all A ∈ 2Ω.
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• Π(A) is the degree of possibility that A is true.

• The necessity of a proposition is the negation of the possibility

of its negation.

• An event is necessary when the occurrence of its negation is

impossible.

• An equivalent argument could be:

min(N(A), N(¬A)) = 0. (31)

Which means that an event and its negation cannot be

necessary simultaneously.

• Using intuition an event must be possible before being

necessary, threfore:

Π(A) ≥ N(A) (32)

• It is easy to note that:

1. N(A) > 0 → Π(A) = 1
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2. Π(A) < 1 → N(A) = 0

• The following figure illustrates the relation between the

necessity and possibility measures:

• Some comments:

– N(A) + N(¬A) ≤ 1,

– Π(A) + Π(A) ≥ 1.

– An event to be considered as something necessary,

N(A) > 0, must be completely possible i.e. Π(A) = 1. As a

consequence, its complementary cannot be something

necessary, i.e. (N(¬A) = 0).

– Similarly, If an event is not completely possible (Π(A) < 1)

then the event is not necessary (N(A) = 0).
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• Every possibility measure Π on P(X) can be uniquely

determined by a possibilistic distribution function:

π : X → [0, 1] (33)

via the formula:

Π(A) = max
x∈A

π(x). (34)
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26 - Possibility x Probability

• Consider the following statement:

– Hans ate X eggs for breakfast, with X ∈ 1, . . . , 8

• We can associate both a possibility distribution (based on our

view o ease which Hans can eat eggs) and a probability

distribution (based on our observations of Hans at breakfast).

• We could have:

u 1 2 3 4 5 6 7 8

ΠX(u) 1 1 1 1 0.8 0.6 04 0.2

PrX(u) 0.1 0.8 0.1 0 0 0 0 0

• So, while is perfectly possible that Hans can eat three eggs for

breakfast, he is unlikely to do so.
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• There is a heuristic connection between possibility and

probability, since if something is impossible it is likely to be

improbable.

• A high degree of possibility does not imply a high degree of

probability, nor a low degree of probability reflect a low degree

of possibility.
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• Let A be a nonfuzzy set of X and v be a variable on X. The

statement ¨v takes its values in A¨ can be viewed as inducing

a possibility distribution π over X associating with each

element x the possibility that x is a value of v:

Π(v = x) = π(x) =







1 if x ∈ A,

0 otherwise
(35)

• Next, assume that A is a fuzzy set that acts as a fuzzy

restriction on the possible value of v. An extension of our

above representation is that A induces a possibility distribution

that is equal to µA on the values of v:

Π(v = x) = π(x) = µA(x). (36)

• Since the expression of a possibility distribution can be viewed

as a fuzzy set, possibility distributions may be manipulated by

the combination rules of fuzzy sets, and more particular of

fuzzy restrictions.
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27 - Relation between fuzziness and possibility

(Fuzzy sets and Systems: Theory and Applications, Didier Dubois,

Henri Prade, p.136-137)

• Note that a fuzzy set and a possibility distribution have a

common mathematical expression, the underlying concepts are

different.

• Zadeh introduced both the concept of fuzzy set (1965) and

the concept of possibility measure (1978).

• The first allows one to describe the grade of membership of a

well-known individual to an ill-defined set.

• The second allows one to describe what are the individuals

that satisfy some ill-defined constraints or that belong to some

ill-defined sets.

• A fuzzy set A can be viewed as a fuzzy value that we assign to

a variable. Viewed as a possibilistic restriciton A is the fuzzy
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set of nonfuzzy values that can be possibly assigned to v.

• For instance, µTall (x) quantifies the membership of a person

with height h to the set of Tall men and πTall(h) quantifies the

possibility that the height of a person is h given the person

belongs to the set of Tall men.
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• Zadeh’s possibilistic principle postulates the following equality:

πTall (h) = µTall (h), ∀h ∈ H, (37)

where H is the set of height.

• The writing is often confusing and would have been better

written as:

π(h|Tall) = µ(Tall |h), ∀h ∈ H, (38)

or still better: If µ(Tall |h) = x then π(h|Tall) = x

• The difference is analogous to the difference between a

probability distribution p(x|θ) (the probability of the observation

x given the hypothesis θ) and a likelihood function l(θ|x (the

likelihood of the hypothesis θ given the observation x).
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28 - The following figure illustrates the states of

knowledge and uncertainty of typical propositions
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