Linear Black Box models

Example: Finite Impulse Response (FIR)

$$y(t) = B(q)u(t) + e(t)$$

= $b_1u(t-1) + ... + b_nu(t-n) + e(t)$

where B(q) is a polynomial in q^{-1} .

The corresponding predictor $\hat{y}(t|\theta) = B(q)u(t)$ is thus based on the following regression vector:

$$\varphi(t) = [u(t-1), u(t-2), \dots, u(t-n)]$$

General family of linear black box models

$$A(q)y(t) = \frac{B(q)}{F(q)}u(t) + \frac{C(q)}{D(q)}e(t)$$

- Box-Jenkins (BJ) model (A = 1);
- ARMAX model (F = D = 1);
- Output-Error (OE) (A = C = D = 1);
- ARX model (F = C = D = 1).

General family of linear black box models

The regressors, i.e., the components of $\varphi(t,\theta)$ are in this general case given by:

- u(t-k) (associated with the B polynomial);
- y(t-k) (associated with the A polynomial);
- $\hat{y}_u(t-k|\theta)$ simulated outputs from past u (associated with the F polynomial);
- $\epsilon(t-k) = y(t-k) \hat{y}(t-k|\theta)$ Prediction errors (associated with the D polynomial);
- $\epsilon_u(t-k) = y(t-k) \hat{y}_u(t-k|\theta)$ simulation errors (associated with the D polynomial).

Nonlinear black-box structures

We have observed inputs u(t) and outputs y(t) from a dynamical system:

$$u^{t} = [u(1), u(2), \dots, u(t)],$$

 $y^{t} = [y(1), y(2), \dots, y(t)].$

We are looking for a relationship between past observations $[u^{t-1}, y^{t-1}]$ and future outputs y(t):

$$y(t) = g(u^{t-1}, y^{t-1}) + v(t),$$

where the additive term v(t) accounts for the fact that the next output y(t) will not be an exact function of past data. v(t) must be very small so $g(u^{t-1}, y^{t-1})$ will be a good approximation.

Nonlinear black box models

Let us parametrize the function g with a finite dimensional parameter vector θ :

$$g(u^{t-1}, y^{t-1}, \theta).$$

g can be written as a concatenation of two mappings:

$$(u^{t-1}, y^{t-1}) \to \varphi(t) \to g(t),$$

$$g(u^{t-1}, y^{t-1}, \theta) = g(\varphi(t), \theta),$$

where

$$\varphi(t) = \varphi(u^{t-1}, y^{t-1}).$$

The general case allows parametrization of $\varphi(t)$:

$$\varphi(t) = \varphi(u^{t-1}, y^{t-1}, \eta).$$

Nonlinear black box models

$$\hat{y}(t|\theta) = g(\varphi(t), \theta),$$

where g is some nonlinear function parametrized by θ and $\varphi(t)$ are similar to regressors. Some types are:

- NFIR models which use u(t-k) as regressors;
- NARX models which use u(t-k) and y(t-k) as regressors;
- NOE models which use u(t-k) and $\hat{y}_u(t-k)$ as regressors;
- NARMAX models which use u(t-k) and y(t-k) and $\epsilon(t-k|\theta)$.

Possibilities of nonlinear mappings

$$g(\varphi,\theta),$$

which for any given heta goes from R^d to R^p and

$$\varphi = (\varphi_1, \dots, \varphi_d)^T.$$

It is natural to think of the parametrized function family as function expansions:

$$g(\varphi, \theta) = \sum \theta_k, g_k(\varphi),$$

where g_k are basis functions (functional basis in some cases).

Some ossibilities for g_k :

- Fourier series, Volterra series, Wavelets,
- Radial Basis Functions, B-splines, Sigmoid Neural Networks, etc.

The limitations of estimators designed with examples: The bias and variance dilemma

- estimators have intrinsic limitations due to their finite representational capacity and the use of finite training data set;
- these limitations are responsible for the generalization errors of the model when it is used with data which was not presented during the learning process.

- Given a data set $\mathcal{D} = \{(x_i, y_i), i = 1, \dots, N\}$, where x is the independent variable and y is the response, obtained by sampling N times the set $X \times Y$ according to a probability distribution P(x, y).
- An *estimator* will be any function $h: X \rightarrow Y$ where the parameters are estimated using \mathcal{D} .
- The mean squared error of the estimator
 h is given by the functional:

$$\mathcal{I}[h] = E[(y - h(x))^2],$$

=
$$\int_{X \times Y} P(x, y)(y - h(x))^2 dx dy,$$

defined as the expected risk .

The expected risk can be decomposed in two parts:

$$\mathcal{I}[h] = E[(h_o(x) - h(x))^2] + E[(y - h_o(x))^2],$$
 where $h_o(x)$ is the regression function $h_0(x) = E[y|x]$.

- It is possible to conclude that $h_o(x)$ minimizes the expected risk and is therefore the *best estimator*, since $h_o(x)$ is an unbiased estimate.
- The second term of the equation is the variance of y and cannot be influenced by the design of the estimator h(x).

learning from examples = reconstruction of the function $h_o(x)$ given the set $\mathcal{D} = \{(x_i, y_i), i = 1, \dots, N\}$

where x has distribution P(x) and y is a random variable with mean $h_o(x)$ and distribution P(y|x).

- Assuming that the noise is additive, it is possible to write $y = h_o(x) + \eta$, where η has distribution P(y|x).
- In practice, P(x, y) is unknown and $\mathcal{I}[h]$ cannot be evaluated. Because only the training data set \mathcal{D} is provided, the expected risk must be approximated by the empirical risk:

$$\mathcal{I}_{\mathsf{emp}}[h] = rac{1}{N} \sum_{i=1}^{N} (y_i - h(\boldsymbol{x}_i))^2.$$

• The problem of finding a regressor h that minimizes the empirical risk is ill-posed because an infinite number of solutions may exist. To avoid this, we must consider a family of parametric functions for the estimators.

- ullet Non linear black box models with Q parameters can be chosen and represented by $\widehat{h}_{Q,N}(x)$. The index N means that the parameters were estimated using a set $\mathcal D$ with N elements.
- The error between the regression function $h_o(x)$ and the estimator $\hat{h}_{Q,N}(x)$ will be called the generalization error:

$$E_{\mathcal{D}}[(h_o(\boldsymbol{x}) - \widehat{h}_{Q,N}(\boldsymbol{x}))^2],$$

where $E_{\mathcal{D}}$ represents expectation over the ensemble of all possible \mathcal{D} .

 The generalization error can be decomposed in two parts, named bias and variance:

$$E_{\mathcal{D}}[(h_o(\boldsymbol{x}) - \widehat{h}_{Q,N}(\boldsymbol{x}))^2] = \underbrace{\left[\overline{h}_{Q,N}(\boldsymbol{x}) - h_o(\boldsymbol{x})\right]^2}_{(BIAS)^2} + \underbrace{\frac{1}{n}\sum_{j=1}^n\left[h_{Q,N}^j(\boldsymbol{x}) - \overline{h}_{Q,N}(\boldsymbol{x})\right]^2}_{VARIANCE}.$$

where n is the number of estimators in the population and $\overline{h}_{Q,N}(x)$ is defined by:

$$\overline{h}_{Q,N}(oldsymbol{x}) = rac{1}{n} \sum_{j=1}^n h_{Q,N}^j(oldsymbol{x}).$$

Each estimator $h_{Q,N}^j(\boldsymbol{x})$ is supposed to be designed with an independent training data set \mathcal{D}^j .

- The bias measures the extent to which the average (over all sets) of the neuro-fuzzy models differ from the desired function $h_o(x)$, and the variance measures the extent to which the network function $h_{Q,N}(x)$ is sensitive to the particular choice of data set.
- The number of rules Q represent the power of approximation (or hypothesis complexity) of the hypothesis class if Q increases, the power of approximation increases. The bias and variance, and therefore the generalization error, depend on the complexity.

The bias/variance dilemma

- As complexity increases, bias decreases and variance increases;
- As complexity decreases, bias increases and variance decreases.

To demonstrate the importance of careful parameter selection, some neuro-fuzzy models are designed to approximate the following function:

$$g(x) = 4.26(\exp(-x) - 4\exp(-2x) + 3\exp(-3x)).$$

The training data is generated by sampling the following function:

$$y = g(x) + \eta,$$

where η is an additive Gaussian noise in the output with standard deviation of $\sigma_r = 0.4^*$. Sixty uniformly distributed training data points $\mathcal{D} = \{(x_i, y_i), i = 1, \dots, 60\}$ are generated in the interval of X = [0.0, 5.0]. Neurofuzzy models h(x) with Gaussian basis functions are used. The Gaussian basis function can be represented as:

$$\phi(x) = \exp\left[-\frac{1}{2}\left(\frac{x-\overline{x}}{\sigma_w}\right)^2\right].$$

^{*}in this example, the noise is made intentionally large to illustrate the over-fitting

estimator with 30 Gaussian basis functions and $\sigma_w = 0.07$. g(x) is the true function, y is the training data and h(x) is the estimator.

estimator with 3 Gaussian basis functions and $\sigma_w =$ 0.8. g(x) is the true function, y is the training data and h(x) is the estimator.

estimator with 5 Gaussian basis functions and $\sigma_w =$ 0.5. g(x) is the true function, y is the training data and h(x) is the estimator.

Example	number of	σ_w	\mathcal{I}_{true}	\mathcal{I}_{emp}
	basis functions			
ex:1	30	0.07	0.092	0.08
ex:2	3	0.8	0.029	0.197
ex:3	5	0.5	0.048	0.181

Summary of mean squared error results.