Linear Black Box models

Example: Finite Impulse Response (FIR)
y(t) = B(g)u(t) + e(?)
=biu(t—1)+ ...+ bpu(t —n) + e(?t)

where B(q) is a polynomial in ¢~ 1.

The corresponding predictor §(t|0) = B(q)u(t)
IS thus based on the following regression vec-
tor:

p(t) = [u(t—1),u(t —2),... ,u(t —n)]

General family of linear black box models

AlQ)y(t) = ZBu®) + GZe(t)

e Box-Jenkins (BJ) model (A = 1);

e ARMAX model (F =D = 1);

e Output-Error (OE) (A=C =D =1);

e ARX model (F=C=D=1).

General family of linear black box models

The regressors, i.e., the components of p(t, 0)
are in this general case given by:

e u(t — k) (associated with the B polyno-
mial);

e y(t — k) (associated with the A polyno-
mial);

e yu(t— k|#) simulated outputs from past u
(associated with the F polynomial);

o c(t—k) =y(t—k)—y(t—k|0) Prediction er-
rors (associated with the D polynomial);

o c,(t — k) = y(t — k) — gu(t — k|@) simula-
tion errors (associated with the D poly-
nomial).

Nonlinear black-box structures

We have observed inputs u(¢t) and outputs
y(t) from a dynamical system:

u' = [uw(1),u(2),... ,u(t)],
vt = [y(1),y(2),...,y(®)].

We are looking for a relationship between
past observations [u!~1, 4*~1] and future out-

puts y(t):

y(t) = g(ut 1) 4+ u (),

where the additive term v(¢) accounts for the
fact that the next output y(¢) will not be an
exact function of past data. wv(¢) must be
very small so g(ut~1,4y*=1) will be a good ap-
proximation.

Nonlinear black box models

Let us parametrize the function g with a finite
dimensional parameter vector 6:

g(ut=1, 471, 0).

g can be written as a concatenation of two
mappings:

Wy = () — g(2),
g(ut=t 4t 0) = g(p(1),9),

where

p(t) = p(ul~1,yt).

The general case allows parametrization of
p(t):

o(t) = o(ut™1 4t~ 9.

Nonlinear black box models

y(t]0) = g(e(t),0),

where g is some nonlinear function parametrized
by 8 and ¢(t) are similar to regressors. Some
types are:

e NFIR models which use u(t—k) as regres-
SOrS;

e NARX models which use u(t—k) and y(t—
k) as regressors;

e NOE models which use u(t—k) and g, (t—
k|@) as regressors;

e NARMAX models which use u(t — k) and
y(t — k) and €(t — k|0).

Possibilities of nonlinear mappings

g(p,0),

which for any given 6 goes from R% to RP and

o= (p1,--- ,oa)!.

It is natural to think of the parametrized func-
tion family as function expansions:

g(0,0) =D 0k, g1(9),

where g, are basis functions (functional basis
in some cases).

Some ossibilities for gg:

e Fourier series, VVolterra series, Wavelets,

e Radial Basis Functions, B-splines, Sigmoid
Neural Networks, etc.

T he limitations of estimators designed
with examples: The bias and variance
dilemma

e estimators have intrinsic limitations due
to their finite representational capacity and
the use of finite training data set;

e these limitations are responsible for the
generalization errors of the model when it
is used with data which was not presented
during the learning process.

e Given adatasetD = {(x;,y;),i=1,... ,N},
where x is the independent variable and y
IS the response, obtained by sampling N
times the set X x Y according to a prob-
ability distribution P(x,vy).

e An estimator will be any function h : X —
Y where the parameters are estimated us-
ing D.

e [T he mean squared error of the estimator
h is given by the functional:

I[h] = E[(y — h(x))?],
— /Xxy P(x,y)(y — h(z))?dzdy,

defined as the expected risk .

The expected risk can be decomposed in two parts:

Z[h] = E[(ho(x) — h(x))?] + E[(y — ho(x))?],
where h,(x) is the regression function ho(x) = E[y|x].

e It is possible to conclude that h,(x) minimizes the
expected risk and is therefore the best estimator,
since ho(x) is an unbiased estimate.

e The second term of the equation is the variance
of y and cannot be influenced by the design of the
estimator h(x).

10

learning from examples — reconstruction of the
function h,(x) given the set D = {(x;,y;),1 =
1,...,N}

where x has distribution P(x)
and y is a random variable with mean h,(x)
and distribution P(y|x).

Assuming that the noise is additive, it is possible
to write y = ho(x) + 1, where n has distribution
P(yl|x).

In practice, P(x,y) is unknown and Z[h] cannot be
evaluated. Because only the training data set D is
provided, the expected risk must be approximated
by the empirical risk:

| N
Templh] = ~N Z(yi — h(z;))>.
i=1

The problem of finding a regressor h that min-
imizes the empirical risk is ill-posed because an
infinite number of solutions may exist. To avoid
this, we must consider a family of parametric func-
tions for the estimators.

11

e Non linear black box models with parameters
can be chosen and represented by ?LQ7N(CB). The
index N means that the parameters were esti-
mated using a set D with N elements.

e The error between the regression function h.(x)
and the estimator hg ny(x) will be called the gen-
eralization error:

Ep[(ho(x) — hon(2))?],

where Ep represents expectation over the ensem-
ble of all possible D.

e T he generalization error can be decomposed in
two parts, named bias and variance:

Ep[(ho(z) — hon(2))?] = [hon(®) — ho(®)]” +

(BIAS)?
RSN _ 2
—Z[hQ,N(w)—hQ,N(w)] .
Z’L =1 v
VARIANCE

where n is the number of estimators in the popu-
lation and hg n(z) is defined by:

_ 1 <
hon(x) = = > ki) y().
j=1

Each estimator héz ~ (&) is supposed to be designed
with an independent training data set DJ.

12

e T he bias measures the extent to which
the average (over all sets) of the neuro-
fuzzy models differ from the desired func-
tion ho(x), and the variance measures the
extent to which the network function hg n(x)
is sensitive to the particular choice of data
set.

e T he number of rules () represent the power
of approximation (or hypothesis complex-
ity) of the hypothesis class if Q increases,
the power of approximation increases. The
bias and variance, and therefore the gen-
eralization error, depend on the complex-
ity.

13

The bias/variance dilemma

e AS complexity increases, bias decreases
and variance increases;

e As complexity decreases, bias increases
and variance decreases.

14

To demonstrate the importance of careful parameter
selection, some neuro-fuzzy models are desighed to
approximate the following function:

g(z) = 4.26(exp(—z) — 4exp(—2x) + 3exp(—3x)).

The training data is generated by sampling the follow-
ing function:

y = g(x) +n,

where n is an additive Gaussian noise in the output with
standard deviation of o, = 0.4*. Sixty uniformly dis-
tributed training data points D = {(z;,yi),t = 1,... ,60}
are generated in the interval of X = [0.0,5.0]. Neuro-
fuzzy models h(x) with Gaussian basis functions are
used. The Gaussian basis function can be represented

as:
_\2
d(x) = exp [—% (ma_wx>] :

*in this example, the noise is made intentionally large
to illustrate the over-fitting

15

9x) (=) y(© hx)(-)

0 0.5 1 15 2 2.5 3 3.5 4 4.5 5

estimator with 30 Gaussian basis functions
and oy = 0.07. g(x) is the true function, y is
the training data and h(z) is the estimator.

16

9x) (=) y(© hx)(-)

estimator with 3 Gaussian basis functions and
ow = 0.8. ¢g(x) is the true function, y is the
training data and h(xz) is the estimator.

17

9x) (=) y(© hx)(-)

@ (X)

o o o
AN (o)) (0]
T T T
| | |

o
N
T
i

0 0.5 1 15 2 2.5 3 3.5 4 4.5 5

estimator with 5 Gaussian basis functions and
ow = 0.5. ¢g(x) is the true function, y is the
training data and h(xz) is the estimator.

18

Example number of ow | Ztrye | Zemp
basis functions

ex:1 30 0.07 | 0.092 | 0.08

ex:2 3 0.8 | 0.029 | 0.197

ex:3 5 0.5 | 0.048 | 0.181

Summary of mean squared error results.

19

