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Architecture

We consider the architecture: feed-
forward NN with one layer

It is sufficient to study single layer
perceptrons with just one neuron:
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Perceptron: Neuron Model

* Uses a non-linear (McCulloch-Pitts) model

of neuron: b (bias)

» ¢ Is the sign function:

+1 IFv>=0
- < Is the function sign(v)
(P(V) -1 IFv<O0

-
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Perceptron: Applications

* The perceptron is used for classification:
classify correctly a set of examples into
one of the two classes C,, C,:

If the output of the perceptron is +1 then the
input is assigned to class C,

If the output is -1 then the input is assigned
to C,
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Perceptron: Classification

* The equation below describes a hyperplane in the
Input space. This hyperplane is used to separate the
two classes C1 and C2

decision
region for C1

WX, + WX, + b >0

m ® o
ZWiXi 1h=0 decision /N .
1=1

boundary , . °: y.r- . C,

decision C '}. o o . X,
. 2 'o. o *
region for C, .,

WX, + WoX, + b <=0 WX, + WX, + b =0
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Perceptron: Limitations

The perceptron can only model linearly
separable functions.

The perceptron can be used to model the
following Boolean functions:

AND

OR

COMPLEMENT

But it cannot model the XOR. Why?
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Perceptron: Limitations

 The XOR is not linear separable

* It is iImpossible to separate the classes
C, and C, with only one line

X
1

0
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Perceptron: Learning Algorithm

* Variables and parameters
X(n) = input vector
= [+1, x4(n), X3(N), .., Xy(N)]T
w(n) = weight vector
= [b(n), wy(n), wy(n), ..., Wy ()]’
b(n) = bias
y(n) = actual response
d(n) = desired response
1 = learning rate parameter

PMR5406 Redes Neurais e Single Layer Perceptron
Logica Fuzzy



The fixed-increment learning algorithm

* |nitialization: set w(0) =0
 Activation: activate perceptron by applying input
example (vector x(n) and desired response d(n))
« Compute actual response of perceptron:
y(n) = sgn[w'(n)x(n)]

« Adapt weight vector: if d(n) and y(n) are different
then

w(n + 1) = w(n) + n[d(n)-y(n)]x(n)
+1 if x(n) e C,
-1 if x(n)e C,

« Continuation: increment time step n by 1 and go
to Activation step
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Example

Consider a training set C, U C,, where:
C,={(1,1), (1,-1), (0, -1)} elements of class 1
C,={(-1,-1), (-1,1), (0,1)} elements of class -1

Use the perceptron learning algorithm to classify these
examples.

. w(0) =[1, 0, O] n=1



Example

A

o 72 o'/ @
Decision boundary:
2X4-Xo=10

C2 1 2
| | | >
-1 172 1 X4
© 1 @ C,
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Convergence of the learning algorithm

Suppose datasets C,, C, are linearly separable. The
perceptron convergence algorithm converges after n,
iterations, with n,<n__, on training set C, U C.,.

Proof:

* suppose x € C, = output =1 and x e C, = output =-1.

* For simplicity assume w(1) =0, n = 1.

» Suppose perceptron incorrectly classifies x(1) ... x(n) ...e C,.

ThenwT(k) x(k) < 0.

= Error correction rule: 3\

w(2) =w(1)+x(1)
w3)  =w(2)+x(2) »=w(n+1)=x(1)+ ...+ x(n)

w(n+1) =w(n) + x(n).




Convergence theorem (proof)

* Let w, be such that wy"x(n) >0 V x(n) e C,.
w, exists because C, and C, are linearly separable.

* Let o = min w," x(n) | x(n) € C,.
* Then w," w(n+1) = w," x(1) + ... + w,T x(n) > not

« Cauchy-Schwarz inequality:
[IWol[? [lw(n+1)]|> = [w," w(n+1)]?

Iw(n+1)|]2 > n?o? (A)
[ w2
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Convergence theorem (proof)

 Now we consider another route:
w(k+1) = w(k) + x(k)
|| wik+1)[[2 = || w(k)[[?+ |[x(k)|[? + 2 w T(k)x(k)
X euclidean norm y )
< 0 because x(k) is misclassified

= [[w(k+1)[[Z < |lw(K)[[Z+ [[x(K)[[* k=1,..,n
r=0
Iw(2)[[? < [[w(1)[[2+ |[x(1)][?
IWE)II? < [[w(2)][?+ |[x(2)][2

= [Iw(n+1)]2 < ZH’C(/‘)Hz
k=1

PMR5406 Redes Neurais e Single Layer Perceptron
Logica Fuzzy

14



convergence theorem (proof)

Let B = max [|x(n)||*> x(n)e C,
Iw(n+1)[><n B (B)
For sufficiently large values of k:

(B) becomes in conflict with (A).
Then n cannot be greater than n__, such that (A) and (B) are both

satisfied with the equality sign.

Perceptron convergence algorithm terminates in at most

Nmax= B |IWol|* iterations.
az
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Adaline: Adaptive Linear Element

* The output y is a linear combination o x

>

X, v = X w,(0)
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Adaline: Adaptive Linear Element

 Adaline: uses a linear neuron model and the Least-Mean-
Square (LMS) learning algorithm

The idea: try to minimize the square error, which is a function of the weights

E(w(n)) = e’ (n)

e(n) = d(n) - Z X (m)w (n)

* We can find the minimum of the error function E by means
of the Steepest descent method
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Steepest Descent Method

 start with an arbitrary point
 find a direction in which E is decreasing most rapidly

— (gradient of £(w)) = — [j_E,, OF

.
wi OWnm

 make a small step in that direction

w(n+1)=w(n) —n(gradientof E(n))
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Least-Mean-Square algorithm
(Widrow-Hoff algorithm)

* Approximation of gradient(E)

OE(w(n)) _ e(n) oe(n)
ow(n) ow(n)

= e(n)[—x(n)" ]

« Update rule for the weights becomes:

w(n +1) = w(n) + 7x(n)e(n)
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Summary of LMS algorithm

Training sample: input signal vector x(n)

desired response  d(n)
User selected parameter n >0
Initialization setw(1)=0

Computation forn=1, 2, ... compute
e(n) =d(n) - w'(n)x(n)
w(n+1) = w(n) + 1 x(n)e(n)
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