PMR5406 Redes Neurais e Lógica Fuzzy Aula 3 Single Layer Percetron

Baseado em:

Neural Networks, Simon Haykin, Prentice-Hall, 2nd edition

Slides do curso por Elena Marchiori, Vrije Unviersity

Architecture

- We consider the architecture: feedforward NN with one layer
- It is sufficient to study single layer perceptrons with just one neuron:

Perceptron: Neuron Model

 Uses a non-linear (McCulloch-Pitts) model of neuron:

φ is the sign function:

$$\varphi(v) = \begin{cases} +1 & \text{IF } v >= 0 \\ -1 & \text{IF } v < 0 \end{cases}$$
 Is the function $sign(v)$

Perceptron: Applications

 The perceptron is used for classification: classify correctly a set of examples into one of the two classes C₁, C₂:

If the output of the perceptron is +1 then the input is assigned to class C₁

If the output is -1 then the input is assigned to C₂

Perceptron: Classification

 The equation below describes a hyperplane in the input space. This hyperplane is used to separate the two classes C1 and C2

Perceptron: Limitations

- The perceptron can only model linearly separable functions.
- The perceptron can be used to model the following Boolean functions:
- AND
- OR
- COMPLEMENT
- But it cannot model the XOR. Why?

Perceptron: Limitations

- The XOR is not linear separable
- It is impossible to separate the classes
 C₁ and C₂ with only one line

Perceptron: Learning Algorithm

Variables and parameters

```
\mathbf{x}(n) = \text{input vector}

= [+1, x_1(n), x_2(n), ..., x_m(n)]^T

\mathbf{w}(n) = \text{weight vector}

= [b(n), w_1(n), w_2(n), ..., w_m(n)]^T

b(n) = \text{bias}

y(n) = \text{actual response}

d(n) = \text{desired response}

\eta = \text{learning rate parameter}
```

The fixed-increment learning algorithm

- Initialization: set w(0) =0
- Activation: activate perceptron by applying input example (vector x(n) and desired response d(n))
- Compute actual response of perceptron:

$$y(n) = sgn[\mathbf{w}^{T}(n)\mathbf{x}(n)]$$

 Adapt weight vector: if d(n) and y(n) are different then

$$\mathbf{w}(n+1) = \mathbf{w}(n) + \eta[d(n)-y(n)]\mathbf{x}(n)$$
Where $d(n) = \begin{cases} +1 & \text{if } \mathbf{x}(n) \in C_1 \\ -1 & \text{if } \mathbf{x}(n) \in C_2 \end{cases}$

 Continuation: increment time step n by 1 and go to Activation step

Example

Consider a training set $C_1 \cup C_2$, where: $C_1 = \{(1,1), (1, -1), (0, -1)\}$ elements of class 1 $C_2 = \{(-1,-1), (-1,1), (0,1)\}$ elements of class -1

Use the perceptron learning algorithm to classify these examples.

•
$$\mathbf{w}(0) = [1, 0, 0]^T$$
 $\eta = 1$

Example

Convergence of the learning algorithm

Suppose datasets C_1 , C_2 are linearly separable. The perceptron convergence algorithm converges after n_0 iterations, with $n_0 \le n_{max}$ on training set $C_1 \cup C_2$.

Proof:

- suppose $x \in C_1 \Rightarrow$ output = 1 and $x \in C_2 \Rightarrow$ output = -1.
- For simplicity assume w(1) = 0, $\eta = 1$.
- Suppose perceptron incorrectly classifies $\mathbf{x}(1)$... $\mathbf{x}(n)$... $\in \mathbf{C}_1$. Then $\mathbf{w}^{\mathsf{T}}(k)$ $\mathbf{x}(k) \leq 0$.

$$\Rightarrow \text{Error correction rule:} \\ \mathbf{w}(2) &= \mathbf{w}(1) + \mathbf{x}(1) \\ \mathbf{w}(3) &= \mathbf{w}(2) + \mathbf{x}(2) \\ \vdots &\vdots &\vdots \\ \mathbf{w}(n+1) &= \mathbf{w}(n) + \mathbf{x}(n). \\ \end{pmatrix} \Rightarrow \mathbf{w}(n+1) = \mathbf{x}(1) + \dots + \mathbf{x}(n)$$

Convergence theorem (proof)

- Let $\mathbf{w_0}$ be such that $\mathbf{w_0}^\mathsf{T} \mathbf{x}(\mathsf{n}) > 0 \quad \forall \mathbf{x}(\mathsf{n}) \in \mathsf{C_1}$. $\mathbf{w_0}$ exists because $\mathsf{C_1}$ and $\mathsf{C_2}$ are linearly separable.
- Let $\alpha = \min w_0^T x(n) \mid x(n) \in C_1$.
- Then $\mathbf{w_0}^T w(n+1) = \mathbf{w_0}^T x(1) + ... + \mathbf{w_0}^T x(n) \ge n\alpha$
- Cauchy-Schwarz inequality:

$$||\mathbf{w}_0||^2 ||\mathbf{w}(n+1)||^2 \ge [\mathbf{w}_0^T \mathbf{w}(n+1)]^2$$

$$||\mathbf{w}(n+1)||^2 \ge \frac{n^2 \alpha^2}{||\mathbf{w}_0||^2}$$
 (A)

Convergence theorem (proof)

Now we consider another route:

convergence theorem (proof)

- Let β = max ||x(n)||² x(n) ∈ C₁
- $||\mathbf{w}(n+1)||^2 \le \mathbf{n} \ \beta$ (B)
- For sufficiently large values of k:
 (B) becomes in conflict with (A).

Then n cannot be greater than n_{max} such that **(A)** and **(B)** are both satisfied with the equality sign.

$$\frac{n_{max}^{2}\alpha^{2}}{\parallel w_{0}\parallel^{2}} = n_{max}\beta \Longrightarrow n_{max} = \frac{\parallel w_{0}\parallel^{2}}{\alpha^{2}}\beta$$

• Perceptron convergence algorithm terminates in at most $n_{max} = \frac{\beta \|\mathbf{w}_0\|^2}{\alpha^2}$ iterations.

Adaline: Adaptive Linear Element

The output y is a linear combination o x

Adaline: Adaptive Linear Element

 Adaline: uses a linear neuron model and the Least-Mean-Square (LMS) learning algorithm

The idea: try to minimize the square error, which is a function of the weights

$$E(\mathbf{w}(\mathbf{n})) = \frac{1}{2}\mathbf{e}^2(\mathbf{n})$$

$$e(n) = d(n) - \sum_{j=0}^{m} x_{j}(n)w_{j}(n)$$

 We can find the minimum of the error function E by means of the Steepest descent method

Steepest Descent Method

- start with an arbitrary point
- find a direction in which E is decreasing most rapidly

- (gradient of
$$E(\mathbf{w})$$
) = - $\left[\frac{\partial E}{\partial w_1}, \dots, \frac{\partial E}{\partial w_m}\right]$

make a small step in that direction

$$w(n+1) = w(n) - \eta(gradientof E(n))$$

Least-Mean-Square algorithm (Widrow-Hoff algorithm)

Approximation of gradient(E)

$$\frac{\partial E(w(n))}{\partial w(n)} = e(n) \frac{\partial e(n)}{\partial w(n)}$$
$$= e(n)[-x(n)^{T}]$$

Update rule for the weights becomes:

$$w(n + 1) = w(n) + \eta x(n)e(n)$$

Summary of LMS algorithm

Training sample: input signal vector x(n) desired response d(n)

User selected parameter $\eta > 0$

Initialization $set \hat{w}(1) = 0$

Computation

for n = 1, 2, ... compute

$$e(n) = d(n) - \hat{w}^{T}(n)x(n)$$

 $\hat{w}(n+1) = \hat{w}(n) + \eta x(n)e(n)$