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Radial-Basis Function Networks
• A function is approximated as a linear 

combination of radial basis functions (RBF). 
RBF’s capture local behaviour of functions.

Biological motivation:
• RBF’s represent local receptors:
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ARCHITECTURE

• Hidden layer: applies a non-linear 
transformation from the input space to the 
hidden space.

• Output layer: applies a linear transformation
from the hidden space to the output space.
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• Input layer: 
source 
of nodes that 
connect the NN 
with its 
environment.
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φ-separability of patterns
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Hidden function

Hidden space

A (binary) partition, also called dichotomy, (C1,C2) 
of the training set C is φ-separable if there is a 
vector w of dimension m1 such that:
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Examples of φ-separability

Separating surface: 
Examples of separable partitions (C1,C2):

0)( that such  all =xwx Tϕ

Linearly separable:

Spherically separable:

Quadratically separable:

Polynomial type functions
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Cover’s Theorem (1)

• Cover’s theorem. Under suitable 
assumptions on C = {x1, …, xN} and on the 
partitions (C1,C2) of C:
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size of feature space φ =<ϕ1, …, ϕm1>
P(N, m1) - Probability that a particular partition 
(C1,C2) of the training set C picked at random is φ-
separable
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Cover’s Theorem (2)
• Essentially P(N,m1) is a cumulative binomial 

distribution that corresponds to the probability 
of picking N points C = {x1, …, xN} (each one 
has a probability P(C1)=P(C2)=1/2) which are 
φ-separable using m1-1 or fewer degrees of 
freedom.
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Cover’s Theorem (3)
• P(N,m1) tends to 1 with the increase of 

m1 (size of feature space φ =<ϕ1, …, 
ϕm1>).

• More flexibility with more functions in 
the feature space φ =<ϕ1, …, ϕm1>
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Cover’s Theorem (4)

Corollary:
The expected maximum number of 
randomly assigned patterns that are 
linearly separable in a space of 
dimension m1 is equal to 2m1

• A complex pattern-classification problem 
cast in a high-dimensional space non-
linearly is more likely to be linearly 
separable than in a low-dimensional 
space.
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HIDDEN NEURON MODEL

• Hidden units: use a radial basis function   

x2

x1

xm

φσ( || x - t||2)

t is called center
σ is called spread
center and spread are parameters

σϕ

φσ( || x - t||2) the output depends on the distance of 
the input x from the center t
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Hidden Neurons

• A hidden neuron is more sensitive to data 
points near its center. This sensitivity may be 
tuned by adjusting the spread σ.

• Larger spread ⇒ less sensitivity

• Biological example: cochlear stereocilia cells 
have locally tuned frequency responses.
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Gaussian Radial Basis Function φ

center

φ :

σ is a measure of how spread the curve is:

Large σ Small σ
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Types of φ

• Multiquadrics:

• Inverse multiquadrics:

• Gaussian functions:
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Example: the XOR problem 

• Input space:

• Output space:

• Construct an RBF pattern classifier such that:
(0,0) and (1,1) are mapped to 0, class C1
(1,0) and (0,1) are mapped to 1, class C2

(1,1)(0,1)

(0,0) (1,0) x1

x2

y10
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• In the feature (hidden) space:

• When mapped into the feature space < ϕ1 , ϕ2 >, C1 and C2 become 
linearly separable. So a linear classifier with ϕ1(x) and ϕ2(x) as inputs 
can be used to solve the XOR problem.

Example: the XOR problem 
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Learning Algorithms

• Parameters to be learnt are:
– centers
– spreads 
– weights

• Different learning algorithms
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Learning Algorithm 1
• Centers are selected at random

– center locations are chosen randomly from the 
training set

• Spreads are chosen by normalization:
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Learning Algorithm 1

• Weights are found by means of pseudo-
inverse method

{ }

1

2

ij2
max

1
jiji

m  2, 1,i ,N   ..., 2, 1,j

tx
d
mexp     

dw          

...,==









−−==

= +

ϕϕϕ

ϕ Desired response

Pseudo-inverse of ϕ



Redes Neurais e Lógica Fuzzy 2.09.98

Newton Maruyama 10

PMR5406 Redes Neurais e Lógica FuzzyRadial Basis Function Network 19

Learning Algorithm 2

• Hybrid Learning Process:
• Self-organized learning stage for finding the 

centers
• Spreads chosen by normalization 
• Supervised learning stage for finding the 

weights, using LMS algorithm
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Learning Algorithm 2: Centers
• K-means clustering algorithm for centers

1 Initialization: tk(0) random k = 1, …, m1

2 Sampling: draw x from input space C
3 Similarity matching: find index of best center

4 Updating: adjust centers

5. Continuation: increment n by 1, goto 2 and continue 
until no noticeable changes of centers occur
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Learning Algorithm 3
• Supervised learning of all the parameters 

using the gradient descent method

– Modify centers
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rate for jt

Depending on the specific function can be 
computed using the chain rule of calculus
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Learning Algorithm 3

• Modify spreads

• Modify output weights
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Comparison with multilayer NN 

RBF-Networks are used to perform complex (non-linear) 
pattern classification tasks.

Comparison between RBF networks and multilayer 
perceptrons:

• Both are examples of non-linear layered feed-forward
networks.

• Both are universal approximators.

• Hidden layers:
– RBF networks have one single hidden layer.
– MLP networks may have more hidden layers.
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Comparison with multilayer NN

• Neuron Models:
– The computation nodes in the hidden layer of a RBF network are 

different. They serve a different purpose from those in the output 
layer.

– Typically computation nodes of MLP in a hidden or output  layer 
share a common neuron model.

• Linearity:
– The hidden layer of RBF is non-linear, the output layer of RBF is 

linear. 
– Hidden and output layers of MLP are usually non-linear.
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Comparison with multilayer NN

• Activation functions:
– The argument of activation function of each hidden unit in a 

RBF NN computes the Euclidean distance between input 
vector and the center of that unit.

– The argument of the activation function of  each hidden unit 
in a MLP computes the inner product of input vector and the 
synaptic weight vector of that unit.

• Approximations:
– RBF NN using Gaussian functions construct local 

approximations to non-linear I/O mapping.
– MLP NN construct global approximations to non-linear I/O 

mapping.


