Learning in AMN

Associative Memory Networks

Q
y=hlx)= Z wdy(),

where ¢;(x), (¢ =1,...,Q) are the basis functions.

e Non-Lattice
— RBF networks,
e Lattice

— B-splines,
— Neuro-Fuzzy,

- CMAC.

SLIDE 1

Learning in AMN

Prior to the phase of parameter estimation it is necessary to decide

about some structural parameters:

e the number of basis functions (i.e. number of parameters to be

estimated);
e the shape of each basis function;
e the location of each basis function;

But how is possible to decide about these issues ?
These issues are of course problem dependent and it is highly conect-

ed with the amount of prior knowledge available.

SLIDE 2

Learning in AMN

Radial Basis Function Networks

¢ (@) = f(ll ei —z [|2)
Let r =|| ¢; — @ ||2, for the basis function which has a centre in

c, then several different choices for f(.) are given by:
e the radial linear function: f(r) =r,
e the radial cubic function: f(r) =r?,
e the Gaussian function: f(r) = exp(—r?/(20?)),
e the thin plate function: f(r) = r?log(r),
e the multi-quadratic function: f(r) = (r* + ¢%)"?,

e the shifted logarithm function: f(r) = log(r? + o?).

SLIDE 3

Learning in AMN

e The Gaussian function is the one that is the most used:

e It is the only one that can be written as the product of univariate

functions:

fo(2) = exp (_” qu;gw H%) _ ﬁexp (_%)

"

SLIDE 4

Learning in AMN

e Centers of RBFs can be chosen using an unsupervised learning
algorithm. Like for example, k—means clustering, which par-
titions the training data in Q clusters where the total squared
Euclidian distances between the training inputs x; and their
corresponding cluster centers ¢;'s are minimised,

E—means = Z Z i || T — ¢4 H27 (3)

1EN q€eQ

In this Equation, a;, = 1, if the Euclidian distance from x; to

¢, is the smallest one. Otherwise, o, = 0.

e The shape factor o, of each Gaussian function can be chosen as
a mean distance between the ¢; and the first few neighbouring

nodes, por exemplo, M, = 2, is usually adopted,

M
1 S
aq:ﬁs;” Cqn — Cq IE (4)

where ¢, denotes the first m nearest units the gqth Gaussian

centre.

SLIDE 5

Learning in AMN

Lattice Associative memory networks
e B-splines,
e Neuro-fuzzy models,

e CMAC networks.

SLIDE 6

Learning in AMN

Disadvantages of lattice based networks

Both neuro-fuzzy models and B-spline networks are lattice networks making
the design of the model easy but introducing some drawbacks. The first step
is to define the unidimensional membership functions or basis functions. Then
multidimensional basis functions are constructed by tensor multiplication of uni-
dimensional basis functions.

The total number of basis functions is defined by the product:

Q=1]]r (5)
=1

where r; is the number of uni-dimensional basis functions for each variable z;.
Each additional uni-dimensional basis functions in one of the variables adds
many multi-dimensional basis functions. For example, if one basis function is

added to z, then the new number of basis functions will be:

n
Qnew = Qold + H ry.

I=1,l#p
The effect is illustrated in Figure 1. This sometimes sometimes leads to unneces-

sary complexity of the model and overparameterization which may result in poor

generalisation.

SLIDE 7

Learning in AMN

2
° ® °
10
0® P P
-1
® P ®
-10 0 +10

(a)

[e o o
+10 !
I
I
0@ e o o
I
I
I
I
_1 :
® o o o
-10 0 +10

Figura 1: (a) Three basis functions are defined for each variable that results in nine bi-

dimensional basis functions. (b) One basis function is added to z; resulting in 12 bi-

dimensional basis functions.

SLIDE 8

Learning in AMN

e Another issue is that the number of basis functions and the
associated amount of training data required grow exponentially

as the number of input variables grows linearly.

e This property is known as curse of dimensionality and it limits

the use of these models to low dimensional problems.

e Recently the research has focused in alternatives that can result
in parsimonious models using techniques like Adaptive B-spline
Basis Modelling of Observation Data (ASMOD) and Adaptive
B-spline Basis function Modelling of Observation Data (ABB-
MOD) algorithms.

SLIDE 9

Learning in AMN

Linear Equations

y(t) = ®(x,)W, (6)

where:
@) = [i(@) .. 6j@) ... @] O

and:
W=luw o wy o owg] ®)

SLIDE 10

Learning in AMN

This property allows the use of the well known Least Squares
algorithms. The Batch Least Squares algorithm is the simplest al-
gorithm to use. For the set of training data D = {(x(t), y(t)),t =
1,..., N}, it is possible to estimate the parameters using the fol-

lowing algorithm:

W=(3d) '3V, (9)
where:
v = [y yn)] , and (10a)
D — _5;,,,5;,,@;], and (10b)
b = | a2 ... @V | (100)

The matrix, @, is a N x matrix, and it becomes difficult to
handle when) and N become very large. Also, the method is ill-
conditioned if (ETE)_l is nearly singular. For example, if one of
the basis functions is not activated by any data, matrix ® will have

one of the columns equal to zero and estimation will be impossible.

SLIDE 11

Learning in AMN

e Usually, Associative Memory networks contain a large number

of rules or weights Q).

e In this case, algorithms based on instantaneous gradient descent
rules are good alternatives. They can also be implemented on-

line due to low cost computations.

SLIDE 12

Learning in AMN

LMS (Least Mean Square) Algorithm

Aw(t — 1) = e, (t)B(2), (11)

where 0 is the learning rate,

e, (t) = 3(8) — y(t (12)
and
®(x) = | ¢i(z) ... Pi(z) ... qsg(w)], (13)
NLMS (Normalised Least Mean Square) Algorithm
At =1) = 80,0) g 14
where,
| 1) 3= 87 (1) (1), (15)

SLIDE 13

Learning in AMN

To ensure faster convergence, the Recursive Least Squares (RLS)

algorithm can be used:

A

git) = S(z,)W (1), (16)
et) = y(t)—9(), (17)
W) = Wi—1)+— LUV g

1+ @' ()Pt —1)®()

P(t—1)®t)®T ()Pt — 1) (19)
1+ @7 ()Pt —1)®(t)

P(0) =ol, (20)

Pt) = Pt—1)-

where ¢ is a large number.

The memory required to store the covariance matrix P(t), and the
matrix computations to update it and the vector of parameters W(t)
make this algorithm computationally expensive and not suitable for

use with high-complexity models.

SLIDE 14

Learning in AMN

For neuro-fuzzy models, the complex matrix computations can be
avoided if a special feature of the model is exploited. For each data
point the vector of the basis functions ®(t) has only a few non-
zero elements. Then, if the algorithm initially detects the non-zero
elements, a substantial amount of computation can be saved during
the evaluation of P(t — 1)®(t) and ®* (t)P(t — 1).

For very commonly used triangular basis function (B-splines of or-
der 2), one data point activates two basis functions for each variable
of the inputs of the model. Thus, for n input variables, each data

point activates 2" basis functions as can seen in Figure.

(-25,-5.0)

,,,,,,,,,,,,,,,

S ¢
c®
&

Figura 2: (a) Each point activates two uni-dimensional basis functions. (b) Each pair of

points activates 4 bi-dimensional basis functions.

SLIDE 15

Learning in AMN

Other Least Squares algorithms which have more robust numerical
properties can also be used, such as the Bierman's U D algorithm.

For this case, the matrix P(t — 1) factored as:
P(t—1)=U({t-1)D{t—-1)UE—-1)",

where U(t —1) is upper triangular and D(t —1) is a diagonal matrix.
But the storage requirements and matrix computations are greater
than those of the RLS algorithm. Also, the sparseness of vector ®(t)

can not be fully exploited.

SLIDE 16

