Adaptive Linear Modelling

The model of a linear model at time t is given by:

y(t) = Zai(t)wi(t —1)
i=1

—a(t)w;(t—1)

where a(t) and w(t) are p dimensional vectors.

a (1) .\ W
ar(t) &— 1

ap(t) 0/

Figure 4.1 A basic linear model.

k Adaptive Linear Modelling - 1

Performance of the model

e [he instantaneous output error is:
ey(t) = y(t) — y(t).

e Some possible Performance functions for adapting
the weight vector are:

E(|ey(t)])
J={ B(&®)
max¢ ey (t)]

e where the expectation operator E() is taken over
t for the training set {z(t), 9},

k Adaptive Linear Modelling - 2 /

o

Mean Squared Error Performance

The mean squared error performance is defined
as:

J = E(e;(t));

the instantaneous network output error:

ey(t) =9y —y(t)
= g(t) —a' (t)w,

squaring e, (t):
e, (1) = 7°(t) + wha(t)a’ (Hw — 2g(t)a’ (H)w,

and taking the expected values over t gives:

J = E(5°(t)) + w' E(a(t)a” (t))w
—2E(g(t)a’ (t))w.

Adaptive Linear Modelling - 3 /

Typical MSE performance surface

20+
154

104

Figure 4.2 A typical MSE performance surface in two-dimensional weight space. The optimal
weight vector occurs at W = (3,2)7, and a contour plot is projected onto the base of the

graph.

k Adaptive Linear Modelling - 4

Typical MSE performance surface

global

15 minima

Figure 4.3 A typical singular MSE performance surface in two-dimensional weight space.
The candidate optimal weight vectors occur along the line wy = w,

— 1, and the contour plot
is projected onto the base of the graph.

k Adaptive Linear Modelling - 5

The Autocorrelation matrix R can be defined as:
R = E(a(t)a’ (t))

E(a3(t)) E(ai(t)ax(t)) ... E(ai1(t)ap(t))]
_ | Ba®a®) B@®) ... Blat)a®)
| Blap(®ai(®) Elap®az®) ... B(a3(t)

The Cross-correlation vector p can be defined as:

p = E(5(t)(a)(?))

- E(g(t)a1(t)) |
E(g(t)az(t))

| Ei(®)ap()) |

Now, we can define the mean squared error perfor-
mance as:

J = E(3°(t)) + wRw — 2pTw.

k Adaptive Linear Modelling - 6

The minimum MSE, Jmin, Which occurs when w = w
can be written as:

Jmin = E(gz(t)) — pTR_lp
= E(§°(t) — p'W.

0 < Jmin < E(F°(1))

The MSE can be expressed in a much simpler form,
called as Normal Form of the Performance Surface:

J = Jmin + egREw-

k Adaptive Linear Modelling - 7 /

Normal form of the auto-correlation matrix

The auto-correlation matrix can be decomposed as:

R = QAQ™' = QAQY,

where A is a p x p diagonal matrix composed of the
non-negative eigenvalues of R and Q is a unitary ma-
trix whose columns are the corresponding orthonormal
eigenvectors.

Two examples which can reproduce exactly the func-
tion y = a 4 bxt defined on the unit interval.

basis functions overlap

Figure 45 Top: the basis functions corresponding to a univariate linear model. Bottom: the
basis functions for a B-spline network of order 2. Both networks have the same modelling
capability on the unit interval, only the internal representation is different.

k Adaptive Linear Modelling - 8 /

Model 1

y(t) = a1(z(t))wi + a2(x(t))wo;
a1(z(t)) = 1.0;
a2(z(t)) = =(t);

where z(t) has a uniform probability density function
on the unit interval.

R:[folmx f91xdx]:[1 05]

fola:dm [22dx 0.5 0.333

A—|1268 O Q= |0882 0472
- 0 0.066 — | 0.472 -0.882

k Adaptive Linear Modelling - 9 /

Model 2

y(t) = a1(z(t))wi + a2(x(t))wo;
a1(z(t)) = (1 —x(t)),
ax(x(t)) = x(t);

where z(t) has a uniform probability density function
on the unit interval.

_ - fl(1—$)2d$ flx(l—w)da:
R = 0
i fo z(1 — z)dz fol r?dx]

[0.333 0.167
— | 0.167 0.333

~[os o0 1 [1 1
/\—[o 0.167] Q—_2[1 —1]

with C(R) —)\max/)\min =3

k Adaptive Linear Modelling - 10 /

Decoupling the performance surface

J = Jmin + GgQAQTGw
which can be rewritten as:

p
= Jmin + Y _ Aiv,
=1
where v = Qe

e T he contour projection of J is a hyperellipsoid in
v-Space, with a minimum occurring at the origin
and with p mutually orthogonal lines which are
perpendicular to all contours of J.

e These lines are known as the principle axes of the

ellipse, and they are simply the eigenvectors of the
autocorrelation matrix.

e Also, QQ is a unitary matrix, and so v is simply a
rotated version of ¢, in w space, with an origin w.

k Adaptive Linear Modelling - 11 /

The eigenvalue of R, which are contained in the di-
agonal matrix A, represent the second derivative of J
along any of the principle axes as:

2
(91)22
fore=1,...,p.

e T he second proportional derivatives of J are pro-
portional to the corresponding eigenvalues of the
autocorrelation matrix.

e They also contain curvature information about
the performance function, and so if the eigen-
values of the autocorrelation matrix is widelyy
spread, this is reflected in the relative steepness
of the performance along the principal axes. The
performance surface is steepest along the major
principal axis and is flattest along the minor prin-
cipal axis, and the ratio of these two quantities
(condition number) determines the rate of con-
vergence of the gradient descent rules.

k Adaptive Linear Modelling - 12 /

Two examples of the normalised performance

surface

,0.15,0.5,1.5, W = (1, 1)T and the two dashed

,0.05

lines are the principal axes (eigenvectors).

ot of the MSE performance surface for a conventional linear model.
0.005,0.015

Figure 4.6 A contour pl
The contour values are J

A contour plot of the MSE performance surface for an order 2 B—spli'ne model.

The contour values are J = 0.005,0.015

,0.15,0.5,1.5, W = (1,1)7, and the two dashed

0.05

b
lines are the principal axes (eigenvectors).

Figure 4.7

Adaptive Linear Modelling - 13

o

Gradient descent learning algorithm

The gradient of J in the w space can be defined as:

v = —2Rw — 2p.
W

Or alternatively as:
v — _2R€w,

where ¢, = w — w iS the error in the weight vector.

Or more;

v = —2E(c,(a(?)).

The gradient in the transformed weight space is given
by:

oJ

— = 2A
ov v
or
oJ
= 2)\;v;,
ov;

thus the gradient o J with respect to v; only depends
on the eigenvalue \; and v;. The gradient components,
in v-space are decoupled.

k Adaptive Linear Modelling - 14 /

Gradient descent learning rules

Aw(t—1) = -2 7 (®),

where Aw(t — 1) = w(t) — w(t — 1), substituting for
v (t) gives:
Aw(t—1) = -0d(Rw(t—1) — p),
= —0Reyp(t —1).

Thus the weight change depends on the structure of
the autocorrelation matrix and the current weight error
vector.

The gradient descent algorithm can be interpreted as
a feedback model as can be seen on the following fig-
ure, where the weights are states with the current per-
formance of the model being fed back to modify the
model. From this interpretation it is obvious that the
size of 6 determines the stability of the closed loop
system and too high a value causes unstable learning.

- SR [E&—

P> 6 z11 —3 w(t-1)

Figure 4.11 Feedback representation of gradient descent adaptation.

k Adaptive Linear Modelling - 15 /

o

Parameter convergence for different
auto-correlation matrices - 1

1.5¢

0-'8.5 0 0.5 1 1.5 2

wi

Figure 4.8 Gradient descent on the performance surface corresponding to a B-spline model,
(C(R) = 3), after twenty weight updates with a normalised learning rate of 0.5. The perfor-
mance surface’s contours correspond to J = 0.005, 0.015, 0.05, 0.15, 0.5.

Adaptive Linear Modelling - 16

Parameter convergence for different
auto-correlation matrices - 2

ez
7/

0.5¢ /

1.5

-t

.—-/

035 0 05 ! 15
w

Figure 4.9 Gradient descent on a performance surface with C(R) = 1 after ten weight
updates with a normalised learning rate of 0.5. The performance surface’s contours correspond
to J = 0.005, 0.015, 0.05,0.15, 0.5, 1.5.

k Adaptive Linear Modelling - 17

o

Parameter convergence for different
auto-correlation matrices - 3

0. : ' - :
-8.5 0 0.5 1 wi 1.5 2
Figure 4.10 Gradient descent on the performance surface corresponding to a linear model
(C(R) = 19.3), after a hundred weight updates with a normalised learning rate of 0.5. The

performance surface’s contours correspond to J = 0.005, 0.015, 0.05,0.15, 0.5, 1.5.

Adaptive Linear Modelling - 18

Convergence and stability analysis

The gradient descent rule can be written as:
Aw(t —1) = —6Rey(t — 1),
or

ew(t) = (I —6R)ey,(t — 1).

Because this relationship is difficult to interpret, since
R is not diagonal, it can transformed to the decoupled
form:

Av(t—1) = —6Av(t - 1),

which can be rewritten in its decoupled components
as:

vi(t) = (1 = 6\)vi(t —1) for:=1,2,...,p,
with closed form solutions:
’Uz'(t) = (1 — 5)\i)t’vz'(0) for:=1,2,...,p,

where v;(0) is the rotated " initial error in the weight
vector.

k Adaptive Linear Modelling - 19 /

Convergence and stability analysis

For stable learning, it is required that:
or equivalently
|1 — 5)\z'| < 1.

Therefore learning is stable if and only if the learning
rate § satisfies:

0<d<

maxXx

k Adaptive Linear Modelling - 20 /

Rate of convergence

By considering a new learning rate defined by 4§, =
d/Amax then stable learning is assured if and only if:

O0<édéd<K?2

An exponential decay curve can be fitted to the dis-
crete values of v;(t) as shown in the figure. This curve
has an initial value v;(0) and a decay constant 7; de-
fined by:

’Ui(O) exp (—£> = ’UZ'(O)(]. — 5,\)\Z')t.

T3

Solving for 7; gives:
—1

)

~In(L = 6Mi/Amax)

Figure 4.12 Convergence of the i** natural mode, v;(t), which is adapted using a gradient
descent rule with (1 - 8);) < 1 (an exponential curve has been fitted to the discrete points).

k Adaptive Linear Modelling - 21 /

The largest time constant mmax corresponds to the s-
mallest eigenvalue and it is given by:

—1

o |n(1 - 5Amin/Amax)’
—1

~ In(1 —6/C(R))
where C(R) = Amax/Amin-

Tmax

Networks with large condition numbers have compo-
nents of the weight vector which posses very large
time constants and they learn the information which
lies along the minor principal axis very slowly.

The condition of the matrix is not allowed to be infi-
nite, as the zero eigenvalues do not influence the rate
of convergence; they only influence the actual values
of the weights.

k Adaptive Linear Modelling - 22 /

Condition of linear models

Consider the following linear model:
y(t) = a1()wi(t — 1) + ax(t)wa(t — 1);
al(t) =1;
ag(t) = a:(t);

and it is defined on the interval [a,b]. The correspond-
ing auto-correlation matrix is:

b b
R — p(z)dz [zp(z)dzx |
ff:ﬂp(w)dm [x?p(z)da

for a given probability function p(z) on [a,b].

The eigenvalues of C(R) vary according to the val-
ues of a and b and the associated probability density
function.

The simplest probability density function is a uniform
distribution on the interval [a,b] given by:

1/(b—a) if x€la,b],
p(@) = { 0/() l)thervE/ise]

k Adaptive Linear Modelling - 23 /

Linear models defined on positive intervals

The condition of a linear model is now derived for
training data which have a uniform probability densi-
ty function on the interval [0,b]. This produces an
autocorrelation matrix of the form:

b1 [Y1de b7 [7 ade
R = ~1 —1 (b2 :
b fo xdxr b fo r<dx

k Adaptive Linear Modelling - 24 /

Linear models defined on positive intervals

When b is close to zero, the power of the bias term
dominates the other terms in R and the network is
slow to learn the information contained in the linear
term.

AS b increases the power of the linear term increases
and the eigenvalues move closer together until b = /3.
At this point, the power of the bias term is equal to
the power of the linear term, so R is symmetrical with
equal diagonal elements (although the off-diagonal el-
ements are significant). Then, as b increases still fur-
ther, the power of the linear term starts to dominate
the other elements of R.

4
10

Figure 415 Condition of the autocorrelation matrix for the linear model, when the input is
defined on the interval [0, b].

k Adaptive Linear Modelling - 25 /

Linear models defined on symmetric intervals

The condition of a linear model is now derived for
training data which have a uniform probability densi-
ty function on the interval [-b,b]. This produces an
autocorrelation matrix of the form:

i (2b)~1 ffb 1dez (2b)7! f_bb xdz
- (20)b7t [* wda (2b)7F [°, 2%dx |

- (26)7! [°, 1da (26)~10
0 (26)71 [°, a?dx |

R =

The off-diagonal elements are zero because the inte-
grands are anti-symmetric functions and the interval
IS symmetric.

There is a unique minimum at b = v/3 where C(R) = 1,
the two eigenvalues are equal since R is diagonal with
equal diagonal terms. Therefore to make a network as
well conditioned as possible, the autocorrelation matrix
should be nearly diagonal with terms of equal magni-
tude.

k Adaptive Linear Modelling - 26 /

Linear models defined on symmetric intervals

If it is required that C(R) = 1, then instead of inte-
grating over [—+/3,+/3], the bias output could be set
to be 1/4/3 and the integral taken over the interval
[—1, 1] since this produces the same result.

It should also be noted that for any input probabili-
ty density function the power of a unity bias term is
always greater than or equal to power of the linear
term, which is defined on the interval [—1,1]. Hence
the condiion of the basic models can be drastically
improved by choosing the size of the bias term appro-
priately and by altering the domain of the linear term.

C(R)

0 1 2 3 4 5
b

Figure 416 Condition of the autocorrelation matrix for a linear model, when the input is
defined on the interval [—b, b].

k Adaptive Linear Modelling - 27 /

Orthogonal basis functions

It has been shown that a network is well conditioned
if the diagonal elements of the autocorrelation matrix
are approximately equal and the off-diagonal elements
are almost zero as this results in a condition number
of almost unity.

The requirements that the off-dignoal elements must
be zero means that the inner product:

b
(ai, a5) = / ai(2)aj(@)p(a)de =0 for i # j;

and the requirement that the diagonal terms have e-
qual power means that the inner product:

b
(ai,a;) = / ai(z)a;(x)p(x)dxr =c for:=1,...,p;

Two functions whose inner product is identically zero
are said to be orthogonal on the interval [a,b]. If in
addition (ai,a;) = 1,Vi, the functions are said to be or-
thonormal. Therefore, when the set of basis function-
S a;,_, forms an orthonormal set, the network is well
conditioned for gradient descent learning and one-shot
learning can be achieved by setting § = 1/(ai, a;)

k Adaptive Linear Modelling - 28 /

4 N

Multi-Layer Perceptrons and Back-Propagation

X1

network

network
output

Xn

Figure 4.17 Three-layer network with linear input nodes and a linear output node.

{1 if i =0,
Y=Y f(ui(t)) otherwise
where u;(t) = Z?:O xj(t)wm- = XT(t)Wz' fore =1,2,...,pl

When the network has an output node with a linear
transfer function its output is:

y(t) =) aj(t)wo; = a” (t)wo.

7=0

k Adaptive Linear Modelling - 29 /

e Output layer learning:

Awo = 6oE(e,(a(t))
— _5O(RWO - p)a

where R is hidden layer autocorrelation matrix,
p is the cross-correlation vector, ¢g is the learn-
ing rate of the output layer and Awg denotes the
change in the weight vector.

e Hidden layer learning:
The network output depends nonlinearly on the
hidden layer weight vectors, so using the local gra-
dient information gives an update rule of the form:

Aw; = —5iw0,iE (W%(t))() ,

fore=1,2,...,p

where §; is the learning rate for the ith-node in
the hidden layer, and wq; is the ith element of the
output layer weight vector.

Adaptive Linear Modelling - 30 /

condition of the linear optimisation problems

e the rate of convergence of the weight vector of
the output node depends on the condition of the
hidden layer autocorrelation matrix C(R) and the
rate of adaptation of the hidden layer weights;

e if the weights in the hidden layer are fixed, the
exists a stationary global minimun in the output’s
layer weight space;

e if the hidden layer weights adapt, the global mini-
mum of the output layer is non-stationary and its
position in weight space changes as the structure
of the hidden layer is updated;

e \When the global minimum is stationary, the rate
of cconvergence is directly related to C'(R), which
depends on the interaction between p sigmoidal
transfer functions and a single bias node;

k Adaptive Linear Modelling - 31 /

Backwards error propagation through a sigmoid

e When the output error is uncorrelated with the
derivative of the sigmoid, the hidden layer adap-
tation can be decomposed into a set of linear opti-
misation subproblems and the rate of convergence
is a function of the condition of these linear sub-
networks:

e However, the strength of the output error which
is back propagated through the network is direct-
ly related to the form of the nonlinear transfer
functions used in each node;

e [hereason for the usual slow convergence of ML P-
S is due to the use of the sigmoidal function which
has a small derivative, together with a choice of
very small learning rates;

e One way of improving the convergence is the choice
sigmoidal functions which have larger derivatives
than the usual ones associated with adequate learn-
ing rates.

k Adaptive Linear Modelling - 32 /

14

Sigmoidal transfer functions

1 -
1 — exp(—2u) _
fo(u) = tanh(u) = ¥ exp(—20) e (-1,1);
— 2 1 (—1,1);

fo(u) = 2f1(2u) — 1,

dfi(u) _ exp(—u) B B
du (14 exp(=u))2 f1(w)(1 = f1(w)))
€ (0,1/4];

fa(u) =2f1(u) — 1.

k Adaptive Linear Modelling - 33

Sigmoidal transfer functions

tanh function

(-1,1) sigmoid

Figure 4.18 Three nonlinear sigmoidal transfer functions (solid lines) and their derivatives
(dashed lines).

k Adaptive Linear Modelling - 34

4 N

Example: Single node layer network

Let's suppose that our network consists of a single
linear node with a gain of 1/2

it)[Y C it
W

Figure 4.19 Single-ayered network with a inear output node.

The weight update can be expressed as:

6 des(t) B dy(t) du(t)
Aw = _§E< dw > = ok (du(t) dw €y (!)>

= 2 B(e,(t)a(t))

The expected a posteriori output y(t), must be eval-
uated, and is equal to:

E(y(t)) =E (“S')w LGN w)

2
=E (y(t’) +E (&ﬁtl)))

k Adaptive Linear Modelling - 35 /

for a(t) = 1.0

The a posteriori output error in terms of the a priori
output error can be written as:

)
E ((—:g(t/)) — (1 _ Z) E(ey ().
For this case the a priori plant outputzerror is being
scaled by 1/4 which is equal to E((%) :

The learning rate 6 must be chosen to compensate
this quantity or adaptation can be very slow.

k Adaptive Linear Modelling - 36 /

The output layer

e If f is nonlinear no exact scaling factor for the
learning rate can be determined to counteract the
size of f/;

e If it is assumed that the ouput error is not corre-
lated with the derivative of the sigmoid one can

use the inverse of the squared derivative —E(f,l(u))g;
i = B(P(w)? = —
36’
fa —
1
f3 = E(f'(u))? = 9

e If it is correlated then one should use:
fi = min(f'(v))~? = 16,
fo —
fz — min(f'(u))™* = 4.

k Adaptive Linear Modelling - 37 /

The hidden layer

e |learning rate should be multiplied by:
[wo i E(f'(t)ai(t))] .

e together with the inverse of Amax;

e output layer must learn faster than the hidden
layer:;

e they should be chosen to be normalised (sum one),
0.7 and 0.3 for example;

In summary:

e output layer:

5. — 0.7 %9
° T Amax E(F ()]
e hidden layer:
5 =m_pi 0.36

21 Amax[wo E(@ f (w2

k Adaptive Linear Modelling - 38 /

One example: MLP trained using gradient
descent

Consider a desired function that can be modelled ex-
actly by a three-layered network, as shown in the Fig-
ure below:

f = sigmoid with output
[0.1]

Input Output

Wl,l: Wo‘l:
1 1

X y

hias hias

The single input single output network has linear input
and ouput node transfer functions, there exists one
sigmoidal node in the hidden layer whose outpus lies
in the interval (0,1), plus a unit output bias node in
each layer and the desired value of each weight is one.

k Adaptive Linear Modelling - 39 /

Two networks will be compared

The first one has the same structure as the desired
function, with sigmoids whose output lies in (0,1) and
unity bias terms. Therefore, all desired weights are
equal to unity.

The simulations are started with the hidden layer weight
vectors being correct and the ouput layer weights be-
ing set to zero.

The training samples are chosen so that a uniform
probability density function on the output of the hidden
layer sigmoid is produced.

f = sigmoid with output
0y

Input QOutput

=
LI
=
S

bias > hias

k Adaptive Linear Modelling - 40 /

The second network has the same basic structure as
the desired network, except that the output of the
sigmoid lies in the interval (-1,1) (function f3) and the
outputs of the bias nodes are reduced, so that the
power of the bias and the linear/sigmoidal nodes are
the same.

output

wi,0 —
bias x/ 3 bias woo = (

3472

Sl

The training data are uniformly distributed on the out-
put of the hidden layer node and so the output of the
hidden layer bias is 1/+/3.

The probability density distribution of the training data
in the input layer is:

exp(—z + 1)
(14 exp(—z 4+ 1))2

p(x) =

k Adaptive Linear Modelling - 41 /

Thus the power of the input linear node is:

/+°° exp(—z 4 1)
o 14 exp(—z+1))2
So the output of the input layer bias node is set equal

to

\/(3+7r2)/3. Thus the nodes in each layer have the
same power, and in the output layer they are orthog-
onal.

de = 72 /3,

The output layer desired weight vector is given by wg =
(1.5/4/3,0.5)T), and the desired hidden layer weight
vector is w1 = (1/3/(3 + 72),1.0)T. The inital weight
vectors have the correct values for the hidden layer
weights and a zero output layer weight vector.

For each network the learning rate for the output layer
is set to 0.7/Amax and 0.3 x 36/ Amax

k Adaptive Linear Modelling - 42 /

The learning history

0 20 40 60 80 100
batch updates

Figure 421 MLP initial learning history. The solid line is generated by a standard (0,1)

sigmoidal network, whereas the dashed line corresponds to a symmetrical (-1,1) sigmoidal
network.

0 10 20 30 4 50
batch updates (hundreds)
Figure 422 MLP final learning history. The faster rate of convergence (dashed line) corre-

sponds to a symmetrical (—1,1) sigmoidal network, whereas the slower rate of convergence
(solid line) is generated by a (0, 1) sigmoidal network.

k Adaptive Linear Modelling - 43

o

The weight update history

Normalised Absolute Weight Ezrors

103
10°

(0, 1) sigmoidal MLP (~1,1) sigmoidal MLP
b | wgo W W Win | Yoo W1 Yo ¥y
01 10 10 00 00 | 10 10 00 00
10 | 1.30e! 25le™! 94de® 1.00e7! | 48672 4.08e7? 337! 5.27e

4.60e=? 8.95¢~% 1.36e~! 1.65¢7!
141e=® 344e73 8.19¢° 6282

1.04e™% 6.81e% 3.07e% 1.38¢72
8.4de7 17de 4.18¢0 3.42¢75

Table 4.2 The absolute value of the normalised errors in the individual weights for a (0, 1)
and a (~1,1) sigmoidal MLP. The superior rate of weight convergence for the latter network

s obvious.

Adaptive Linear Modelling - 44

