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Instantaneous learning algorithms

e Many ANNs can aproximate arbitrarily well any continuous lin-
ear function, with network’s architecture and learning algorithm

determining how easily learning proceeds;

e For on-line modelling and control, it is unrealistic to assume that
the input signal will excite the whole of the state-space, and so
the effects of a reduced input signal on the overall functional

approximation must be investigated;

e Hence, learning must be local, i.e., the parameters adapted

should only affect the output of the network locally;

e Instantaneous learning rules are formulated by minimising in-
stantaneous estimates of a performance function, which is gen-
erally the MSE output error and the parameters are updated

using gradient descent rules;
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Instantaneous learning algorithms

e The AMNs depend linearly on a set of weights and therefore
instantaneous learning laws are appropriate for estimating these
weights. Learning is local due to the characteristics of the basis

functions.

e An important issue is the relationship between instantaneous
and true gradient descent. The instantaneous estimates made
of the gradient introduces noise into the updating algorithm,
causing erratic weight updates, and when modelling error exists,

the parameters converge to a minimal capture zone.

e The size of the gradient noise is related to the condition of the
autocorrelation matrix, providing a direct link with the rate of

convergence of the true gradient descent.
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Instantaneous learning algorithms

Instantaneous Gradient Descent
The MSE of the network is given by:

J = E(E(t)), (1)

Y

where €,(t) is the a priori output error (y(t)—y(t)), and E(.) is the expectation
operator.

The instantaneous estimate of the MSE at time ¢ is:

Ti(t) = E(t), (2)

and the instantaneous estimate of the gradient of the performance function at
time ¢ is given by:

.J:(t)
20— e, (t)alt) (3)

Instantaneous gradient descent training rules update the weight vector in
proportion to the negative instantaneous gradient, producing a learning rule of

the form:
Aw(t — 1) = dey(t)a(t), (4)

where Aw = w(t) — w(t —1).
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Instantaneous learning algorithms

e The search path is parallel to the transformed input vector and the step

size is equal to the learning rate multiplied by the instantaneous output

error.

e This is the well known LMS instantaneous gradient descent rule, which

has the basic form:

weight update = scalar * transformed input vector I

e If any of the weights in a AMN have not been initialised then it is possible

to use:

*wi(t) =

( if the ¢-th weight was
y(t) not initialised  and,
ai(t) > 0
w;(t—1 O€, (t)a;(t herwi (5)
| wi(t — 1) + dey(t)a;(t) otherwise
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Instantaneous learning algorithms

Performance Surface

An instantaneous peformance surface generated by a single train-

ing is shown in the Figure below.

information supplielc\i by
training pair {a(z), y(t)}

Figure 5.1  An instantaneous performance surface in two-dimensional weight space. At time
t, the information supplied to the network is contained in the data pair: a(t) = (0.6,0.4),

9(t) = 3.

Each training pair presented to the network produces one equation

which the p weights must satisfy:

T A~
a’ (tw =y(t), (6)
in order to store the data exactly.
Hence the performance surface is singular, as many weight vectors

satisfy this equation and the instantaneos optimisation problem is

underconstrained.
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Instantaneous learning algorithms

When the training information is rich enough, or the input is sufi-
ciently exciting, the global minima of sucessive performance surfaces
intersect at a unique point which is the gloabl minimum ot the true

MSE performance function as ilustrated below.
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54 \‘\\\\\
Ji(1) information supplied by
. first training pair
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J(2) . . .
information supplied by
05 second training pair
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6 o 2w,

Figure 5.2 The performance surfaces generated by the two training pairs: a(1) = (0.6,0.4),
7(1) = 3 and a(2) = (0.2,0.8), §(2) = 3. The global minima of each of these performance
surfaces (bold lines) are projected onto the base of the figure (dashed lines) where they
intersect at a unique point. The contour plot of the average or expected MSE is also shown.
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Instantaneous learning algorithms

The instantaneous autocorrelation matrix R(t) associated with

the J;(t) is of the form:
R(t) = a(t)a’(t) (7)

This a p X p matrix which has only one non-zero eigenvalue
(|| @(t) ||3) and the corresponding eigenvector is a(t).

Therefore, the curvature of the instantaneous performance surface
along the major axis, a(t), is 2 || a(t) ||3 and is flat along all the
remaining axes.

Learning stability is assured if:

0<d<

2
COIE ®
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Instantaneous learning algorithms

Output Error Reduction

ey (W) > ey (0] if 0 & [0.2/ | a(t) 3]

ey (t)] = ley(8)] i d=00rd=2/] a(t) |
ey (0)] <ley(8)] i a€(0.2/ | aft) ||2)

ey ()] =0 if 0 =1/ a(t) |3
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Instantaneous learning algorithms

Normalised Least Mean Squares

Based on the fact that:

e, ()] =0

when:
0 =1/ a(t) |5

|t is possible to derive a Normalised LMS which is of the following

form:
( if the i-th weight was
y(t) not initialised and,
i(t) =
wilt) = 5 ait) > 0
(4 dey(l) : (9)
sz(t 1)+ Ha@)”%al(t) otherwise
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Instantaneous learning algorithms

Normalised MSE performance function

e The output error reduction does not depend on the magnitude of
the transformed input vector when the weight vector is trained

using the NLMS learning rule;

e However, the dependence of the learning rate on the size of
the transformed input vector means that the NLMS rule no

longer minimizes the MSE but a normalised MSE performance

_ & (1)
J‘Ega®u>' (10)

e If there exists a unique weight vector for which ¢,(t) = 0 V¢ or

function:

if || a(t) ||2= cte, Vt, the optimal weight vectors are equivalent.
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Instantaneous learning algorithms

Geometric Interpretation of the LMS rules

e the geometric interpretation was first proposed by Kaczmarz
(1937), when he proposed the NLMS rule for solving a consistent

set of simultaneous linear equations;

e The LMS and the NMLS rule have the same basic form:
Aw(t — 1) =c(t)a(t). (11)

e The desired output of the network at time ¢ is 3(¢) and thus the

aim is to update the weight vector w(t — 1) so that:
g(t) = a’ (thw(t): (12)

e the solution to this equation lies on the (p — 1)-dimensional so-
lution hyperplane h(t) which is composed of the set of solutions

to the following equation:

0=a(thw(t) —4(t); (13)
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Instantaneous learning algorithms

Geometric interpretation of the LMS rules

The search direction for the LMS rule is parallel to the transformed
input vector and the transformed input vector is perpendicular to
the solution hyperplane, which means that the weight change is

also perpendicular to the solution hyperplane as shown in the Figure

below:

W2 ¢\\ _
~ . % W(t 1)
\.\‘
ew(r)
h(2) e /l(t)
Y1) =al(t)w 4

>

W)

Fig.ure 5.3  Asolution hyperplane (dashed line) and perpendicular learning in two-dimensional
weight space.
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Instantaneous learning algorithms

The effect of different values of 4 used in NLMS

6>2 A 1<§<2
L w(t-1) W2l ha) w(t-I)
w(1) .
WT- W -
‘ 0<d<l1 | 6<0
w2 . w2 t
. h(t) / Wil U / v
s.\\\ W(t) \\\\ W(t'l)
Wy g w g

Figure 5.4 The effect on the weight updates for different values of § in the NLMS adaptation
rule.
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Instantaneous learning algorithms

Principle of minimal disturbance

e The LMS family of learning rules embody the principle of mini-
mal disturbance, that is to say, the change made to the weight

vector is the smallest which causes the new desired output to

be stored:

e Since the weight change is the smallest of all the possible changes
which the new weight vector to store the new desired output, it

interferes minimally with the learnt information.

w(t-1)

wi P

Figure 5.5 The principle of minimal disturbance for LMS learning rules.
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Instantaneous learning algorithms

Weight update using NLMS
e the function to be approximated:
y(t) = —0.5 + z(t).

e Model 1:

= y(t) = ar(z(t))wi + as(x(t))ws

a; =10 ay=z(t)

—0=1.0

— Normalised condition number: C(R) = 18.6

— Initial value: w(0) = (-1.0,0.0)"

— Converges (|| €,(t) ||co< 1075) after 270 iterations.

e Model 2:
= y(t) = ar(z(t))wi + as(w(t))ws
a; =1.0—2z(t) ay=x(t)
-40=1.0
— Normalised condition number: C(R) = 3.66
— Initial value: w(0) = (0.0, —-0.5)

— Converges (|| €,(t) ||co< 107°) after 50 iterations.
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Instantaneous learning algorithms

Example: weight update using NLMS

T4 075 05 025 0

wi
Figure 5.6 Weight convergence for a linear model trained using the NLMS rule. The contours
are given by { = 0.001,0.003,0.01,0.03,0.1,0.3. The zone of convergence (spanned by the
solution hyperplanes) is the shaded area.

05 025 0 025 05
wi

Figure 5.7 Weight convergence for a B-spline model trained using the NLMS rule. The
contours are given by £ = 0.001,0.003,0.01,0.03,0.1, and the shaded area shows the zone of
convergence.
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Instantaneous learning algorithms

Parameter convergence

Suppose that there is a set of training examples {@(t), 7}, which
is cyclically presented to an AMN trained using the NLMS rule.

Assuming that there exists a unique weight vector w such that:
A T o~
g=a w Vt (14)

Although this assumption is not reasonable it is possible to prove
that under this conditions and if the training data is sufficiently rich,
output convergence implies also implies parameter convergence

This is illustrated in the next Figure where the weight vector is
projected orthogonally onto each solution hyperplane and because
the solution hyperplanes intersect at a unique point (consistent da-

ta), convergence of the learning algorithm is obvious.
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Instantaneous learning algorithms

Parameter convergence

B hO) h()

wr

Figure 5.8 Parameter convergence for a consistent set of training data. Each training pair
generates a solution hyperplane (dotted line) and because the set is consistent, they intersect
at a unique point. The weight vector is projected orthogonally onto each solution hyperplane

at each training iteration.

SLIDE 19



Instantaneous learning algorithms

Weight and output convergence

e The fact that the size of the weight vector error and the instan-
taneous output error decrease for each update do not imply that

the overall MSE decreases for each update;

e The MSE might increase due to the effect of the update on the

information already stored in the weight vector;

e Storing one training example, causes a significant reduction in
the information retained about neighbouring data pairs, and this

effect is known as learning interference;

e The instantaneous estimates which are being formed of the gra-
dient introduce noise into weight updates, and this can cause

the overall MSE to increase.
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Instantaneous learning algorithms

Model mismatch and output dead-zones

e When there is modelling error or measurement noise output

dead-zones can be used to counteract this behaviour partially;

e The technique does not update the weight vector when the
output error is less than some predefined value (, and if it is

greater, the difference is used in place of the output error;

e T his can be written as:

L if le, ()] < ¢
e(t) =S e (t)+ ¢ ife,(t) < —C (15)

Ley(t) —( ifeyt) > ¢

d

where €

is the modified output error used in place of the normal

output error in the LMS learning rules.
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Instantaneous learning algorithms

Stochastic approximation

e As an alternative to counteracting model mismatch using output
dead-zones, it is possible to filter out the gradient noise using a

stochastic approximation LMS learning rule;
e The stochastic approximation LMS learning rule is the following:

1. assign an individual learning rate to each basis function; and

2. reduce 9;, through time as the confidence in a particular

weight increases.

e These modifications retain the fast initial convergence rate while

in the long term filtering out measurement and modelling noise.
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Instantaneous learning algorithms

Rate of convergence

e The rate of convergence of the NLMS learning algorithm de-

pends directly on the orthogonality of the training pattern;

e The rate of the parameter convergence depends on the rela-
tive orientations of the sucessive weight vector errors and the

transformed input vectors;

e Using NLMS with 6 = 1 the learning rate is fast and there is no

interference when the transformed input vectors are orthogonal.

e In the Figure below it is shown the convergence, after two it-
erations, a system with two weights and with the transformed

inputs a(1) and a(2) after two iterations.

wal . h(2)
T w(0)

~. A,
W,/
NG

’

w(2)

w(l) . h(D)

wi

’ . . .
Figure 5.10 Orthogonal solution hyperplanes in two-dimensional weight space.
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Instantaneous learning algorithms

Slow convergence with correlated data

In contrast, if the transformed vectors are nearly parallel (i.e.
when the set of the transformed input vector are ill-condiitoned)

the convergence can be very slow.

w2
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Figure 5.11 lll-conditioned solution hyperplanes in a two-dimensional weight space.
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Instantaneous learning algorithms

Noisy instantaneous gradient estimates

e the minimal capture zones are simply due to the noisy estimates

of the true gradient when instantaneous learning rules are used;

e The noise in the gradient estimate makes it impossible to de-
termine when the current set of weights are optimal when mod-
elling errors exists between the desired function and the network,
and so adaptation does not stop, even if the current weight vec-

tor is optimal;
e The instantaneous covariance of the gradient noise is given by:
T
N = cov(ey) = Elegeg).
e The covariance of the weight change can be written as:

cov(Aw) = Y
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Instantaneous learning algorithms

Minimal capture zone

e when no optimal weight vector exists which can reproduce the
training data exactly, the weights converge to a domain rather

than to a unique value;

o The size and the shape of these minimal capture zones depends
on the training samples, their order of presentation, the inter-
nal representation of the network, the adaptation rule and the

learning rate 9;
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Instantaneous learning algorithms

A two-dimensional capture zone is shown in the Figure below:

A - w(0)
()

Wy

w1
’
Figure 5.16 A two-dimensional minimal capture zone (shaded area) generated by three in-
consistent solution hyperplanes. The weights no longer converge to an optimal value.
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