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Abstract

Learning an input-output mapping from a set of examples, of the type that many

neural networks have been constructed to perform, can be regarded as synthesizing

an approximation of a multi-dimensional function, that is solving the problem of hy-

persurface reconstruction. From this point of view, this form of learning is closely

related to classical approximation techniques, such as generalized splines and regular-

ization theory. This paper considers the problems of an exact representation and, in

more detail, of the approximation of linear and nonlinear mappings in terms of sim-

pler functions of fewer variables. Kolmogorov's theorem concerning the representation

of functions of several variables in terms of functions of one variable turns out to be

almost irrelevant in the context of networks for learning. We develop a theoretical

framework for approximation based on regularization techniques that leads to a class

of three-layer networks that we call Generalized Radial Basis Functions (GRBF), since

they are mathematically related to the well-known Radial Basis Functions, mainly used

for strict interpolation tasks. GRBF networks are not only equivalent to generalized

splines, but are also closely related to pattern recognition methods such as Parzen

windows and potential functions and to several neural network algorithms, such as

Kanerva's associative memory, backpropagation and Kohonen's topology preserving

map. They also have an interesting interpretation in terms of prototypes that are

synthesized and optimally combined during the learning stage. The paper introduces

several extensions and applications of the technique and discusses intriguing analogies

with neurobiological data.
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1 Learning as Approximation

The problem of learning a mapping between an input and an output space is essentially

equivalent to the problem of synthesizing an associative memory that retrieves the appropri-

ate output when presented with the input and generalizes when presented with new inputs.

It is also equivalent to the problem of estimating the system that transforms inputs into

outputs given a set of examples of input-output pairs. A classical framework for this prob-

lem is approximation theory. Related �elds are system identi�cation techniques when it is

possible to choose the input set and system estimation techniques when the input-output

pairs are given. A suggestive point of view on networks and classical representation and

approximation methods is provided by Omohundro (1987) and an interesting review of net-

works, statistical inference, and estimation techniques can be found in Barron and Barron,

1988. Learning from the point of view of approximation has been also considered among

others by J. Schwartz (1988), Poggio et al. (1988, 1989), Aloimonos (1989), Hurlbert and

Poggio (1988) and Poggio (1975).

Approximation theory deals with the problem of approximating or interpolating a contin-

uous, multivariate function f(X) by an approximating function F (W;X) having a �xed num-

ber of parameters W (X and W are real vectors X = x1; x2; :::; xn and W = w1; w2; :::; wm).

For a choice of a speci�c F , the problem is then to �nd the set of parameters W that pro-

vides the best possible approximation of f on the set of \examples". This is the learning

step. Needless to say, it is very important to choose an approximating function F that can

represent f as well as possible. There would be little point in trying to learn, if the chosen

approximation function F (W;X) could only give a very poor representation of f(X), even

with optimal parameter values. Therefore, it is useful to separate three main problems:

1) the problem of which approximation to use, i.e. which classes of functions f(X) can be

e�ectively approximated by which approximating functions F (W;X). This is a representa-

tion problem. Our motivation is similar to Minsky's and Papert's in studying the properties

and limitations of Perceptrons to deal with speci�c classes of problems. The issue of complex-

ity of the approximation arises naturally at this point. The complexity of the approximation

{ measured, for instance, by number of terms, is directly related to the scaling problem of the

neural network literature (Rumelhart et al., 1986), to the concept of order, a central point

in Perceptrons and to the curse of dimensionality, well-known in statistical estimation.

2) the problem of which algorithm to use for �nding the optimal values of the parameters

W for a given choice of F .

3) the problem of an e�cient implementation of the algorithm in parallel, possibly analog

hardware.

This paper deals with the �rst two of these problems and is especially focused on the �rst.

1.1 Networks and Approximation Schemes

Almost all approximation schemes can be mapped into some kind of network that can be

dubbed as a \neural network" 1. Networks, after all, can be regarded as a graphic notation

for a large class of algorithms. In the context of our discussion, a network is a function

1Many instances of Neural Networks should be called Non-Neural-Networks, since their relation to bio-

logical neurons is weak at best
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represented by the composition of many basic functions. To see how the approximation

problem maps into a network formulation, let us introduce some de�nitions.

To measure the quality of the approximation, one introduces a distance function � to

determine the distance �[f(X); F (W;X)] of an approximation F (W;X) from f(X). The

distance is usually induced by a norm, for instance the standard L2 norm. The approxima-

tion problem can be then stated formally as:

Approximation problem If f(X) is a continuous function de�ned on set X, and

F (W;X) is an approximating function that depends continuously on W 2 P and X, the

approximation problem is to determine the parameters W � such that

�[F (W �
;X); f(X)] < �[F (W;X); f(X)]

for all W in the set P .

With these de�nitions we can consider a few examples of F (W;X), shown in the �gure

1:

� the classical linear case is

F (W;X) = W �X

where W is an m � n matrix and X is an n-dimensional vector. It corresponds to a

network without hidden units;

� the classical approximation scheme is linear in a suitable basis of functions �i(X) of

the original inputs X, that is

F (W;X) = W � �i(X)

and corresponds to a network with one layer of hidden units. Spline interpolation and

many approximation schemes, such as expansions in series of orthogonal polynomials,

are included in this representation. When the �i are products and powers of the input

components Xi, F is a polynomial.

� the nested sigmoids scheme (usually called backpropagation, BP in short) can be writ-

ten as

F (W;X) = �(
X
n

wn�(
X
i

vi�(:::�(
X
j

ujXj):::)))

and corresponds to a multilayer network of units that sum their inputs with \weights"

w; v; u; : : : and then perform a sigmoidal transformation of this sum. This scheme (of

nested nonlinear functions) is unusual in the classical theory of the approximation of

continuous functions. Its motivation is that
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F (W;X) = �(
X
n

wn�(
X
j

ujXj))

with � being a linear threshold function, can represent all Boolean functions (any

mapping S from I = f0; 1gN into f0; 1g can be written as a disjunction of conjunctions,
which in terms of threshold elements becomes the above expression, where biases or

dummy inputs are allowed). Networks of this type, with one layer of hidden units, can

approximate uniformly any continuous d-variate functions (see, for instance, Cybenko,

1989 or Funahashi, 1989; Cybenko, 1988 and Moore and Poggio, 1988, among others,

proved the same result for the case of two layers of hidden units).

In general, each approximation scheme has some speci�c algorithm for �nding the optimal

set of parameters W . An approach that works in general, though it may not be the most

e�cient in any speci�c case, is some relaxation method, such as gradient descent or conjugate

gradient or simulated annealing, in parameter space, attempting to minimize the error �

over the set of examples. In any case, our discussion suggests that networks of the type

used recently for simple learning tasks can be considered as speci�c methods of function

approximation. This observation suggests that we approach the problem of learning from

the point of view of classical approximation theory.

In this paper, we will be mainly concerned with the �rst of the problems listed earlier,

that is the problem of developing a well-founded and su�ciently general approximation

scheme, which maps into multilayer networks. We will only touch upon the second problem

of characterizing e�cient \learning" algorithms for estimating parameters from the data.

The plan of the paper is as follows. We �rst consider the question of whether exact, instead

of approximated, representations are possible for a large class of functions, since a theorem of

Kolmogorov has been sometime interpreted as supporting this claim. We conclude that exact

representations with the required properties do not exist. Good and general approximating

representations, however, may exist. Thus section 3 discusses the formulation of the problem

of learning from examples as the problem of approximation of mappings and, in particular,

as hypersurface reconstruction. From this point of view, regularization techniques used for

surface reconstruction can be applied also to the problem of learning. The problem of the

connection between regularization techniques and feedforward, multilayer networks is left

open. Sections 4 and 5 provide an answer to this question by showing that regularization

leads to an approximation scheme, called Generalized Radial Basis Functions (GRBFs),

which is general, powerful and maps into a class of networks with one layer of hidden units.

We show that GRBFs are mathematically strictly related to the well-known interpolation

method of Radial Basis Functions. Section 4 reviews some of the existing results about RBF,

while Section 5 derives the main result of this paper, that is the derivation of GRBFs from

regularization. In section 6 we discuss how the framework of GRBFs encompasses several

existing \neural network" schemes. The possible relevance of the work to neurophysiology

is then briey outlined, together with a number of interesting properties of gaussian radial

basis functions. Section 8 discusses several extensions and applications of the method. We

conclude with some comments on the crucial problem of dimensionality faced by this and

any other learning or approximation technique2.

2A preliminary version of the ideas developed here have appeared in (Poggio and the sta�, 1989).
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a. b.

c.

Figure 1: (a) A linear approximating function maps into a network without a hidden layer

with linear units. The \weights" of the connections correspond to the matrixW { the linear

estimator. (b) Polynomial estimators and other linear combinations of nonlinear \features"

of the input correspond to networks with one hidden layer. In the case of polynomials the

hidden units correspond to products (�) and powers of the components of the input vector.

The �rst layer of connections is �xed; the second is modi�ed during \training". (c) A back-

propagation network with one layer of hidden sigmoid units. Both sets of connections {

from the input layer to the hidden units (w1) and from there to the output layer (w2) { are

modi�ed during training.
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2 Kolmogorov's Theorem: An Exact Representation

is Hopeless

Before discussing more extensively the approximation problem, it is obviously important to

answer the question of whether an exact representation exists for continuous functions in

terms of simpler functions. For instance, if all multivariate functions could be represented

exactly and nicely as the sum or product of univariate ones, we could use networks consisting

of units with just one input and one output. Recently, it has been claimed that a theorem

of this type, due to Kolmogorov (1957), could be used to justify the use of multilayer net-

works (Hecht-Nielsen, 1987; Barron and Barron, 1988; see also Poggio, 1982). The original

statement (Lorentz, 1976) is the following:

Theorem 2.1 (Kolmogorov, 1957) There exist �xed increasing continuous functions hpq(x),

on I = [0; 1] so that each continuous function f on I
n can be written in the form

f(x1; :::; xn) =
2n+1X
q=1

gq(
nX

p=1

hpq(xp));

where gq are properly chosen continuous functions of one variable.

This result asserts that every multivariate continuous function can be represented by the

superposition of a small number of univariate continuous functions. In terms of networks

this means that every continuous function of many variables can be computed by a network

with two hidden layers whose hidden units compute continuous functions (the functions gq
and hpq). Can this be considered as a proof that a network with two hidden layers is a good

and powerful representation? The answer is no. There are at least two reasons for this.

First, in a network implementation that has to be used for learning and generalization,

some degree of smoothness is required for the functions corresponding to the units in the

network. Smoothness of the hq and of g is important because the representation must be

smooth in order to generalize and be stable against noise. A number of results of Vituskin

(1954, 1977) and Henkin (1967) show, however, that the inner functions hpq of Kolmogorov's

theorem are highly nonsmooth (they can be regarded as \hashing" functions, see Appendix

A and Abelson, 1978). In fact Vitushkin (1954) had proved that there are functions of more

than one variable which are not representable as the superposition of di�erentiable functions

of one variable. Little seems to be known about the smoothness of g. Kahane (1975) shows

that g can be represented as an absolutely convergent Fourier series. It seems that g could

be either smooth or non-smooth, even for di�erentiable functions f .

The second reason is that useful representations for approximation and learning are

parametrized: they correspond to networks with �xed units and modi�able parameters. Kol-

mogorov's network is not of this type: the form of g depends on the speci�c function f to

be represented (the hq are independent). g is at least as complex, in terms of bits needed to

represent it, as f .

A stable and usable exact representation of a function in terms of networks with two or

more layers seems hopeless. The result obtained by Kolmogorov can then be considered as

a \pathology" of the continuous functions. Vitushkin's results however, leave completely
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open the possibility that multilayer approximations exist. In fact it has been recently proved

(see, for instance, Funahashi, 1989; Moore and Poggio, 1988) that a network with two layers

of hidden sigmoidal units can approximate arbitrarily well any continuous function. It is

interesting to notice that this statement still holds true if there is just one hidden layer

(Carrol and Dickinson, 1989; Cybenko, 1989; Funahashi, 1989). The expansion in terms of

sigmoid functions can then be regarded as one of the possible choices for the representation

of a function, although little is known about its properties. The problem of �nding good

and well founded approximate representations will be considered in the rest of the paper.

3 Learning as Hypersurface Reconstruction

If we consider learning from the perspective of approximation, we can draw an equivalence

between learning smooth mappings and a standard approximation problem, surface recon-

struction from sparse data points. In this analogy, learning simply means collecting the

examples, i.e., the input coordinates xi; yi and the corresponding output values at those

locations, the height of the surface di. This builds a look-up table. Generalization means

estimating d in locations x; y where there are no examples, i.e. no data. This requires

interpolating or, more generally, approximating the surface between the data points. Inter-

polation is the limit of approximation when there is no noise in the data. This example,

given for a surface, i.e., the graph in R
2 � R, corresponding to the mapping from R

2 to

R, can be immediately extended to mappings from R
n to R

m (and graphs in R
n � R

m).

In this sense learning is a problem of hypersurface reconstruction. Notice that the other

tasks of classi�cation and of learning boolean functions may be regarded in a similar way.

They correspond to the problems of approximating a mapping Rn ! f0; 1g and a mapping

f0; 1gn ! f0; 1g, respectively.

3.1 Approximation, Regularization, and Generalized Splines

From the point of view of learning as approximation, the problem of learning a smooth

mapping from examples is ill-posed (Courant and Hilbert, 1962; Hadamard, 1964; Tikhonov

and Arsenin, 1977) in the sense that the information in the data is not su�cient to reconstruct

uniquely the mapping in regions where data are not available. In addition, the data are

usually noisy. A priori assumptions about the mapping are needed to make the problem

well-posed. Generalization is not possible if the mapping is completely random. For instance,

examples of the mapping represented by a telephone directory (people's names into telephone

numbers) do not help in estimating the telephone number corresponding to a new name.

Generalization is based on the fact that the world in which we live is usually { at the

appropriate level of description { redundant. In particular, it may be smooth: small changes

in some input parameters determine a correspondingly small change in the output (it may be

necessary in some cases to accept piecewise smoothness). This is one of the most general and

weakest constraints that makes approximation possible. Other, stronger a priori constraints

may be known before approximating a mapping, for instance that the mapping is linear, or

has a positive range, or a limited domain or is invariant to some group of transformations.

Smoothness of a function corresponds to the function being not fully local: the value at one

8



point depends on other values nearby. The results of Stone (1982, see section 9.2) suggest

that if nothing else is known about the function to be approximated with dimensions, say,

higher than about 10, the only option is to assume a high degree of smoothness. If the

function to be approximated is not su�ciently smooth, the number of examples required

would be totally unpractical.

3.2 Regularization Techniques for Learning

Techniques that exploit smoothness constraints in approximation problems are well known

under the term of standard regularization. Consider the inverse problem of �nding the

hypersurface values z, given sparse data d. Standard regularization replaces the problem

with the variational problem of �nding the surface that minimizes a cost functional consisting

of two terms (Tikhonov, 1963; Tikhonov and Arsenin, 1977; Morozov, 1984; Bertero, 1986;

the �rst to introduce this technique in computer vision was Eric Grimson, 1981). The �rst

term measures the distance between the data and the desired solution z; the second term

measures the cost associated with a functional of the solution kPzk2 that embeds the a priori

information on z. P is usually a di�erential operator. In detail, the problem is to �nd the

hypersurface z that minimizes

X
i

(zi � di)
2 + �kPzk2 (1)

where i is a collective index representing the points in feature space where data are avail-

able and �, the regularization parameter, controls the compromise between the degree of

smoothness of the solution and its closeness to the data. Therefore � is directly related to

the degree of generalization that is enforced. It is well known that standard regularization

provides solutions that are equivalent to generalized splines (Bertero et al., 1988). A large

body of results in �tting and approximating with splines may be exploited.

3.3 Learning, Bayes Theorem and Minimum Length Principle

The formulation of the learning problem in terms of regularization is satisfying from a the-

oretical point of view. A variational principle such as equation (1) can be solidly grounded

on Bayesian estimation (see Appendix D). Using Bayes theorem one expresses the condi-

tional probability distribution Pz=d(z; d) of the hypersurface z given the examples d in terms

of a prior probability Pz(z) that embeds the constraint of smoothness and the conditional

probability Pd=z(d; z) of d given z, equivalent to a model of the noise:

Pz=d(z; d) / Pz(z) Pd=z(d; z) :

This can be rewritten in terms of complexities of hypothesis, de�ned as C(�) = � logP (�)

C(zjd) = C(z) + C(djz) + c (2)

where c, which is related to Pd(d), depends only on d. The MAP estimate corresponds to

considering the z with minimum complexity C(zjd). Maximum likelihood is the special case

of MAP for uniform C(z) (perfect a priori ignorance).
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The maximum of this posterior probability (the MAP estimate) coincides with standard

regularization, that is equation (1), provided that the noise is additive and gaussian and

the prior is a gaussian distribution of a linear functional of z (see Appendix D). Under

these conditions, the �rst term {
P

i kzi � dik2 { in the regularization principle equation 1

corresponds to C(djz), whereas the second term { kPzk2 { corresponds to the prior C(z).

Outside the domain of standard regularization, the prior probability distribution may

represent other a priori knowledge than just smoothness. Piecewise constancy, for instance,

could be used for classi�cation tasks. Positivity, convexity, local behaviors of various types

may be captured by an appropriate prior. Markov Random Field models, which can be

considered as an extension of regularization, allow more exibility in the underlying gener-

alization conditions, for instance in terms of piecewise smoothness, by using line processes

(see Geman and Geman, 1985 and Marroquin et al., 1987).

Notice that in practice additional a priori information must be supplied in order to

make the learning problem manageable. Space invariance or other invariances to appropri-

ate groups of transformations can play a very important role in e�ectively countering the

dimensionality problem (see Poggio, 1982).

As pointed out by Rivest (in preparation), one can reverse the relationship between prior

probabilities and complexity (see equation (2)). Instead of determining the complexity C(z)

in equation 2 from the prior, one may measure the complexity of the a priori hypotheses

to determine the prior probabilities. Rissanen (1978), for instance, proposes to measure

the complexity of a hypothesis in terms of the bit length needed to encode it. In this

sense, the MAP estimate is equivalent to the Minimum Description Length Principle: the

hypothesis z which for given d can be described in the most compact way is chosen as the

\best" hypothesis. Similar ideas have been explored by others (for instance Solomono�,

1978). They connect data compression and coding with Bayesian inference, regularization,

hypersurface reconstruction and learning.

3.4 From Hypersurface Reconstruction to Networks

In the section above we have sketched the strict relations between learning, Bayes estimation,

MRFs, regularization and splines; splines are equivalent to standard regularization, itself a

special case of MRF models, which are a subset of Bayesian estimators. All these methods

can be implemented in terms of parallel networks: in particular, we have argued that MRFs

can be implemented in terms of hybrid networks of coupled analog and digital elements

(Marroquin et al., 1987). Standard regularization can be implemented by resistive grids,

and has been implemented on an analog VLSI chip (Harris, 1989). It is then natural to ask

if splines, and more generally standard regularization, can be implemented by feedforward

multilayer networks. The answer is positive, and will be given in the next few sections

in terms of what we call Generalized Radial Basis Functions (GRBF). GRBFs are closely

related to an interpolation technique called Radial Basis Functions (RBF), which has recent

theoretical foundations (see Powell, 1987 for a review) and has been used with very promising

results (Hardy, 1971; Franke, 1982; Rippa, 1984; Broomhead and Lowe, 1988; Renals and

Rohwer, 1989; Casdagli, 1989) .

10



4 Radial Basis Functions: A Review

In the following sections we will describe the RBF technique, its feedforward network im-

plementation and a straightforward extension that makes it usable for approximation rather

than for interpolation.

4.1 The interpolation problem and RBF

The Radial Basis Function (RBF) method is one of the possible solutions to the real multi-

variate interpolation problem, that can be stated as follows:

Interpolation problem given N di�erent points fxi 2 R
nji = 1; :::Ng and N real

numbers fyi 2 Rji = 1; :::Ng �nd a function F from R
n to R satisfying the interpolation

conditions:

F (xi) = yi i = 1; : : : ; N:

The RBF approach consists in choosing F from a linear space of dimensionN , depending

on the data points fxig. The basis of this space is chosen to be the set of functions

fh(kx� xik)ji = 1; :::Ng
where h is a continuous function from R

+ to R, usually called the radial basis function, and

k � k is the Euclidean norm on R
n. Usually a polynomial is added to this basis, so that the

solution to the interpolation problem has the following form:

F (x) =
NX
i=1

cih(kx� xik) +
mX
i=1

dipi(x) m � n (3)

where fpiji = 1; :::;mg is a basis of the linear space �k�1(R
n) of algebraic polynomials of

degree at most k � 1 from R
n to R, and k is given.

The interpolation conditions give N linear equations for the (N+m) coe�cients ci and di
in equation (3), so that the remaining degrees of freedom are �xed by imposing the following

constraints:

NX
i=1

cipj(xi) = 0; j = 1; : : : ;m:

In order to discuss the solubility of the interpolation problem by means of this representation

we need the following de�nition (Gelfand and Vilenkin, 1964; Micchelli, 1986):

De�nition 4.1 A continuous function f(t), de�ned on [0;1), is said to be conditionally

(strictly) positive de�nite of order k on R
n if for any distinct points x1; : : : ;xN 2 R

n

and scalars c1; : : : ; cN such that
P

N

i=1 cip(xi) = 0 for all p 2 �k�1(R
n), the quadratic formP

N

i=1

P
N

j=1 cicjf(kxi � xjk) is (positive) nonnegative.
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Notice that for k = 0 this class of functions, that we denote by Pk(R
n), reduces to the

class of the (strictly) positive de�nite functions, that is the class of functions such that the

quadratic form
P

N

i=1

P
N

j=1 cicjf(kxi � xjk) is (positive) nonnegative (Schoenberg, 1938).
Well known results of approximation theory assert that a su�cient condition for the

existence of a solution of the form (3) to the interpolation problem is that h 2 Pk(R
n). It

is then an important problem to give a full characterization of this class. In particular we

are interested in characterizing the set of functions that are conditionally positive de�nite of

order k over any Rn, that we de�ne as simply Pk.

4.1.1 RBF and Positive De�nite Functions

The class P0 has been extensively studied (see Stewart, 1976, for a review), and we mention

here one relevant result obtained by Schoenberg in 1938. Before stating his result we �rst

give the following

De�nition 4.2 A function f is said to be completely monotonic on (0;1) provided that

it is C1(0;1) and (�1)l @lf
@xl

(x) � 0, 8x 2 (0;1), 8l 2 N , where N is the set of natural

numbers.

We de�ne M0 as the set of all the functions that are completely monotonic on (0;1). In

1938 Schoenberg was able to show the deep connection between M0 and P0. In fact he

proved the following theorem:

Theorem 4.1 (Schoenberg, 1938) A function f(r) is completely monotonic on (0;1) if

and only if f(r2) is positive de�nite.

This theorem asserts that the classes M0 and P0 are the same class, but Schoenberg went

further, proving that in his theorem positive de�nitess can be replaced by strictly positive

de�nitess, except for trivial cases. We can then conclude that it is possible to solve the

interpolation problem with an expansion of the type

F (x) =
NX
i=1

cih(kx� xik) (4)

if the function h(
p
t) is completely monotonic. The unknown coe�cients ci. can be recovered

imposing the interpolation conditions F (xj) = yj (j = 1; :::N), that substituted in equation

(4) yields the linear system

yj =
NX
i=1

cih(kxj � xik) j = 1; :::; N:

De�ning the vectors y, c and the symmetric matrix H as follows

(y)j = yj; (c)i = ci; (H)ij = h(kxj � xik)
the coe�cients of the expansion (4) are given by

c = H
�1y: (5)
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The theorem of Schoenberg ensures that the solution of system (5) always exists, since the

matrix H can be inverted, being strictly positive de�nite. As an example of application of

the theorem of Schoenberg we mention the functions e�r and (1 + r)�� with � > 0: since

they are evidently completely monotonic the functions e�r
2

(Gaussians) and (1 + r
2)�� are

strictly positive de�nite, and can be used as radial basis functions to interpolate any set of

n-dimensional data points.

From equation (5) it turns out that a necessary and su�cient condition to solve the

interpolation problem is the invertibility of the matrix H. Schoenberg's theorem, however,

gives only a su�cient condition, so that many other functions could be used as radial basis

functions without being strictly positive de�nite. Other su�cient conditions have been

recently given by Micchelli, that in 1986 proved the following theorem:

Theorem 4.2 (Micchelli, 1986) Let h be a continuous function on [0;1) and positive

on (0;1). Suppose its �rst derivative is completely monotonic but not constant on (0;1).

Then for any distinct vectors x1; :::;xN 2 R
n

(�1)N�1
det h(kxi � xjk2) > 0 :

The essence of this theorem is that if the �rst derivative of a function is completelymonotonic

this function can be used as radial basis function, since the matrix H associated to it can

be inverted. A new class of functions is then allowed to be used as radial basis functions.

For instance the function (c2 + r)�, with 0 < � < 1 and c possibly zero, is not completely

monotonic, but satis�es the conditions of theorem (4.2), so that the choice (c2 + r
2)� is

possible for the function h in (4).

A list of functions that can be used in practice for data interpolation is given below, and

their use is justi�ed by the results of Schoenberg or Micchelli:

h(r) = e
�( r

c
)2 (gaussian)

h(r) =
1

(c2 + r
2)�

� > 0

h(r) = (c2 + r
2)� 0 < � < 1

h(r) =
p
r
2 + c

2 (multiquadric)

h(r) = r (linear)

Notice that the linear case corresponds, in one dimension, to piecewise linear interpolation,

that is the simplest case of spline interpolation (further and stronger connections to spline

interpolation will be discussed later). Notice that even the case � = 1
2
has been explic-

itly mentioned, since it corresponds to interpolation by means of \multiquadric" surfaces.

Multiquadrics have been introduced by Hardy (1971) and extensively used in surface inter-

polation with very good results (Franke, 1982; Rippa, 1984). Some of the functions listed

above have been used in practice. Gaussian RBF have been used by Agterberg (1974) and

Schagen (1979), and an approximating RBF expansion has been studied by Klopfenstein and

Sverdlove (1983). The latter considered the case of equally spaced data and succeeded in

giving some error estimates. RBF have even been used by Broomhead and Lowe (1988) and
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Casdagli (1989) to predict the behavior of dynamical systems and by Renals and Rohwer

(1989) for phoneme classi�cation. A crude form of RBF performed better on the Nettalk

task (Sejnowski and Rosenfeld, 1987) than Nettalk itself (Wolpert, 1988).

Almost all of these functions share the unpleasant property of depending on a parameter,

that will generally depend on the distribution of the data points. However it has been noticed

(Franke, 1982) that the results obtained with Hardy's multiquadrics (in 2 dimensions) seem

not to depend strongly on this parameter, and that the surfaces obtained are usually very

smooth. It is interesting to notice that, in spite of the excellent results, no theoretical basis

existed for Hardy's multiquadrics before Micchelli's theorem. On the contrary, in the case

of several functions, including the gaussian, a mathematical justi�cation can be given in the

context of regularization theory, as we shall see in section (6).

4.1.2 RBF and Conditionally Positive De�nite Functions

The theorem of Schoenberg on the equivalence of M0 and P0 has been recently extended,

to obtain an interesting characterization of Pk. In fact in 1986 Micchelli proved:

Theorem 4.3 (Micchelli, 1986) h(r2) 2 Pk whenever h(r) is continuous on [0;1) and

(�1)k @kh(r)

@rk
is completely monotonic on (0;1)

To our extents the practical implication of this theorem is the following: if the function h(r2)

is not positive de�nite we do not know if it can be used as radial basis function, since the

matrix H could be singular, but if the k-th derivative of h(r) is completely monotonic a

polynomial of degree at most k� 1 can be added to the expansion (4), (see equation (3)), so

that it can be used to solve the interpolation problem. Notice that, according to a remark

of Micchelli (1986), the converse of theorem (4.3) holds true: denoting byMk the functions

whose k-th derivative belongs toM, f(r2) 2 Pk if and only if f(r) 2 Mk, so that Pk �Mk.

It has been noticed (Micchelli, 1986; Powell, 1988) that this theorem embeds the results

obtained by Duchon (1976, 1977) and Meinguet (1979, 1979a) in their variational approach

to splines. For instance the functions h(r) = r

3

2 and g(r) = 1
2
r log

p
r are not completely

monotonic, but this property holds for their second derivatives (that is they belongs toM2).

By theorem 4.3 the functions h(r2) = r
3 and g(r2) = r

2 log r (\thin plate splines") belong

to P2): It is then possible to interpolate any set of data points using h(r2) and g(r2) as

radial basis functions and a linear term (polynomial of degree at most 2 -1) added to the

expansion (4). This corresponds exactly to the expressions derived by Duchon and Meinguet,

but without some of their limitations (see Example 2 in section 5.1.2). Since this method

has been shown to embody natural spline interpolation in one dimension (Powell, 1988), can

then be considered as an extension of natural splines to multivariable interpolation.

4.2 RBF and Approximation Theory

It is natural to ask if the expansion (3) is a good approximation method. The interpolation

property of the RBF expansion, ensured by Micchelli's theorems, is neither su�cient nor

necessary to guarantee good results. In particular, a very important question that is always

addressed in approximation theory is whether the solution can be prevented from badly
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oscillating between the interpolation points when they become dense. This does not happen

when spline functions are used, due to the smoothness constraint, but it could happen when

other radial basis functions are chosen.

Several results have been obtained about this question in recent years. Perhaps the most

important of them has been obtained by Jackson (1988). He addressed a more fundamental

and general question: given a multivariate function f(x) and a set of N data points fxiji =
1; :::; Ng, do there exist a sequence of functions FN(x), with

FN(x) =
NX
i=1

c
N

i
h(kx� xik) +

kX
j=1

�
N

j
pj(x)

and some bounded open domain on which

jFN(x)� f(x)j ! 0 as N !1 ?

Jackson gave su�cient conditions on h for this result to hold. In particular he considered

the function h(r) = r and showed that these conditions are satis�ed in R2n+1 but not in R2n.

These results are encouraging and make this approach a highly promising way of dealing

with irregular sets of data in multi-dimensional spaces.

Finally we mention the problem of noisy data. Since in this case a strict interpolation is

meaningless, the RBF method must be modi�ed. The problem consists in solving the linear

system Hc = y in a way that is robust against noise. A very simple solution to this problem

has been provided in the context of regularization theory (Tikhonov and Arsenin, 1977).

It consists in replacing the matrix H by H + �I, where I is the identity matrix, and � is

a \small" parameter, whose magnitude is proportional to the amount of noise in the data

points. The coe�cients of the RBF expansion are then given by

c = (H + �I)�1y: (6)

This equation gives an approximating RBF expansion, and the original interpolating expan-

sion is recovered by letting � go to zero. Since data are usually noisy, from now on we will

refer to the RBF expansion as the one computed by means of equation (6).

4.3 Network Implementation

A remarkable property of this technique is that it can be implemented by a simple network

with just one layer of hidden units, as shown in �gure 2 (see Broomhead and Lowe, 1988).

For simplicity we restrict ourselves to expansions of the type (4), disregarding the polynomial

term, the results being valid even in the more general case in which it is included.

The �rst layer of the network consists of \input" units whose number is equivalent to the

number of independent variables of the problem. The second layer is composed by nonlinear

\hidden" units fully connected to the �rst layer. There is one unit for each data point

xi � (xi; yi; zi; � � �) parametrized by its \center", which has the coordinates (xi; yi; zi; � � �)
of the data point itself. The output layer, fully connected to the hidden layer, consists

of one (or more) linear unit(s), whose \weights" are the unknown coe�cients of the RBF

expansion. These output units may also represent a �xed, nonlinear, invertible function, as

already observed by Broomhead and Lowe (1988) and discussed in a later section. This is
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a. b.

Figure 2: a) The Radial Basis Function network for the interpolation of a bivariate function

F . The radial hidden units h evaluate the functions h(kx�tnk). A �xed invertible nonlinear

function may be present after the �nal summation. b) A radial hidden unit h. The input

is given by x � (x; y) and its parameters are the coordinates of the n-th \center" tn. The

output is the value of the radial basis function h, centered on tn, at point x. The centers tn
coincide in this RBF case with the data points xn
.
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useful for instance in the case of classi�cation tasks. All the learning algorithms discussed

later extend trivially to this case.

Notice that the architecture of the network is completely determined by the learning

problem, and that, unlike most of the current \neural" networks, there are no unknown

weights connecting the input and the hidden layer. Since spline interpolation can be imple-

mented by such a network, and splines are known to have a large power of approximation,

this shows that a high degree of approximation can be obtained by just one hidden layer

network.

Of course this method has its drawbacks. The main one is that the method is global,

that is each data point contributes to the value of the interpolating function at every other

point. The computation of the coe�cients of the RBF expansion can become then a very

time consuming operation: its complexity grows polynomially with N , (roughly as N3) since

an N �N matrix has to be inverted. In a typical application to surface reconstruction from

sparse stereo data the number of data points can easily be more than 3000: to invert a

sparse 3000 � 3000 matrix not only is a formidable task, but may not be meaningful, since

we know that the probability of ill-conditioning is higher for larger and larger matrices (it

grows like N3 for a N �N uniformly distributed random matrix) (Demmel, 1987). Another

problem with the Radial Basis Function method, and with interpolating methods in general,

is that data are usually noisy and therefore not suitable for interpolation; an approximation

of the data would be preferable. In Section 5 a solution to these problems will be given

in the context of regularization theory. The next section presents a method that has been

proposed by Broomhead and Lowe (1988) to reduce computational complexity and gives as

result an approximation instead of an interpolation. A new result is given, supporting its

validity.

4.4 Approximated Radial Basis Function

In this section we show how the Radial Basis Functions can also be used for approximation

rather than for interpolation. In the RBF approach the basis on which the interpolating

function is expanded is given by a set of radial functions h translated and centered on the

data points. The interpolating function is then a point in a multidimensional space, whose

dimension is equal to the number of data points, which could be very large. As usual when

dealing with spaces of a such high dimensionality we could ask if all the dimensions are really

signi�cant.

This suggests that the RBF expansion could be approximated by an expansion in a

basis with a smaller number of dimensions (Broomhead and Lowe, 1988). This can be

accomplished by an expansion of the following form:

F (x) =
KX
�=1

c�h(kx� t�k) (7)

where the t� are K points, that we call \centers" or \knots", whose coordinates have to be

chosen and K < N . It is clear from equation (7) that the interpolation conditions can no

longer be satis�ed. Imposing F (xi) = yi leads to the following linear system:
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yj =
KX
�=1

c�h(kxj � t�k) j = 1; :::; N:

This system is overconstrained, being composed of N equations for K unknowns, and the

problemmust be then regularized. A least-squares approach can be adopted (see also Broom-

head and Lowe, 1988) and the optimal solution can be written as

c = H
+y (8)

where (H)i� = h(kxi�t�k) and H+ is the Moore-Penrose pseudoinverse of H (Penrose, 1955;

Ben-Israel and Greville, 1974). The matrix H is rectangular (N �K) and its pseudoinverse

can be computed as

H
+ = (HT

H)�1
H

T

provided (HT
H)�1 exists. The matrix HT

H is square and its dimensionality is K, so that it

can be inverted in time proportional to K3. A rough estimate suggests that this technique

could speed the computations by a factor (N
K
)3. Of course, other methods for computing the

pseudoinverse exist, including recursive ones (see Albert, 1972).

As in the previous case this formulation makes sense if the matrix HT
H is nonsingular.

Micchelli's theorem is still relevant to this problem, since we prove the following corollary:

Corollary 4.4.1 Let G be a function satisfying the conditions of Micchelli's theorem and

x1; :::;xN an N-tuple of vectors in R
n. If H is the (N � s)�N matrix H obtained from the

matrix Gi;j = G(kxi � xjk) deleting s arbitrary rows, then the (N � s) � (N � s) matrix

H
T
H is not singular.

To prove this corollary it is su�cient to notice that, since Micchelli's theorem holds, the

rank of Gij is N . A theorem of linear algebra states that deleting s rows from a matrix

of rank N yields a matrix of rank N � s. Remembering that rank(AAT) = rank(A) for

every rectangular matrix A we have that rank(HH
T ) = rank(H) = N � s; then HH

T is not

singular.

This result asserts that if the set of knots is chosen to be a subset of the set of data, and

if the conditions of Micchelli's theorem are satis�ed, the pseudoinverse can be computed as

H
+ = (HT

H)�1
H

T . Other choices for the set of knots seem possible in practice: for example

Broomhead and Lowe (1988) use uniformly spaced knots to predict successfully chaotic time

series, in conjunction with a gaussian Radial Basis Function.

We remark that while this technique is useful for dealing with large sets of data, it has

been proposed as a way of dealing with noise. In the next section, we will show, however,

that if the only problem is noise, an approximating technique of radial basis functions with as

many centers as data points can be derived in a rigorous way with the aid of regularization

theory. An extension of the RBF method will be presented in the general framework of

regularization theory.
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5 Regularization Approach and Generalized Radial

Basis Functions

In this section we derive from regularization theory an alternative approximation method

based on a basis of radial functions. We apply regularization theory to the approxima-

tion/interpolation problem and we show that for a large class of stabilizers the regularized

solution is an expansion of the radial basis function type. The approach leads to a represen-

tation, that we call Generalized Radial Basis Functions (GRBFs), which is very similar to

RBFs while overcoming the problem of the computational complexity of RBFs for large data

sets. The GRBF technique can then be considered the point of contact between multilayer

feedforward networks and the mathematical apparatus of standard regularization theory.

5.1 Regularization Theory

Let S = f(xi; yi) 2 R
n � Rji = 1; :::Ng be a set of data that we want to approximate by

means of a function f . The regularization approach (Tikhonov, 1963; Tikhonov and Arsenin,

1977; Morozov, 1984; Bertero, 1986) consists in looking for the function f that minimizes

the functional

H[f ] =
NX
i=1

(yi � f(xi))
2 + �kPfk2

where P is a constraint operator (usually a di�erential operator), k � k is a norm on the

function space to whom f belongs (usually the L2 norm) and � is a positive real number,

the so called regularization parameter. The structure of the operator P embodies the a

priori knowledge about the solution, and therefore depends on the nature of the particular

problem that has to be solved. Minimization of the functional H leads to the associated

Euler-Lagrange equations. For a functional H[f ] that can be written as

H[f ] =

Z
Rn

dxdy:::L(f; fx; fy; :::; fxx; fxy; fyy; :::fyy:::y)
the Euler-Lagrange equations are the following (Courant and Hilbert, 1962)

Lf � @

@x

Lfx �
@

@y

Lfy +
@
2

@x
2
Lfxx +

@
2

@y
2
Lfyy

+
@
2

@x@y

Lfxy + � � �+ (�1)n @
n

@y
n
Lfyy:::y + � � � = 0 :

The functional H of the regularization approach is such that they can always be written as

P̂ P f(x) =
1

�

NX
i=1

(yi � f(x))�(x� xi) (9)

where P̂ is the adjoint of the di�erential operator P and the right side comes from the

functional derivative with respect to f of the data term of H.
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Equation (9) is a partial di�erential equation, and it is well known that its solution can

be written as the integral trasformation of its right side with a kernel given by the Green's

function of the di�erential operator P̂ P , that is the function G satisfying the following

distributional di�erential equation:

P̂ P G(x; �) = �(x� �) :

Because of the delta functions appearing in equation (9) the integral transformation becomes

a discrete sum and f can then be written as

f(x) =
1

�

NX
i=1

(yi � f(xi))G(x;xi) : (10)

It is important to notice that a polynomial term should in general be added to the right-

hand side of equation (10), depending on the speci�c stabilizer. Equation (10) says that the

solution of the regularization problem lives in an N -dimensional subspace of the space of

smooth functions. A basis for this subspace is given by the N functions G(x;xi), that is by

the Green's function G \centered" on the data points xi.

A set of equations for the unknown coe�cients ci =
yi�f(xi)

�
is easily obtained by evaluat-

ing equation (10) at the N data points xi. A straightforward calculation yields the following

linear system:

(G + �I)c = y (11)

where I is the identity matrix, and we have de�ned

(y)i = yi ; (c)i = ci ; (G)ij = G(xi;xj) :

We then conclude that the solution to the regularization problem is given by the following

formula

f(x) =
NX
i=1

ciG(x;xi) (12)

where the coe�cients satisfy the linear system (11) and a polynomial term is in general

added.

Notice that since kPfk2 is quadratic the corresponding operator in equation (9) is self-

adjoint and can be written as P̂ P . Then the Green's function is symmetric: G(x; �) =

G(�;x). If kPfk2 is translationally invariant G will depend on the di�erence of its arguments

(G = G(x� �)) and if kPfk2 is rotationally and translationally invariant G will be a radial

function: G = G(kx� �k).
Let us now compare equations (12) and (11) with equations (4) and (6). It is clear

that if the stabilizers P is rotationally invariant then the regularized solution is given by

an expansion in radial functions. The requirement of rotational and translational invariance

on kPfk2 is very common in practical applications. Clearly regularization with a non-

radial stabilizer P justi�es the use of appropriate non-radial basis functions, retaining all

the approximation properties associated with the Tikhonov technique. Examples of P and

corresponding G will be given in section 5.1.2.
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5.1.1 Micchelli's condition and regularization de�ne almost identical classes of

radial basis functions

At this point it is natural to ask about the relation between the class of functions de�ned

by stabilizers P of the Tikhonov type in regularization theory (the class T ) and the class

Pk (for all k) of conditionally positive de�nite functions of order k (which is identical with

Mk). The two classes have to be very closely related, since they originate from the same

problem { optimal approximation. The regularization approach gives { if the stabilizer is

radially symmetric { radial functions G that satisfy

P̂ P G(kx� �k) = �(x� �) : (13)

Notice that if P contains a term proportional to the function itself, then P̂ P contains a

constant term; by taking the Fourier transform of equation (13) and applying Bochner's

theorem (1932, 1959) on the representation of positive de�nite functions (Stewart, 1976), it

turns out that G is positive de�nite, that is G 2 P0. (See section 5.1.2 for details). In general

equation (13) implies (Gelfand and Vilenkin, 1964) that G is conditionally positive de�nite (of

an order determined by P ). This discussion suggests that Pk �Mk � T (for all k): in fact a

function G may satisfy the conditions of Micchelli's theorem 4.3 (G 2 Mk), and therefore be

conditionally positive de�nite of order k (G 2 Pk), without satisfying equation (13) for any

operator P (G =2 T ). We conjecture that these functions G, G 2 Pk, G =2 T are interpolating

functions but not good approximating functions, since they do not come from a regularization

approach. We have little reasons for this conjecture, apart from Jackson's result (1988):

in an even number of dimensions the function h(r) = r does not satisfy his (su�cient!)

conditions for good approximation and is not the Green's function of any known Tikhonov

stabilizer, though it can be used as radial basis function, according Micchelli's theorem

(4.2), since h(
p
r) 2 M1. Notice that in R

2n+1, h(r) = r satis�es Jackson's conditions, is

the Green's function of the thin-plate stabilizer and satis�es Micchelli's conditions. Hardy's

multiquadricsH(r) = (c2+ r
2)

1

2 are a possible counterexample to our conjecture, since they

are conditionally positive de�nite of order one (H 2 P1), numerical work suggests that they

have good approximation properties and we have been so far unable to obtain an expansion

in terms of multiquadric from any regularization principle. We are happy to leave the answer

to these questions to real mathematicians.

5.1.2 Examples

Example 1

We now consider a wide class of stabilizers and show that they lead to a solution of the

regularization problem that has the form of a radial basis function expansion of the type of

equation (4), with a positive de�nite basis function and without the polynomial term.

Let us consider the class of constraint operators de�ned by

kP1fk2 =
Z
Rn

dx
1X

m=0

am(P
m
f(x))2 (14)
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where P 2m = r2m, P 2m+1 = rr2m, r2 is the Laplacian operator and the coe�cients am
are real positive numbers. The stabilizer is then translationally invariant and the Green's

function satis�es the distributional di�erential equation:

1X
m=0

(�1)mamr2m
G(x� �) = �(x� �) : (15)

By Fourier transforming both sides of equation (15) we obtain:

1X
m=0

am(! � !)m G(!) = 1 (16)

and by Fourier anti-transforming G(!) we have for the Green's function G(x):

G(x) =

Z
Rn

d!

e
i!�xP

1

m=0 am(! � !)m
=

Z
Rn

d!e
i!�x

dV (!) (17)

where V (!) is a bounded non-decreasing function if a0 6= 0. Now we can apply Bochner's

theorem (1932), which states that a function is positive de�nite if and only if it can be written

in the form (17), to conclude that G(x) is positive de�nite. Notice that the condition a0 6= 0

is crucial in this particular derivation, and, as it has been pointed out by Yuille and Grzywacz

(1988), it is a necessary and su�cient condition for the Green's function to fall asymptotically

to zero. Let us now see some examples.

One example is provided by the following choice of the coe�cients:

a0 = 1; a1 = 1; an = 0 8n � 2 :

In this case the Green's function (here in one dimension) becomes the Fourier transform of
1

1+!2
, and then

G(x) / e
jxj
:

Clearly this function is not very smooth, reecting the fact that the stabilizer consists of

derivatives of order 0 and 1 only. Smoother functions can be obtained allowing a larger

(possibly in�nite) number of coe�cients to be di�erent from zero. For instance, setting

ak =
1

(2k!)

and remembering that
P

1

m=0
!
2m

(2k!)
= cosh(!) we obtain G(x) = 1

cosh(x)
, which is a very

smooth, bell-shaped function.

Another interesting choice (Yuille and Grzywacz, 1988) is:

am =
�
2m

m!2m

which gives as Green's function a multidimensional Gaussian of variance �. The regular-

ized solution is then a linear superposition of Gaussians centered on the data points xi.

Its physical interpretation is simple: regarding � as \time" the solution satis�es the heat

equation:
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@f(x; �)

@�

= r2
f(x; �)

with boundary conditions f(xi; �) = yi. The regularized solution for � = 0 can then be

regarded as the pattern of temperature of a conducting bar which is in contact, at the points

xi, with in�nite heat sources at temperature yi. The value of � is then related to the di�usion

time.

Example 2

A widely used class of stabilizers is given by the functionals considered by Duchon (1976,

1977) and Meinguet (1979, 1979a) in their variational approach to multivariate interpolation,

that is one of the possible generalizations of spline theory from one to many dimensions. In

particular they considered rotationally invariant functionals of the form

Hm[f ] =
nX

i1:::im

Z
Rn

dxk@i1:::imf(x)k2

where @i1:::im = @m

@xi1
:::@xim

and 1 � m. The solution to this variational problem is of the form

F (x) =
NX
i=1

cih
m(kx� xik) +

kX
i=1

dipi(x) (18)

which is exactly the same as equation (3). Herem is a measure of the degree of smoothness of

the solution, and is related to the maximumpolynomial precision that can be obtained by the

relation: k � m. Since the stabilizers are rotationally invariant, the corresponding Green's

functions hm are radial, and for each �xed value of m they turn out to be hm(r) = r
2m�n ln r

if n � 2m for n even, and h
m(r) = r

2m�n otherwise.

As an example we show the case n = m = 2. The functional to be minimized is

H2[f ] =
Z
R2

dxdy

2
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@
2
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@x
2

!2

+ 2

 
@
2
f

@x@y
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@
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and the Green's function h is the well known \thin plate spline" h(r) = r
2 ln r. In this

case a linear term appears as the second term of the right hand side of equation (18). Thin

plate splines have been introduced by engineers for aeroelastic calculations (Harder and

Desmareis, 1972), their name coming from the fact that H2 is the bending energy of a thin

plate of in�nite extent. The results obtained with thin plate splines are comparable with

those obtained with Hardy's multiquadrics. Another radial basis function that has been

extensively used is r3, with a linear term in the expansion as well, wich is equivalent to cubic

splines in the one dimensional case.

5.2 Extending to Movable Centers: GRBF

In the previous section we have shown that the function minimizing the functional H is spec-

i�ed by N coe�cients, where N is the number of data points. Therefore, when N becomes
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large, the regularization approach su�ers from the same drawbacks of the RBF method that

have been pointed out in a previous section. To reduce the computational complexity of the

representation, we then write an approximate solution f
� of the regularization problem as

an expansion involving a fewer number of centers, as done by Broomhead and Lowe (1988),

that do not necessarily coincide with some of the data points xi, that is:

f
�(x) =

nX
�=1

c�G(x; t�) (19)

where the coe�cients c� and the centers t� are unknown. We now have to face the problem

of �nding the n coe�cients c� and the d�n coordinates of the centers t� so that the expansion
(19) is optimal. In this case we dispose of a natural de�nition of optimality, given by the

functional H. We then impose the condition that the set fc�; t�j� = 1; :::; ng must be such

that it minimizes H[f�], and the following equations must be satis�ed:

@H[f�]

@c�

= 0 ;
@H[f�]

@t�
= 0; � = 1; :::; n : (20)

We call an expansion of the type of equation (19) with the coe�cients satisfying equation

(20) a Generalized Radial Basis Function (GRBF) expansion.

The explicit form of equation (20) depends on the speci�c constraint operator that has

been used. We perform here the computations for the constraint operator kP1f
�k2 considered

in the Example 1 of the previous section, with boundary conditions such the function f and

all its derivatives vanish on the border of the integration domain. The main di�culty is

to �nd the explicit expression of kP1fk2 as a function of c� and t�. To accomplish this

task we notice that, by using Green's formulas (Courant and Hilbert, 1962), which are the

multidimensional analogue of integration by parts, and using our boundary conditions, the

m-th term of P1 can be written asZ
Rn

dx(Pm
f(x))2 = (�1)m

Z
Rn

dxf(x)P 2m
f(x) : (21)

Substituting equation (21) in P1, and using de�nition of the di�erential operator P̂ P , we

obtain

kP1fk2 =
Z
Rn

dxf(x)P̂1P1 f(x) : (22)

When f
� is substituted in equation (22) each term containing G(x) gives a delta function

and the integral disappears, yielding:

kP1f
�k2 =

nX
�;�=1

c�c�G(t�; t�) :

De�ning a rectangular N � n matrix G as (G)i� = G(xi; t�) and a symmetric n� n square

matrix as (g)�� = G(t�; t�), H[f�] can �nally be written in the following simple form:

H[f�] = c(GT
G+ �g)c � 2cGTy+ y � y : (23)
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Notice that equation (23) is a quadratic form in the coe�cients c�, so that minimization

with respect to them is easily done. For each �xed set of centers t� the optimal vector c is

then given by

c = (GT
G+ �g)�1

G
Ty : (24)

Notice that if we let � go to zero and G is radial (and centers are �xed) the approximate

method of Broomhead and Lowe is recovered. Their method, however, lacks the capability

of looking for the optimal set of knots of the expansion, as required by regularization theory.

The possibility of moving the knots, by a procedure of the gradient descent type, could

noticeably improve the quality of approximation. It has been mentioned by Broomhead and

Lowe (1988), and has been used by Moody and Darken (1989) (their method is a heuristic

version of RBF with moving centers, see section 6.4). Notice that from the point of view of

approximation theory this is a nonlinear problem that reminds us of the splines with free

knots, that are splines whose knots are allowed to vary with the function being approximated

(De Vore and Popov, 1987; Braess, 1986).

Clearly this approximated solution does not satisfy equation (10) anymore. However an

explicit computation shows that equation (10) is satis�ed at the centers, that is

f
�(t�) =

NX
i=1

yi � f
�(xi)

�

G(t�;xi) : (25)

The converse is also true: if one �xes the set of knots and requires that equation (25) hold

for each �, equation (24) is easily recovered.

5.3 GRBF and Gradient Descent

In the previous section we introduced the GRBF method to approximate the regularized so-

lution. It requires the minimization of the multivariate function H[f�], which is not convex

in general. Gradient-descent is probably the simplest approach for attempting to �nd the

solution to this problem, though, of course, it is not guaranteed to converge. Several other

iterative methods, such as versions of conjugate gradient and simulated annealing (Kirk-

patrick et al., 1983) may be better than gradient descent and should be used in practice: in

the following we will consider for simplicity (stochastic) gradient descent. It is straightfor-

ward to extend our equations to other methods. In the gradient descent method the values

of c� and t� that minimize H[f�] are regarded as the coordinates of the stable �xed point

of the following dynamical system:

�

c�= �!@H[f�]

@c�

; � = 1; :::K

�

t�= �!@H[f�]

@t�
; � = 1; :::K

where ! is a parameter determining the microscopic timescale of the problem and is related

to the rate of convergence to the �xed point. The gradient descent updating rules are given

by the discretization (in time) of the previous equations. Clearly, since the function H[f�]
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is not convex, more than one �xed point could exist, corresponding to local, suboptimal

minima. To overcome this problem one could use \stochastic" gradient descent by adding

a random term to the gradient descent equations. They become then stochastic equations

of the Langevin type, often used to model the relaxation of a physical system toward the

equilibrium in the presence of noise (Wax, 1954; Ma, 1976; Parisi, 1988). In this case the

learning process is governed by the following stochastic equations

�
c�= �!@H[f�]

@c�

+ ��(t); � = 1; :::K (26)

�

t�= �!@H[f�]

@t�
+ ��(t); � = 1; :::K (27)

where �� and �� are white noise of zero mean and variance

< ��(t)��(t
0) > = < ��(t)��(t

0) > = 2T����(t� t
0)

where T measures the power of the noise, analog to temperature. Solving these equations

is similar to using Montecarlo methods of the Metropolis type (Metropolis at al., 1953)

(decreasing the variance of the noise term during the relaxation is similar to performing

stochastic annealing).

We now consider for simplicity the case in which the Green's function is radial (G(x; t) =

h(kx� tk2)) and � is set to zero. De�ning the interpolation error as

�i = yi � y
�

i
;

where y
�

i
= f

�(xi) is the response of the network to the i-th example, we can write the

gradient terms as

@H

@c�

= �2
NX
i=1

�ih(kxi � t�k2) ; (28)

@H

@t�
= 4c�

NX
i=1

�ih
0(kxi � t�k2)(xi � t�) (29)

where h0 is the �rst derivatives of h. Equating @H

@t�
to zero we notice that at the �xed point

the knot vectors t� satisfy the following set of nonlinear equations:

t� =

P
i P

�

i
xiP

i P
�

i

� = 1; : : : ;K

where P �

i
= �ih

0(kxi�t�k2). The optimal knots are then a weighted sum of the data points.

The weight P �

i
of the data point i for a given knot � is high if the interpolation error �i is

high there and the radial basis function centered on that knot changes quickly in a neighbor

of the data point. This observation could suggest faster methods for �nding a quasi-optimal

set of knots. Notice that if the radial basis function h depends on a parameter �, that is if

h = h(r; �), the functional H[f�] must be minimized even with respect to this parameter.

The following equation must then be added to equations (28) and (29):
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@H

@�

= �2
X
i; �

�ic�

@

@�

h(kxi � t�k2; �): (30)

As we mentioned before, an invertible nonlinearity, such a sigmoid, may be present at the

output of the network. In this case

f
�(x) = �(

NX
�=1

c�h(kx� t�k2)) : (31)

holds and equations (28) and (29) are modi�ed in the following way:

@H

@c�

= �2
NX
i=1

�
0(y�

i
)�ih(kxi � t�k2) ; (32)

@H

@t�
= 4c�

NX
i=1

�
0(y�

i
)�ih

0(kxi � t�k2)(xi � t�) (33)

In the gradient descent equations nothing forbids that two or more centers may move

towards each other until they coincide. Clearly, this should be avoided (it corresponds

to a degeneracy of the solution) in an e�cient algorithm. A formal way to ensure that

centers do never overlap is to add a term to the functional that it is minimized of the

form
P

�6=� 	(kt� � t�k), where 	 is an appropriate repulsive potential, such as 	(y) = 1
y2
.

Equations (28) and (29) can be easily modi�ed to reect this additional term (see Girosi and

Poggio, 1989a). In practice, it may be su�cient to have a criterion that forbids to any two

centers to move too close to each other.

In terms of networks the GRBF method has the same implementation of RBF. The

only di�erence is that the parameters of the hidden layer are now allowed to vary, being

the coordinates of the knots of the GRBF expansion. From this point of view the GRBF

network is similar to backpropagation in the sense that there are two layers of weights to

be modi�ed by a gradient descent method, and there are in principle local minima. �gure 3

shows the network that should be used in practice for �nding the parameters. Notice that a

constant, a linear term (and possibly higher order polynomials) should be added to the radial

basis representation (depending on the stabilizer, polynomials may be in the null space of

the regularized solution, as for thin-plate splines but not for gaussian radial basis functions).

Equations (28) and (29) should be modi�ed appropriately. Figure 3 makes this clear.

5.3.1 A semiheuristic algorithm

The previous discussion and some of the analogies discussed later (with the k-means algo-

rithm and with Moody's approach) suggest the following heuristic algorithm for GRBFs.

1. set the number of centers and use the k-means algorithm or a comparable one (or

even equation 29 with �i = constant) to �nd the initial positions t� of the centers.

Alternatively, and more simply, set the initial value of the centers to a subset of the

examples
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Figure 3: The GRBF network used to approximate a mapping between x1; x2; :::; xn and

y, given a set of sparse, noisy data. In addition to the linear combination of radial basis

functions, the network shows other terms that contribute to the output: constant and lin-

ear terms are shown here as direct connections from the input to the output with weights

a0; a1; a2; _an. Constant, linear and even higher order polynomials may be needed, depend-

ing on the stabilizer P . Gaussian radial basis functions, on the other hand, may not need

additional terms.
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2. use the pseudoinverse technique to �nd the values of the coe�cients c� (see equation

24)

3. use the t� and c� found so far as initial values for equations (29) and (28)

4. explore how performance changes by changing incrementally the number of centers.

6 Relations with other methods

We have been impressed by the generality of this formulation and by how many existing

schemes can be understood within this framework. In this section, we will mention briey

some of the most obvious connections with existing methods. In the next sections we will

discuss possible extensions of the method, its relation to a speci�c style of computation that

has biological undertones, its meaning from a Bayes point of view, and �nally, some general

points about the most crucial problem of learning, the \curse of dimensionality".

6.1 GRBF and Classi�cation Tasks

RBF and GRBF are an interpolation and approximation method for continuous, in fact

smooth, functions, as shown by the fact that they are generalized splines. It is quite natural

to ask whether the method can be modi�ed to deal with piecewise constant functions, i.e.,

with classi�cation tasks, and in particular boolean functions. More precisely, we have so far

considered GRBFs as a technique to solve the problem of approximating real valued functions

f : Rn ! R
m; we ask now whether they can be specialized to deal with the problem of

approximating functions h : Rn ! f0; 1g (the classi�cation problem) and t : f0; 1gn ! f0; 1g
(the boolean learning problem).

Computer experiments show that without any modi�cation, Gaussian radial basis func-

tions can be used to learn successfully XOR (Broomhead and Lowe, 1988). A simple form of

RBF was shown to perform well on the classi�cation task of NetTalk (Wolpert, 1988). We

expect therefore that classi�cation tasks could be performed by the GRBF method described

earlier using a basis of smooth functions. In a similar way, backpropagation networks with

smooth sigmoid nonlinearities have been used in several classi�cation tasks. Thus, it seems

that the method can be used, as it stands, for classi�cation tasks and for learning boolean

functions. The question remains, however, whether a special basis of radial functions could

be used advantageously. Consider the task of learning boolean functions. In backpropaga-

tion networks, the boolean limit corresponds to the smooth sigmoid nonlinearities becoming

linear threshold functions. The obvious boolean limit of radial basis functions is a basis of

hyperspheres:

S�;d(x) = 1 for jjx� x�jj � d else = 0 (34)

where S�;d is the hypersphere of radius d centered in x�, x; d are boolean vectors and jj � jj is
the Hamming distance. The use of such a basis may be similar to closest match classi�cation

(which can also be used for continuous mappings by using Euclidean metric instead of Ham-

ming distance). Of course, this basis does not satisfy Micchelli's condition, and cannot be

derived from regularization. It may be tempting to conjecture that arbitrarily close smooth
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approximations exist that do. The obvious case of a di�erence of sigmoids, however, does

not satisfy Micchelli's condition, since its �rst derivative is not completely monotonic:

S(x) = 1� 1

1 + �e
x
� 1

1 + �e
�x

=
�
2 � 1

(1 + �
2) + 2� cosh(x)

:

In the boolean limit of backpropagation, one knows that a network with one hidden layer

can represent any boolean function given a su�cient number of hidden units (because it is

well known that any boolean function can be written as a threshold of linear combinations

of threshold functions). The representation may require in general a large number of hidden

units because it amounts to a disjunctive normal form of the boolean function. In a similar

way, a basis of hyperspheres can be used to represent any boolean function by having a

su�cient number of \centers," one for each term in the disjunctive normal form of the

function.

Seen in a more geometrical way (consider the case of a binary classi�cation problem on R),

the boolean limit of RBFs carves the n-dimensional input space into hyperspheres, whereas

the linear threshold limit for BP carves the space into regions bounded by hyperplanes. It

seems clear that each of the partitions can be made to approximate the other arbitrarily

well, given a su�cient number of hidden units and/or centers.

6.2 GRBF and Backpropagation

GRBF are similar, but not identical, to backpropagation networks with one hidden layer,

since: a) they also have one hidden layer of smooth di�erentiable functions; b) they are

updated by a gradient descent method (as backpropagation) that operates on two \layers"

of parameters, the ci and the t�; c) the update moves the \centers" of those blurred hyper-

spheres (in the Gaussian case) and their weight in the �nal layer, whereas in backpropagation

\blurred" hyperplanes are shifted during learning.

From the point of view of approximation and regularization theory GRBFs have solid

theoretical foundations, a property that is not (yet) shared by backpropagation. However,

some results on the approximating power of backpropagation networks have been recently

obtained (Carrol and Dickinson, 1989; Cybenko, 1989; Funahashi 1989; Arai, 1989). Their

essence is that a network with one hidden layer of sigmoid units can synthesize arbitrary

well any continuous function, but may require a very large number of hidden units. Among

other advantages relative to backpropagation networks, the simplest version of our scheme { a

radial basis function network with centers �xed and centered at the examples { is guaranteed

to perform quite well, to have an e�cient implementation (there are no local minima in

the error functional) and to be equivalent to a powerful approximation technique, that is

generalized splines. Interestingly, this network may represent the initial step in a gradient

descent procedure for synthesizing a more powerful GRBF network (compare section 5.3.1).

6.3 GRBF and Vector Quantization

The classi�cation limit of GRBF (with the basis of equation (34) and jj � jj the euclidean

distance, say) is clearly related to vector quantization (Gersho, 1982). Vector quantization

of a signal vector f involves subdivision of the n-dimensional vector space into J decision
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regionsDj, each enclosing one of the J reconstruction values. The signal vector f is quantized

to the reconstruction vector rj , if f lies in the decision region Dj . In terms of equation 34,

this mean that Sj(f) = 1, and the domains in which the Si are nonzero are disjoint.

6.4 GRBF and Kohonen's Algorithm

Kohonen (1982) suggested an algorithm to establish a topology conserving and dimension-

ality reduction map from a set of inputs in a high dimensional space. The algorithm has

been suggested in order to describe maps similar to those that form between cortical areas.

It has also been used for several other tasks, such as learning motor movements (Ritter and

Schulten, 1986, 1987). Kohonen's algorithm can be regarded as a special form of the k-means

method (MacQueen, 1967) for �nding the centers of n clusters in a set of inputs. It turns

out that this is what the update equation in the t� does, i.e.

@E

@t�
= 4c�

NX
i=1

�ih
0(kxi � t�k2)(xi � t�) (35)

with �i = constant. The di�erences with respect to Kohonen's algorithm are that a) each

center is a�ected by all data points and not only by the ones that \belong" to it b) h0

depends on jjxi � t�jj rather than on the distance between the \locations" i and �. Notice

that the addition of a \repulsive" terms in the functional to avoid overlapping centers make

the analogy with Kohonen's algorithm even closer.

Intuitively, the last equation with �i = constant adjusts the t� to the centers of the

cluster of the data. This analogy suggests a heuristic scheme to improve convergence of the

gradient descent method: �rst �nd the centers of the clusters with an algorithm like equation

(35) with �i = constant, then use the full scheme (equations (28) and (29)). The heuristic

should help the method to avoid local minima.

Moody and Darken (1989) propose a similar heuristic as the core of their method; they

�rst �nd the position of the \centers" (they do not use, however, strict Radial Basis Func-

tions) with the k-means algorithm and then �nd the coe�cients ci of the expansion. The

k-means algorithm and Kohonen's are also related to vector quantization (see above). Other

so-called competitive learning algorithms are similar to Kohonen's algorithm.

6.5 GRBF, Kanerva's Model and Marr's Model of the Cerebel-

lum

Kanerva introduced in 1984 a memory model called Sparse Distributed Memory (SDM).

Keeler (1988) has shown that the SDM can be regarded as a three-layer network with one

layer of hidden units (see �gure 4). In this description, the �rst layer consists of n boolean

units that represent input vectors (binary addresses) a. The hidden layer consists of m

binary units s (the select vectors) with m >> n. The weights between the input layer

and the hidden layer are given by the matrix A, with rows that correspond to the storage

locations. Each output unit (in SDM there are n output units) is also binary with connection

weights to the hidden units given by the matrix C, which is updated during learning by a

Hebbian learning rule. Thus given an input address a, the selected locations are:
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s = S0;d(Aa);

where S0;d was de�ned in section 6.1 (we assume x0 = 0). C is set to be the sum of the outer

products of desired outputs d and selected locations, i.e. C =
P

j djs
T

j
.

Clearly the analogy with the boolean limit of RBF is complete: the matrix A contains

the locations of the centers (the selected locations) and C corresponds to the c of RBF. In

the SDM, the center locations are �xed. The Hebbian one-step update rule can be regarded

as a zero-order approximation of the gradient descent scheme, which is equivalent, for �xed

centers, to the pseudoinverse (see Appendix B.2).

Figure 4: Kanerva's SDM represented as a three-layer network. The matrix A of connections

between the �rst layer and the hidden layer contains the locations of the m centers. The ma-

trix C of modi�able connections between the hidden layer and the output layer corresponds

to the coe�cients c in the RBF formulation (redrawn from Keeler, 1988).

Keeler has discussed the similarities between the SDM model and the Hop�eld model.

He has also pointed out that Kanerva's SDM is very similar in mathematical form to a model

of the cerebellum introduced by Marr (1969) and Albus (1971). In our language, the mossy

�bers are the input lines, the granule cells correspond to the centers (the granule cells are

the most populous neurons in the brain), and the Purkinje cells correspond to the output

units (the summation). Other cells, according to Marr and Albus, are involved in what

we would call control functions; the basket cells that receive another input may inhibit the

Purkinje cells, whereas the stellate cells could change the gain of the Purkinje cells or their

threshold. The Golgi cells receive inputs from the granule cells (the centers), and feedback
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into the mossy �ber - granule cell connections. It may be interesting to consider in more

detail whether the circuitry of the cerebellummay have anything to do with the more general

continuous update scheme described by equations (28) and (29).

Keeler also suggests modifying the SDM to optimize the addresses Ai according to A
new

i
=

A
old

i
��(Aold

i
�x). This is about the same as Kohonen's algorithm and reduces (for d = 1) to

the unary representation of Baum, Moody and Wilczek (1988). Keeler provides interesting

estimates of the performance of SDM. In conclusion, Kanerva's algorithm can be regarded as

a special case of the boolean limit of GRBF, which again provides a more general framework

and a connection with continuous approximation.

6.6 Other Methods

The GRBF formulation seems to contain as special cases two well-known schemes in the �eld

of pattern recognition. One is Parzen windows (Parzen, 1962), which is an approximation

scheme typically used to estimate probability distributions, and which is remarkably similar

to a simple form of RBF (Duda and Hart, 1973). The other scheme is the method of

potential functions for determining discriminant functions (Duda and Hart, 1973). The

method was originally suggested by the idea that if the samples were thought of as points in a

multidimensional space and if electrical charges were placed at these points, the electrostatic

potential would serve as a useful discriminant function g(x) =
P

i qiK(x;xi), with K being

typically a radial function (as classical electrostatic potentials are). Potentials such as the

gaussian have also been used. GRBF (and RBF) may be used to give a more rigorous

foundation to these two rather heuristic methods.

GRBF has also similarities with the class of Memory-Based Reasoning methods, recently

used by D. Waltz and coworkers on massively parallel machines, since in its simplest version

(as many centers as examples) it is essentially a look-up table that �nds those past instances

that are su�ciently close to the new input.

7 Gaussian GRBFs and science-�ction neurobiology

In this section we point out some remarkable properties of gaussian Generalized Radial Basis

Functions, that may have implications for neurobiology, for VLSI hardware implementations

and, from a conceptual point of view, for extending in interesting directions the GRBF

approach.

7.1 Factorizable Radial Basis Functions

The synthesis of radial basis functions in high dimensions may be easier if they are factor-

izable. It can be easily proven that the only radial basis function which is factorizable is

the Gaussian. A multidimensional gaussian function can be represented as the product of

lower dimensional gaussians. For instance a 2D gaussian radial function centered in t can

be written as:

G(kx� tk2) � e
�kx�tk2 = e

�(x�tx)
2

e
�(y�ty)

2

: (36)
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This dimensionality factorization is especially attractive from the physiological point of

view, since it is di�cult to imagine how neurons could compute h(kx� t�k2) in a simple way

for dimensions higher than two. The scheme of �gure 5, on the other hand, is physiologically

plausible. Gaussian radial functions in one and two dimensions can be readily implemented

as receptive �elds by weighted connections from the sensor arrays (or some retinotopic array

of units representing with their activity the position of features).

Figure 5: A three-dimensional radial gaussian implemented by multiplying two-dimensional

gaussian and one-dimensional gaussian receptive �elds. The latter two functions are syn-

thesized directly by appropriately weighted connections from the sensor arrays, as neural

receptive �elds are usually thought to arise. Notice that they transduce the implicit position

of stimuli in the sensor array into a number (the activity of the unit). They thus serve the

dual purpose of providing the required \number" representation from the activity of the sen-

sor array and of computing a gaussian function. 2D gaussians acting on a retinotopic map

can be regarded as representing 2D \features", while the radial basis function represents the

\template" resulting from the conjunction of those lower-dimensional features.

Physiological speculations aside, this scheme has three interesting features from the point

of view of a hardware implementation and also in purely conceptual terms. Consider the

example of a GRBF network operating on images:
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1. the multidimensional radial functions are synthesized directly by appropriately weighted

connections from the sensor arrays, without any need of an explicit computation of the

norm and the exponential.

2. 2D gaussians operating on the sensor array or on a retinotopic array of features ex-

tracted by some preprocessing transduce the implicit position of features in the array

into a number (the activity of the unit). They thus serve the purpose of providing the

required \number" representation from the \array" representation.

3. 2D gaussians acting on a retinotopic map can be regarded as representing 2D \fea-

tures", while each radial basis function represents the \template" resulting from the

conjunction of those lower-dimensional features. Notice that in this analogy the radial

basis function is the AND of several features and could also include the negation of

certain features, that is the AND NOT of them. The scheme is also hierarchical, in the

sense that a multidimensional gaussian \template" unit may be a \feature" input for

another radial function (again because of the factorization property of the gaussian).

Of course a whole GRBF network may be one of the inputs to another GRBF network.

7.2 Style of Computation and Physiological Predictions

The multiplication operation required by the previous interpretation of gaussian GRBFs to

perform the \conjunction" of gaussian receptive �elds is not too implausible from a biophys-

ical point of view. It could be performed by several biophysical mechanisms (see Koch and

Poggio, 1987). Here we mention three mechanisms:

1. inhibition of the silent type and related circuitry (see Torre and Poggio, 1978; Poggio

and Torre, 1978)

2. the AND-like mechanism of NMDA receptors

3. a logarithmic transformation, followed by summation, followed by exponentiation. The

logarithmic and exponential characteristic could be implemented in appropriate ranges

by the sigmoid-like pre-to-postsynaptic voltage transduction of many synapses.

If the �rst or the second mechanism are used, the product of �gure 5 can be performed

directly on the dendritic tree of the neuron representing the corresponding radial function

(alternatively, each dendritic tree may perform pairwise products only, in which case a log-

arithmic number of cells would be required). The GRBF scheme also requires a certain

amount of memory per basis unit, in order to store the center vector. In the gaussian case

the center vector is e�ectively stored in the position of the 2D (or 1D) receptive �elds and

in their connections to the product unit(s). This is plausible physiologically. The update

equations are probably not. Equation (28) or a somewhat similar, quasi-hebbian scheme is

not too unlikely and may require only a small amount of plausible neural circuitry. Equation

(29) seems more di�cult to implement for a network of real neurons (as an aside, notice that

in the gaussian case the term h
0(kxi� t�k2) has an interesting form !). It should be stressed,

however, that the centers may be moved in other ways { or not at all! In the gaussian case,

with basis functions synthesized through the product of gaussian receptive �elds, moving the
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centers means establishing or erasing connections to the product unit. This can be done on

the basis of rules that are di�erent from the full equation 29, such as, for instance, compet-

itive learning, and that are biologically more plausible. Computer experiments are needed

to assess the e�cacy of di�erent strategies to learn the optimal position of the centers.

The GRBF method with the Gaussian suggests an intriguing metaphor for a compu-

tational strategy that the brain may use, in some cases. Computation, in the sense of

generalization from examples, would be done by superposition of receptive �elds in a multi-

dimensional input space. In the case of Gaussian radial basis functions, the multidimensional

receptive �elds could be synthesized by combining lower dimensional receptive �elds, pos-

sibly in multiple stages. From this point of view, some cells would correspond to radial

functions with centers in a high dimensional input space, somewhat similar to prototypes or

coarse \grandmother cells", a picture that seems super�cially consistent with physiological

evidence. They could be synthesized as the conjunction of gaussian weighted positive and

negative features in 2D retinotopic arrays.

Notice that from this perspective the computation is performed by gaussian receptive

�elds and their combination (through some approximation to multiplication), rather than

by threshold functions. The basis units may not even need to be all radial, as we discuss in

the next section. The view is in the spirit of the key role that the concept of receptive �eld has

always played in neurophsyiology. It predicts the existence of low-dimensional feature-like

cells and multidimensional Gaussian-like receptive �elds, somewhat similar to template-like

cells, a fact that could be tested experimentally on cortical cells. 3

7.3 An example: recognizing a 3D object from its perspective

views

To illustrate the previous remarks let us consider the following speci�c task in model-based

visual recognition.

A set of visible points on a 3D object P1; P2; � � � ; Pn maps under perspective projec-

tion onto corresponding points on the image plane, whose coordinates will be indicated

by (x1; y1); (x2; y2); � � � (xn; yn). The set of these coordinates represents a view. To each

view j, obtained by a 3D rigid transformation of the object, we associate the vector vj =

(x
j

1; y
j

1; x
j

2; y
j

2; � � � ; xjn; yjn) in a 2n-dimensional space. Following Basri and Ullman (1989),

who had considered the simpler case of orthographic projection plus scaling (they prove

the surprising result that any view can be obtained as the linear combination of a small

number of other appropriate views), we would like to synthesize a system that takes any

view of the speci�c object as input and provides a standard view v0 as output. The view

of a di�erent object would lead to something di�erent from v0. Is the task feasible? The

following argument shows that it is. So called structure-from-motion theorems prove that

for a moving rigid object as few as 2 perspective views and a small number of corresponding

3We conjecture that Andersen's data, modeled by Zipser and Andersen (1988) with a backpropagation

network, may be better accounted for by a GRBF network. In the latter scheme (see previous discussion)

the radial functions are the product of 2D gaussians representing the visual receptive �elds and 1D gaussians

representing the eye position. This accounts immediately for the multiplicative property of the V7 cells

found by Andersen. Their activities are then superimposed to obtain the desired mapping into head-centered

coordinates.
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points are su�cient for recovering the motion and the 3D structure of the object (the avail-

able results, without a numerical stability analysis and under rather weak conditions, are: 8

points (Longuet-Higgins, 1981) , 5 points (quoted by Longuet-Higgins, 1981), 7 points (Tsai

and Huang, 1982) ). Thus a small number of perspective views of an object contains the

necessary information for computing any perspective view of the same object (provided the

points of interest are always visible).

We can use GRBF to achieve this goal, in the following way. We have (see �gure 5) 2n

inputs to accommodate the vectors vj and, say K radial basis functions initially centered

each on one of a subset of the M views used to \learn" the system (M � K). Instead of

one output only as shown in �gure 5 the system will have 2n outputs corresponding to the

components of the standard view v0. Thus for each of the M inputs in the training set the

desired output is v0. In the simple case of \�xed centers" the network must attempt to

satisfy

V0 = GC

where V0 is the (M; 2N) matrix whose rows are all equal to the standard view, C is the

(K; 2N) matrix of the coe�cients c and G is the (M;K) matrix G(kvj � t�k2). The best

solution in the least square sense is

C = G
+
V0:

Computer simulations show that the GRBF network generalizes successfully to views that

are not part of the training set (Poggio and Edelman, 1990). We are presently exploring

several issues, such as how performance degrades with decreasing number of views and of

radial basis functions.

In general it is better to have as few centers as possible and move them by using equations

26 and 27. Notice that each center corresponds to a view or to some \intermediate" view.

Also notice that the required multidimensional gaussians can be synthesized by the product

of two-dimensional gaussian receptive �elds, looking in the retinotopic space of the features

corresponding to P1; P2; � � � ; Pn. There would be a two-dimensional gaussian receptive �eld

for each view in the training set and for each feature Pi, centered at Pi (in the simple case of

�xed centers), for a total of N two-dimensional gaussian receptive �elds for each of the M

centers. We have synthesized a yes/no detector for a speci�c object, irrespectively of its 3D

position, by subtracting from the output of the GRBF network the selected standard view,

then taking the euclidean norm of the resulting error vector and thresholding it appropriately.

All of this assumes that the correspondence problem between views is solved, a quite di�cult

proposition!

Finally, we cannot resist the temptation of mentioning that the GRBF recognition scheme

we have outlined has intriguing similarities with some of the data about visual neurons

responding to faces obtained by Perrett and coworkers (see Perrett et al., 1987, Poggio and

Edelman, 1989).
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7.4 Gaussian GRBFs, Coarse Coding and Product Units

A popular approach in the neural network literature is coarse coding. This technique assigns

a receptive �eld to each computing unit. If the dimensions of the receptive �elds are properly

chosen, a point in the input space generally belongs to a number of di�erent receptive �elds,

and is then encoded in a distributed way. An example of coarse coding is the \scalarized"

representation adopted by Saund (1987) to perform dimensionality reduction by means of a

network with one hidden layer. In his work a scalar value is represented by the pattern of

activity over a set of units. The pattern of activity is determined by sampling a gaussian-like

function G centered on the scalar value itself. If t1; :::; tn are the points at which the function

G is sampled the \scalarized" representation of the value x is then the following:

x) fG(x� t1); G(x� t2); :::; G(x � tn)g :
Once the input is represented in such a way, it is further processed by the hidden and the

output layer, for instance of a BP network. If the input consists of more than one variable,

each variable is \scalarized" separately.

Clearly, the previous sections show that a gaussian GRBF network (with �xed centers)

is equivalent to coarse coding followed by product units (also called Sigma-Pi units, see

Rumelhart et al. 1986; Mel, 1988). An example is shown in �gure 6 for a two dimensional

input. The �rst layer represents the coarse coding stage with two-dimensional gaussian

receptive �elds. The second layer consist of product units that synthesize the gaussian

radial basis functions. The output of these units is then summed with the weights c1, c2 and

c3 to give the value of the GRBF expansion.

In this example the output of a product unit with inputs (x1; x2; :::; xn) was simply

y =
Q

n

i=1 xi. This is a particular case of the Product Units introduced by Durbin and

Rumelhart (1989). The output of a Product Unit is in general y =
Q

n

i=1 x
pi

i where the pi are

exponents that have to be chosen. Substituting the units in the hidden layer with Products

Units one obtains

�
e
�(x�tix)

2
�
p1
�
e
�(y�tiy)

2
�
p2

= e
�[p1(x�t

i
x)
2+p2(y�t

i
y)

2]
; i = 1; 2; 3 : (37)

This gives an expansion on a set of non radial basis functions that can also be derived from

regularization (see section 8.2).

8 Some Future Extensions and Applications

This section sketches some of the extensions and applications of GRBFs that will be discussed

in detail in a forthcoming paper.

8.1 The Bayes Approach to GRBFs

Earlier in the paper we have shown that the regularization principle is strictly related to

the prior assumptions on the mapping to be learned and to the noise distribution in the

examples (section 3.3). Because of the \equivalence" between GRBFs and regularization, it

follows that the form of the radial basis function { its shape and its parameters, such as scale
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Figure 6: A GRBF network with three knots, which can be used for the reconstruction of

a two dimensional function. The �rst layer consists of Gaussian units, and implements

one dimensional receptive �elds. The second layer consists of product units and is used to

recover the two-dimensional receptive �eld. The output is a weighted sum of the outputs of

the product units.
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{ depends on the prior, that is on the a priori knowledge of the smoothness properties of

the mapping to be learned. The prior is in turn related to the complexity of the hypothesis.

This point of view seems quite powerful both as an interpretation of GRBFs and as an

approach for generalizing the GRBF scheme in several directions including, for instance,

dimensionality regularization (Girosi and Poggio, 1989). Another important generalization

has to do with the type of a priori knowledge that is assumed. The approach of this paper

deals only with assumptions about smoothness of the mapping to be learned. Assumptions

of this type are quite weak { in terms of required a priori knowledge { but powerful { in

terms of their implications (see Stone, 1982). It is natural to ask whether it is possible to

extend the approach of this paper to other types of prior assumptions.

8.2 Generalizing GRBFs to HyperBFs

The GRBF network that we have derived consists of radial function all of the same type.

In the gaussian case all units have the same � which is set by the stabilizer, that is by the

prior assumptions about the function to be learned. It is natural to attempt to write a more

general expansion than equation (19) in terms of, say, gaussians with � depending on t�,

replacing � by ��. Gradient descent could then be performed on ��, in addition to t� and c�.

Moody and Darken (1989) have reported successful testing of a method somewhat similar

to radial basis functions in which the � of the gaussian units is determined from the data

and is di�erent from unit to unit. Somewhat surprisingly, it seems very di�cult to derive

rigorously from regularization an expansion of this type. 4

We found, however, a di�erent solution to the multiscale problem that is consistent with

regularization and, at the same time, generalizes the GRBF scheme beyond radial functions.

We call the resulting expansions and the associated networks Hyper Basis Functions. In this

section we sketch the main results.

The main idea is to consider the mapping to be approximated as the sum of several

functions, each one with its own prior, that is stabilizer. The corresponding regularization

principle then yields a superposition of di�erent Green's functions, in particular gaussians

with di�erent �. Thus, instead of doing gradient descent on �� the network has a \repertoire"

of di�erent � at the same positions and chooses which ones to use through the corresponding

coe�cient. In more detail, the function f to be approximated is regarded as the sum of p

components fm,m = 1; : : : ; p, each component having a di�erent prior probability. Therefore

the functional H[f ] to minimize will contain p stabilizers Pm and will be written as

H[f ] =
NX
i=1

(
pX

m=1

f
m(xi)� yi)

2 +
pX

m=1

�mkPm
f
mk2 : (38)

From the structure of equation (38) it is clear that the exact solution will be a linear super-

position of linear superpositions of the Green's functions Gm corresponding to the stabilizers

P
m. The approach of section 5.2 { of using less radial functions than examples (with centers

4In principle, optimal �(x) could be found as the solution to a variational problem in � that contains

the standard regularization problem: �nd the �, and then the stabilizer, such that the solution of the

regularization problem is optimal. The problem is related to the optimization problems involving MRFs

with line processes (Geiger and Girosi, 1989), and to cross-validation techniques (Craven and Wahba, 1979;

Wahba, 1977).
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generally di�erent from the examples) { can be naturally extended to deal with this class

of functionals (Girosi and Poggio, 1989a). The approximated solution to the minimization

problem de�ned by equation (38) is written as (the HyperBF expansion)

F (x) =
pX

m=1

KX
�=1

c
m

�
G
m(x; tm

�
) : (39)

In particular, this method leads to radial basis functions of multiple scales for the reconstruc-

tion of the function f . Suppose we know a priori that the function to be approximated has

components on a number p of scales �1; : : : ; �p: we can use this information to choose a set

of p stabilizers whose Green's functions are, for example, Gaussians of variance �1; : : : ; �p.

According to example 1 of section (5.1.2) we have:

kPm
f
mk2 =

1X
k=0

a
m

k

Z
Rn

dx(Dm
f
m(x))2 (40)

where a
m

k
= �

2k
m

k!2k
. As a result, the solution will be a superposition of superpositions of

gaussians of di�erent variance. Of course, the gaussians with large � should be preset,

depending on the nature of the problem, to be fewer and therefore on a sparser grid, than

the gaussians with a small �.

The method yields also non-radial Green's functions { by using appropriate stabilizers {

and also Green's functions with a lower dimensionality { by using the associated fm and Pm

in a suitable lower-dimensional subspace. Again this reects a priori information that may

be available about the nature of the mapping to be learned. In the latter case the information

is that the mapping is of lower dimensionality or has lower dimensional components (see the

problem of Saund, 1987).

Algorithms to perform gradient descent on the expansion equation (39) are the same

that can be used for GRBFs (see for instance equations (26) and (27)). The additional

\repulsive" term in the functional H[f ] to be minimized, introduced earlier, should now

consist of the sum of pairwise interactions among centers of the same type only, for instance

among gaussians with the same �. In equation 39 two identical basis functions with the

same center are clearly redundant, but two di�erent basis functions in the same position,

for instance two gaussians with a di�erent scale, may actually make sense. This amounts to

a form of an exclusion principle for basis units of the same type (the index m in equation

(40), see Girosi and Poggio, 1989a).

Notice that an e�cient heuristic scheme may want to create basis units in regions of the

input space where the network is not performing well and annihilate basis units that are not

activated much. This common sense heuristics �ts perfectly within the formal framework:

creation of a new unit means moving the center of an existing, remote one to an useful initial

position; annihilation is equivalent to a 0 value for the associated coe�cient c.

One class of more e�cient algorithms than simple gradient descent are multigrid tech-

niques. Multiresolution techniques have been used in many �elds such as numerical analysis

(Brandt, 1977) and computer vision (Rosenfeld and Kak, 1982). The idea is to �nd a solu-

tion at a coarse scale, then use this coarse solution as a starting point for higher resolution

descriptions that can then be used to re�ne the coarse levels in an iterative procedure that

proceeds from coarse to �ne and back. Multigrid methods for solving partial di�erential
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equations work in this general way. The same basic idea could be used with multiple-scales

HyperBF: a coarse description is �rst obtained by doing gradient descent only on the few

gaussian functions with large �. A �ner description is then derived by approximating the

di�erence between the data and the coarse approximation with more and smaller gaussian

functions (the �ner description may be used only in a subregion of the input space, some-

what similarly to a \fovea"). The whole process is then iterated again in a sequence of

error correction steps, from coarse to �ne and from �ne to coarse. The process should be

equivalent to doing gradient descent on the all set of basis functions at once, but it could be

computationally more e�cient and even more capable of avoiding local minima (depending

on the problem). Ideas of a similar avor have been recently suggested by Moody (1989).

8.3 Nonlinear input and output coding

We have mentioned already that the HyperBF scheme when used for classi�cation tasks

could include an invertible nonlinear function � of the output without a�ecting the basic

technique. Clearly a similar nonlinear function � could be applied to each of the inputs: the

HyperBF approximation would be then performed on the transformed inputs to yield the ��1

transformation of the given output. It seems possible that in some cases suitable input and

output processing of this type may be advantageous. Is there a general reason for it? Poggio

(1982), following a forceful argument by Resniko� (1975), has argued that the input and

the output of the mapping to be approximated should be processed by a nonlinear function

in order to match the domain and the range of the approximating function. Resniko� had

proposed as nonlinear functions for this processing the birational functions, the exponential

function, the logarithmic function and the composition of this functions, since they achieve

the necessary conversion of domain and range with minimal disruption of the algebraic

structure of the input and output spaces. Input and output coding of this type tries to

linearize the approximation as much as possible by exploiting a priori information about

the range and the domain of the mapping to be approximated. Interestingly, the sigmoid

function used at the output of many neural networks can be derived from the composition

of a rational function and an exponential and matches the range of functions used for binary

classi�cation.

8.4 Learning Dynamical Systems

HyperBF can be used to \learn" a dynamical system from the time course of its output.

In fact, RBF have been suggested often as a good technique for this problem and have

been successfully tested in some cases (Broomhead and Lowe, 1988; Casdagli, 1989). The

technique involves the approximation of the \iterated map" underlying the dynamical system

(the crucial problem is, of course, the estimation of the dimension of the attractor and the

choice of the input variables, see Farmer et al., (1983) for a good review). We have every

reason to believe that HyperBF will perform on this problem at least as well as the linear

techniques of Farmer and Sidorowich (1988) and the backpropagation algorithm of Lapedes

and Farber (1988).
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8.5 Learning the Dynamical System Underlying a ComplexMap-

ping

Dynamical systems (in particular discrete time systems, that is di�erence equations) are

Turing universal (the game \Life" is an example that has been demonstrated to be Turing

universal). Thus a dynamical system such as the feedback system shown in �gure 7, where

(x0; x1; : : : ; xn) are the signal values at time t0; t1; : : : ; tn, is equivalent to a �nite state ma-

chine. Clearly the mapping f(x0;x1 : : : xn) which is iterated by the feedback system can be

approximated by HyperBFs. This o�ers the possibility of \learning" a computation more

complex than a boolean function, if examples with su�cient information are provided.

In the following, consider the simpler case of learning a mapping F between an input

vector x and an output vector y = F (x) that belong to the same n-dimensional space. The

input and the output can be thought as the asymptotic states of the discrete dynamical

system obtained iterating some map f . In several cases, the dynamical system that asymp-

totically performs the mapping may have a much simpler structure than the direct mapping

F . In other words, it is possible that the mapping f such that

lim
n!1

f
(n)(x) = F (x) (41)

is much simpler than the mapping y = F (x) (here f (n)(x) means the n-th iterate of the map

f).

A concrete example is the cooperative stereo algorithm (Marr and Poggio, 1976) that

maps a 3D set of possible matches into the 3D set of true matches. The HyperBF technique

can then be used to approximate f rather than F . Each update is done after iterating

equation (41) with a \large enough" n, by using the obvious generalization of equation (28)

and (29) (see Girosi and Poggio, 1989a).

8.6 Multilayer networks

In a somewhat similar spirit to the previous section, multilayer radial basis function networks

(with more than one hidden layer) may be used for functions that happen to be well repre-

sentable as the composition of functions that have a simple radial basis functions expansion.

There is no reason to believe, however, that such \multilayer" functions represent a large

and interesting class.

Especially with backpropagation networks, researchers have often argued for several layers

of hidden units. From the point of view of HyperBF, one layer is needed (the basis functions

themselves), but there is no obvious sense in additional layers. We believe that this is true

in general for single networks.

On the other hand, there is a very good reason for parallel and hierarchical systems

consisting, for instance, of several HyperBF modules connected together: the �rst network,

for instance, may synthesize features that are used by one or more other modules for di�erent,

speci�c tasks.
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Figure 7: A HyperBF network used to approximate a mapping from (x0; x1; x2) to (y0; y1; y2)

by approximating the dynamical system that maps asymptotically the input into the output.

The input is given and the feedback network is iterated a su�cient number of times. Then

the HyperBF update equations are used. The same procedure is used for new examples.

The goal is to approximate the dynamical system that gives asymptotically the desired

input-output relation.
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8.7 Learning Perceptual and Motor tasks

HyperBFs have a good chance of being capable of synthesizing several vision algorithms from

examples, since (a) it is known that several problems in vision have satisfactory solutions in

terms of regularization and (b) HyperBF networks are essentially equivalent to regularization.

We suggest that the use of HyperBFs is not restricted to sensory processes and that they may

also be used to learn motor tasks (Mel, 1988 has demonstrated a scheme for learning a simple

motor task which can be considered a special case of GRBFs) and even to model biological

motor control. In support of this latter point, notice that simple biological trajectory control

seems to be well explained by variational formulations of the regularization type (Flash and

Hogan, 1985). HyperBF networks are equivalent to regularization and may have attractive

neural interpretations: basis functions, possibly radial, may correspond to motor units with

a multidimensional motor �eld, whereas their sum may be implicitly performed by the whole

mechanical system, say a multijoint arm. HyperBFs may also be used for simple forms of

trajectory planning. Potential methods, which associate to obstacles appropriate repulsive

forces and obtain in this way an overall potential �eld that can be used in driving the

trajectory, have been used with some success (for instance by Ahuja, 1989). These methods

are the motor analog of the potential methods used for pattern recognition (see section 6.6).

Clearly, HyperBFs seem naturally suited to learn these �elds from sets of examples. In

any case, computer experiments will have to be performed to assess the performance of the

HyperBF approach.

8.8 Learning Input Features

The theoretical framework we have developed in this paper does not say anything about

what is probably the most di�cult problem in learning a mapping, that is the choice of

the input representation. In the HyperBF scheme, with gaussian basis functions, gradient

descent on the centers positions and on the coe�cients c� can be regarded as equivalent

to learning which features to combine in prototypes by selecting the useful combinations.

The problem of the elementary features, however, is outside the regularization framework,

which is at the basis of HyperBF. Substantial extensions of our approach, for instance using

the Bayes point of view, or di�erent approaches, such as genetic-like algorithms, are clearly

required.

9 Conclusions

9.1 How HyperBFs really work

HyperBF have a rather simple structure that seems to capture some of the main lessons

that are becoming evident in the �elds of statistics and neural networks. HyperBF can be

regarded as a process involving three coupled stages:

� a stage which �nds centers of clusters of training examples in the associated n-dimensional

space

� the coding of the inputs by the K basis functions
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� a stage that performs an optimal linear mapping from the K-dimensional space of basis

functions into the desired output vector

The �rst stage can be regarded as similar to simple and e�cient clustering algorithms.

The third stage is classical: optimal linear mappings by themselves work well in many situ-

ations. Our approach to HyperBF shows that this sequence of stages is not just attractive

heuristics but derives rigorously from regularization and is thereby solidly grounded in ap-

proximation theory. The theory says that the basis functions provide a su�cient nonlinear

coding of the input for linear approximation to work (see Poggio, 1982). In addition, it says

how to couple these various stages in a single procedure.

To have a feeling of how HyperBFs work let us consider a speci�c, extreme case, in

which we consider a HyperBFs network as a classi�er, something the formal theory does not

actually allow. Imagine using a HyperBF scheme to classify patterns, such as handwritten

digits, in di�erent classes. Assume that the input is a binary a 8-bit vector of length N

and each of the basis functions is initially centered on the point in the N-dimensional input

space that corresponds to one of the training examples (�xed centers case). The system has

several outputs, each corresponding to one of the digit classes. Let us consider a series of

special cases of HyperBF of increasing generality:

1. Each of the unit (its center corresponds to an example) is an hypersphere (see equation

(34)) and is connected, with weight 1, to its output class only. Classi�cation is done

by reading out the class with maximum output. In this case, the system is performing

a Parzen window estimate of the posterior probability and then using a MAP crite-

rion. The Parzen-window approach is similar (and asymptotically equivalent) to the

kn nearest-neighbor estimation, of which the nearest-neighbor rule is a special case. In

this special case the network is equivalent to a hypersphere classi�er.

2. We now replace the hypersphere by a multidimensional gaussian that is an allowed ra-

dial basis function (the hypersphere does not satisfy Micchelli's condition and cannot

be derived from regularization). At least for the task of approximating smooth func-

tions the network should perform better than in the non-gaussian case. The centers of

the radial basis functions may be regarded as representing \templates" against which

the input vectors are matched (think, for instance of a radial gaussian with small �,

centered on its center, which is a point in the n-dimensional space of inputs).

3. We may do even better by allowing arbitrary c values between the radial units and the

output. The c can then be found by the pseudoinverse technique (or gradient descent)

and are guaranteed to be optimal in the l2 sense.

4. We now allow a number of (movable) centers with radial basis functions. This is the

GRBF scheme. Moving a center is equivalent to modifying the corresponding template.

Thus equation (29) attempts to develop better templates by modifying during training

the existing ones. In our example, this means changing the pixel values in the arrays

representing the digits.

5. Finally the most general network contains radial units of the gaussian type of di�erent

scale (i.e. �), together with non-radial units associated to appropriate stabilizers and

units that receive only a subset of the inputs.
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This list shows that the HyperBF scheme is an extension of some of the simplest and

most e�cient approximation and learning algorithms which can be regarded as special cases

of it. In addition, it illuminates a few interesting aspects of the HyperBF algorithm, such as

its massive parallelism and its use of prototypes. The network is massively parallel in the

sense that it may in general require a large number of basis units. While this property could

have been regarded quite negatively a few years ago, this is not so anymore. The advent

of parallel machines such as the Connection Machine with about 65,000 processors and of

special purpose parallel hardware has changed the perspective towards massive parallelism.

The use of prototypes by HyperBFs suggest that, in a sense, HyperBFs networks are an

extension of massive template matchers or look-up tables. We believe that this property

makes them intriguingly attractive: after all, if memory is cheap, look-up tables are a good

starting point. The HyperBF scheme says how to extend look-up tables to do as well as

possible in terms of approximating a multidimensional function about which very little is

known.

9.2 Networks and Learning: The Pervasive Problem of Dimen-

sionality

Our main result shows that the class of feedforward multilayer networks identical to Hy-

perBF are equivalent to generalized splines, and are capable of well approximating a smooth

function. This is highly satisfactory from a theoretical point of view, but in practice another

fundamental question must also be addressed: how many samples are needed to achieve a

given degree of accuracy (Stone, 1982; Barron and Barron, 1988)? It is well known that

the answer depends on the dimensionality d and on the degree of smoothness p of the class

of functions that has to be approximated (Lorentz, 1966, 1986; Stone, 1982, 1985). This

problem has been extensively studied and some fundamental results have been obtained by

Stone (1982). He considered a class of nonparametric estimation problems, like surface ap-

proximation, and computed the optimal rate of convergence �n, that is a measure of how

accurately a function can be approximated knowing n samples of its graph. He showed

that using a local polynomial regression the optimal rate of convergence �n = n

�
p

2p+d can be

achieved, generalizing previous results based on local averages. This means that the number

of examples needed to approximate a function reasonably well grows enormously with the

dimension d of the space on which it is de�ned, although this e�ect is mitigated by a high

degree of smoothness p (in fact �n depends only on the ratio d

p
). For instance in the case of a

twice di�erentiable function of two variables, 8000 examples are needed to obtain �n = 0:05,

but if the function depends on 10 variables the number of examples necessary to obtain the

same rate of convergence grows up to 109. However, if a function of 10 variables is 10 times

di�erentiable 8000 examples will be enough to obtain �n = 0:05.

Interestingly these results lead to an a posteriori justi�cation of the smoothness assump-

tion that plays a central role in standard regularization. In fact, when the number of di-

mensions becomes larger than 3 or 4, one is forced to assume a high degree of smoothness:

otherwise the number of examples required will be so large that the approximation task

becomes hopeless. This justi�es the use of high-order stabilizers such as the gaussian (the

stabilizer is equivalent to the prior, see earlier) for high dimensional spaces, whenever no

other type of prior information about the function to be approximated is available. Notice
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that in the case of an in�nite degree of smoothness the optimal rate of convergence tends

to an asymptotic value. In fact it is straightforward to check that limp!1 �n = n
�
1

2 . In this

case it is possible to obtain �n = 0:05 with just 400 examples. It must be noticed however

that the set of functions with in�nite degree of smoothness is a very small subset of the space

of the continuous functions.

The results stated above are optimal, but it is not guaranteed that they are achievable

with HyperBF. The similarity of HyperBF with splines is encouraging, however, since splines

has been proved to be optimal in this sense (Cox, 1984). Our results also suggest that most

of the networks proposed in the recent literature, since they are similar to the HyperBF nets,

are likely to have the same fundamental limitations, perhaps even more strongly, from the

point of view of sample complexity.

Other interesting results have been obtained by Baum and Haussler on the statistical reli-

ability of networks for binary classi�cation (Baum, 1988; Baum and Haussler, 1989). They

use the concept of Vapnik-Chervonenkis dimension (Vapnik and Chervonenkis, 1971) in the

network context to give the probability of error on new data given the error on the train-

ing data. This approach is di�erent from the one pursued in approximation and regression

theory, since they do not estimate a priori the accuracy of the network. These results do

not directly apply to our case, but, since the concept of Vapnik-Chervonenkis dimension

has been shown to be very powerful, we think it will also be relevant in the context of the

HyperBF method.

Of course this analysis requires that the true dimension of the data set is known, which is

not always the case. Especially when the number of dimensions is large, not all of them are

relevant: the problem of \dimensionality reduction" is how to �nd the relevant dimensions.

A solution to the problem consists in considering the dimension as another random variable

that has to be estimated from data (see Girosi and Poggio, 1989). A priori knowledge about

the number of dimensions can be embedded in the MAP estimator, to make, for instance,

low dimensionality solutions more likely than others.

Another approach to dimensionality reduction has been pursued by J. Schwartz (1988), and

has been shown to be not very di�erent from ours (Girosi and Poggio, 1989). He solves

the learning problem for many data sets, obtained from the original one dropping some

dimensions, and then selects the one that gives the best result. This method is more similar

to Generalized Cross Validation (Wahba, 1977; Craven and Wahba, 1979) and even without

a priori information on the dimensionality of the problem, turned out to be e�ective in

computer simulations (Schwartz, 1988).

9.3 Summary

Approaching the problem of learning in networks from the point of view of approximation

theory provides several useful insights. It illuminates what network architectures are doing;

it suggests more principled ways of obtaining the same results and ways of extending further

the approach; and �nally, it suggests fundamental limitations of all approximation methods,

including so called neural networks.

In this paper, we developed a theoretical framework based on regularization techniques

that led to a class of three-layer networks, useful for approximation, that we call Generalized

Radial Basis Functions (GRBF), since they are closely related to the well-known Radial
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Basis Functions, mainly used for strict interpolation tasks. We have introduced several new

extensions of the method and its connections with splines, regularization, Bayes formulation

and clustering. GRBFs have a direct interpretation in terms of a feedforward, multilayer

network architecture. Unlike neural networks they have good theoretical foundations. They

may provide the best framework within which we can study general issues for learning tech-

niques of the neural network type.
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A Kolmogorov's and Vitushkin's Theorems

In this section we discuss the problem of the exact representation of continuous multivariate

functions by superposition of univariate ones. Some results on this topic will be reported as

well their interpretation in the framework of the multilayer networks.

This problem is the thirteenth of the 23 problems that Hilbert formulated in his famous

lecture at the International Conference of Mathematicians in Paris, 1900. Although his orig-

inal formulation dealt with properties of the solution of a seventh degree algebraic equation

this problem can be restated as follows:

prove that there are continuous functions of three variables, not representable as super-

positions of continuous functions of two variables

The de�nition of superposition of functions can be found in Vitushkin (1954), but is quite

cumbersome and to our aims is su�cient to de�ne it as the usual composition. For example

the function xy is the superposition of the functions g(�) = exp(�) and h(�) = log(�), since
we can write

xy = e
(logx+logy) = g(h(x) + h(y)):

In 1957 Kolmogorov and Arnol'd showed the conjecture of Hilbert to be false: by Kol-

mogorov's theorem any continuous function of several variables can represented by means

of a superposition of continuous functions of a single variable and the operation of addition.

The original statement of Kolmogorov (1957) is the following:

Theorem A.1 There exist �xed increasing continuous functions hpq(x), on I = [0; 1] so that

each continuous function f on I
n can be written in the form

f(x1; :::; xn) =
2n+1X
q=1

gq(
nX

p=1

hpq(xp));

where gq are properly chosen continuous functions of one variable.

Since the original formulation of Kolmogorov many authors have improved the repre-

sentation of theorem A.1. The main results are concerned with the possibility of replacing

the functions gq by a single function g (Lorentz, 1962) and of writing hpq as lphq (Sprecher,

1964). Here we report a formulation due to Kahane (1975) whose proof does not need the

construction of the functions hq, relying instead on the Baire's theorem. We �rst give some

de�nitions. We will say that a statement is true for quasi every element of a complete met-

ric space M if it is true on the intersection of a countable family of open sets which are

everywhere dense in M . Let H be the space with uniform norm consisting of all functions

continuous and non decreasing on the segment I and H
k = H � :::�H the k-th power of

the space H.The following theorem then holds:

Theorem A.2 Let lp(p = 1; :::; n) be a collection of rationally independent constants. Then

for quasi every collection fh1; :::; h2n+1g 2 H
2n+1 it is true that any function f 2 C(In) can

be represented on I
n in the form
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f(x1; :::; xn) =
2n+1X
q=1

g(
nX

p=1

lphq(xp));

where g is a continuous function.

Figure 8: The network implementation of Kahane's version of Kolmogorov's theorem

The representation of this formula has been graphically depicted in �gure 8: it is evident

the connection between this superposition scheme and a multilayer network architecture.

In this framework this result could seem very appealing : the representation of a function

requires a �xed number of nodes, smoothly increasing with the dimension of the input

space. Unfortunately further studies on this subject showed that these results are somewhat

pathological and their practical implications very limited. The problem lies in the inner

functions of Kolmogorov's formula: although they are continuous, some results of Henkin

and Vitushkin (1967) prove that they must be highly non-smooth. Since the number of binary
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digits required to code a function with a given accuracy is inversally proportional to its degree

of smoothness, as a result a very poor accuracy will be obtained implementing Kolmogorov's

formula with �nite precision. One could ask if it is possible to �nd a superposition scheme

in which the functions involved are smooth. The answer is negative, even for two variable

functions, and was given by Vitushkin with the following theorem (1954):

Theorem A.3 There are r (r = 1; 2; :::) times continuously di�erentiable functions of n � 2

variables, not representable by superposition of r times continuously di�erentiable functions

of less than n variables; there are r times continuously di�erentiable functions of two variables

which are not representable by sums and continuously di�erentiable functions of one variable.

We notice that the intuition underlying Hilbert's conjecture and theorem A.3 is the same:

not all the functions with a given degree of complexity can be represented in simple way by

means of functions with a lower degree of complexity. The reason for the failing of Hilbert's

conjecture is a \wrong" de�nition of complexity: Kolmogorov's theorem shows that the

number of variables is not su�cient to characterize the complexity of a function. Vitushkin

showed that such a characterization is possible and gave an explicit formula. Let f be a

r times continuously di�erentiable function de�ned on I
n with all its partial derivatives of

order r belonging to the class Lip[0; 1]�. Vitushkin puts

� =
r + �

n

and shows that it can be used to measure the inverse of the complexity of a class of functions.

In fact he succeded in proving the following:

Theorem A.4 Not all functions of a given characteristic �0 =
q0

k0
> 0 can be represented

by superpositions of functions of characteristic � = q

k
> �0; q � 1:

Theorem A.3 is easily derived from this result.

B Linear Approximation (1-Layer Networks)

Let us assume that the mapping between a set of input vectors y and a set of output vectors

z is linear (for an example, see Hurlbert and Poggio, 1988). How can we estimate the linear

mapping from a set of examples? We start by arranging the sets of vectors in two matrices

Y and Z. The problem of synthesizing the linear operator L is then equivalent to \solving"

the following equation for L:

Z = LY (42)

A general solution to this problem is given by

L = ZY
+
; (43)

where Y + is the pseudoinverse of Y . This is the solution which is most robust against errors,

if equation (42) admits several solutions and it is the optimal solution in the least-squares
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sense, if no exact solution of equation (42) exists. This latter case is the one of interest to

us: in order to overconstrain the problem, and so avoid look-up table solutions, we require

that the number of examples (columns of Y ) be larger than the rank of the matrix L. In

this case, there is no exact solution of equation (42) and the matrix L is chosen instead to

minimize the expression

M = kLY � Zk2: (44)

L may be computed directly by minimizing (44), which yields

L = ZY
T (Y Y T )�1 (45)

In practice, we compute L using equation (45), but �rst regularize it by adding a stabi-

lizing functional to obviate problems of numerical stability (Tikhonov and Arsenin, 1977).

B.1 Recursive Estimation of L

It is of particular importance for practical applications that the pseudoinverse can be com-

puted in an adaptive way by updating it when new data become available (Albert, 1972).

Consider again equation (45). Assume that the matrix Y consists of n� 1 input vectors and

Z of the corresponding correct outputs. We rewrite equation (45) as

Ln�1 = Zn�1Y
+
n�1 (46)

If another input-output pair yn and zn becomes available, we can compute Ln recursively by

Ln = Ln�1 + (zn � Ln�1yn)t
T

n
; (47)

where

t
T

n
=

y
T

n
(Yn�1Y

T

n�1)
�1

1 + y
T
n
(Yn�1Y

T

n�1)
�1
yn

; (48)

provided that (Yn�1Y
T

n�1)
�1 exists (i.e., that the number of columns in Y is greater than or

equal to the dimension of y). The case in which (Yn�1Y
T

n�1)
�1 does not exist is discussed

together with more general results in Albert (1972). Note that (zn�Ln�1yn) in the updating

equation (47) is the error between the desired output and the predicted one, in terms of the

current L. The coe�cient tn is the weight of the correction: with the value given by equation

(48) the correction is optimal and cannot be improved by any iteration without new data.

A di�erent value of the coe�cient is suboptimal but may be used to converge to the optimal

solution by successive iterations of equation (48) using the same data.
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B.2 Optimal Linear Estimation, Regression and Bayesian Esti-

mation

The optimal linear estimation scheme we have described is closely related to a special case of

Bayesian estimation in which the best linear unbiased estimator (BLUE) is found. Consider

equation (42): the problem is to construct an operator L that provides the best estimation

Ly of z. We assume that the vectors y and z are sample sequences of gaussian stochastic

processes with, for simplicity, zero mean. Under these conditions the processes are fully

speci�ed by their correlation functions

E[yyT ] = Cyy; E[zyT ] = Czy (49)

where E indicates the expected value. The BLUE of z (see Albert, 1972) is, given y,

z
est = CzyC

�1
yy
y; (50)

which is to be compared with the regression equation

Ly = ZY
T (Y Y T )�1

y: (51)

The quantities ZY T and Y Y T are approximations to Czy and Cyy, respectively, since the

quantities are estimated over a �nite number of observations (the training examples). Thus

there is a direct relation between BLUEs and optimal linear estimation. The learned operator

captures the stochastic regularities of the input and output signals. Note that if the input

vectors y are orthonormal, then L = ZY
T and the problem reduces to constructing a simple

correlation memory of the holographic type (see Poggio, 1975). Under no restrictions on the

vectors y, the correlation matrix ZY T may still be considered as a low-order approximation

to the optimal operator (see Kohonen, 1978).

C Polynomial Approximation

A natural extension of linear estimation is polynomial estimation. The Weierstrass-Stone

theorem suggests that polynomial mappings, of which linear mappings are a special case,

can approximate arbitrarily well all continuous real functions. There are function space

equivalents of Weierstrass' theorem. In our case, de�ning X �X � _�X (n times) as the set of

linear combinations of the monomials of degree n in the components (X1; : : : ;Xk) of X, we

simply look for the multivariate polynomial given by L(X) = L0 + L1X + L2X �X + L3X �
X �X + : : : that minimizes ky � L(X)k. The problem is equivalent to �nding the optimal

linear estimator on the \expanded" space consisting of all the products of the components

of X. The monomials such as X1;X1X2, or X
2
1X

3
2X3 � � � become the new features that are

input to an optimal linear estimator. The resulting polynomial estimator can approximate

any continuous mapping. In the case of optimal polynomial estimation, the crucial problem

is computational complexity, which translates into the computation of the pseudoinverse of

very large matrices yt (see equation (43)). As a (small) step toward simplifying this problem,
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one can think of computing the optimal L0, then the optimal L1 connection, and so on in a

sequence, up to Ln. Poggio (1975) proposes that the optimal polynomial estimator of order

n can be found by an iterative procedure that �rst �nd the optimal linear estimator, then the

optimal second-order correction up to the optimal n-order correction and then back again

to the linear correction and so on. A theorem (Poggio, 1975) guarantees convergence of the

procedure to the optimal n-th order estimator.

Recently, it has been demonstrated that a multilayer network can represent exactly any

polynomial mapping, given polynomial output functions of at least order two for each unit

and enough hidden units and layers (Moore and Poggio, 1988).

D The Relation between Regularization and Bayes

Estimation

The problem of hypersurface reconstruction { and therefore of learning { can be formulated

as a Bayesian estimation problem. The goal is to estimate the a posteriori probability Pz=d
of the solution z given the data d and use the estimate according to a chosen performance

criterion . Bayes theorem yields

P (z=d) / P (z)P (d=z)

where P (z) is the prior probability density of the process associated with z and P (d=z) is

the conditional probability density of the data d given the hypersurface z.

We consider now the special case of z (or equivalently the result of the action of any

di�erential operator P on it) being a gaussian process. In this case, the a priori probability

distribution of z is

P (z) / e
�
1

2
(z;P̂P z)

.

where (�; �) is a scalar product in the space to whom z belongs and P̂ is the adjoint of

the operator P . Let us assume that the noise process a�ecting the data d taken from z is

additive, white and gaussian with variance �2. Then the conditional probability P (d=z) can

be written as

P (d=z) / e

�
1

2�2
kz�dk2

:

where k � k is the norm induced by the scalar product (�; �). Depending on the optimality

criterion there are now several ways of obtaining the best estimate of z given the data d. A

commonly used estimate is the Maximum A Posteriori (MAP) estimate

P (zbest=d) = maxfP (z=d)jz 2 Zg
In our case the following holds

P (zbest=d) = max e�
1

2�2
kz�dk2�

1

2
zP̂ Pz

:
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Since by de�nition (z; P̂Pz) = kPzk2, this is equivalent to �nding the solution z that

minimizes the functional

kz � dk2 + �kPzk2

that, in the case of sparse data, becomes the functional of equation (1).

This sketch of the relation between the Bayesian approach and regularization shows that

the �rst term in equation 1,
P

i kzi�dik2, is �logPd=z, in other words it represents the known
model of the measurement process or, equivalently, the model of the noise. The second term,

kPzk2, is �logPz and therefore is dictated by the prior, that is the a priori knowledge about

the solution, such as its smoothness properties.
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