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Abstract

Both multilayer perceptrons (MLP) and Generalized Radial Basis Functions GRBF)
have good approximation properties, theoretically and experimentally. Are they re-
lated? The main point of this paper 'is to show that for normalized inputs, multilayer
perceptron networks are radial function networks albeit wth a non-standard radial
function). This provides an interpretation of the weights u7 as centers t of the radial
function network, and therefore as equivalent to templates. This 'Insight may be useful
for practical applications, ncluding better 'Initialization procedures for MLP. In the
remainder of the paper, we discuss the relation between the radial functions that cor-
respond to the sigmoid for normalized inputs and well-behaved radial basis functions,
such as the Gaussian. In particular, we observe that the radial function associated
with the sigmoid 'is an activation function that is good approximation to Gaussian
basis functions for a range of values of the bias parameter. The mplication is that a
MLP network can always simulate a Gaussian GRBF network (with the same nmber
of uits but less parameters); the converse is true oly for certain values of the bias
parameter. Numerical experiments indicate that this constraint 'is not always satisfied
in practice by MLP networks trained with backpropagation. Multiscale RBF net-
works, on the other hand, can approximate MLP networks with a smilar number of
parameters.
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1 Introduction

Techniques and networks for learning from examples may be considered as
methods for approximating multivariate functions from sparse data (the "ex-
amples"). In recent papers we have developed one such technique that we
have called regularization networks, of which Radial Basis Functions are a
special case and Hyper Basis Functions are the most general form (see for
a review Poggio and irosi, 1990 and references therein). The underlying
theory is quite well developed and understood: for instance the role of the
hidden units in the corresponding network (see Fig. (1)) 'is easily explained.
The method has been also demonstrated to work well 'in a number of practical
applications. Another technique, which 'is extremely popular, is associated
with multilayer perceptrons, typically used 'in con'unction with a version of
gradient descent (for estimating the parameters) called backpropagation In
this paper, we wll consider multilayer perceptrons with one hdden layer and
linear output units. These networks have been used successfully in many
cases of learning from examples. The underlying theory 'is less developed,
though a few theoretical results have been obtained 'in recent months. In
particular, it has been proved that MLP have what we call the Weierstrass
property, that is they can approximate arbitrarily well - provided enough
units are available - any continuous function on a compact interval (Hornik,
Stinchcombe and White, 1989; Stinchcombe and White, 1989; Carroll and
Dickinson, 1989; Cybenko, 1989; Funahashi, 1989). Regularization networks
also have this property, shared by many other approximation schemes Girosi
and Poggio, 1989).

It is natural to explore the relation between the two techniques, especially
because the corresponding networks have superficially a smilar structure,
both having one hdden layer of units as shown by Fig. (1).

The network of Fig. ) represents the class of functions of the type

n

f(X) ci Hi X) (1)

where Hi are functions that depend on some parameters to be estimated
together with the coefficients ci. When the functions Hi are kept fixed, the
function f (x) is linear in its parameters (the c), and the resulting approxi-
mation scheme is linear.
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Figure 1: The most general network wth one layer of hidden units. Here
we show the two-dimensional case I in which x = x, y). Each function Hi
can depend on a set of unknown parameters, that are computed during the
learning phase, as well as the coefficients c. When Hi = a(wi x + j) the
network is a multilayer perceptron; when Hi = h(x - ti) the network is a
regularization network for appropriate choices of h.
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Depending on the function Hi different approximation schemes can be
obtained. Two common choices are the following:

1. Regularization networks, that correspond to the choice:

Hi(x = hjjx - tillw)

where h 'is a (conditionally) positive definite function, the ti are d-
dimensional vectors called "centers", W 'is a d x d matrix, and we have
defined the weighted norm 11 as

11X11W' = XTWTWX.

We call this scheme Hyperbf. RBF is the case in which the centers
coincide with the data points, and GRBF Generalized Radial Basis
Functions) is the case in which the centers t, are free parameters to be
estimated but the weight matrix W is fixed and equal to the identity
matrix.

This class of approximation schemes can be formally derived, 'in the
framework of regularization theory, from a variational principle which
has a Bayesian interpretation. It includes:

* kernel estimation techniques and Parzen windows

* splines

* Hyperbf and RBF

2. Ridge functions approximation:

Hi(X = h(x wi + Oj)

where the wi are d-dimensional vectors called "weights", and the pa-
rameters Oi constitutes bias terms. This form of approximation did not
have until now any variational or Bayesian interpretation. Very recent
results by Poggio and Girosi unpublished) show that a set of ridge
function approximation schemes can be derived as lmits of regulariza-
tion networks for an appropriate class of stabilizers. Several techniques
are included 'in this class:
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Pro'ection Pursuit Regression (PPR), it corresponds to an
expansion of the type eq. (1) in which all the coefficients ci are
set to I and

Hi(x = h(x wi)

where the vectors wi are normalized (11will = 1). The functions
hi are determined by means of some nonparametric. estimation
technique, 'in the following iterative way:

(a) Assume tat we already have k - I terms. Let

k-1

ri = y - h(Xi - Wj)
j=1

be the residual of the approximation;

(b) Search for the next term. Calculate te following sum of the
residulas

N

E(ri- 9k (Xi Wk))'
i=1

and find the directionWkwhich minimize the sum of residuals
and the corresponding function hk-

e Flexible Fourier series-. the function hi are all equal to the
cosine (or sine) function, and therefore:

Hi x = cos(x wi + Oj) (2)

If we assume that the function g underlying the data has a Fourier
transform �(s = �(s)je"W, then

g(x = ds e-X Ws)icil(s) ds 1(s)j cos(s.x+O(s)) ,
d d

(3)
and the expansion of eq. (1) wth the choice 2) looks like a cu-
bature formula for the integral above, where the vectors wi are
the points at which the integrand 'is sampled. In this case the
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interpretation of the "weights" wi is clear: they represent the

fundamental frequency content of the underlying function. It can

also be noticed that the problem of finding the optimal param-

eters of the parametric function is equivalent to the problem of

finding the optimal sample points to use 'in the discretization of

the integral above.

e Multilayer Perceptrons. the functions hi are all equal to a

sigmoidal function:

Hi(x = x wi + Oi) (4)

The function cr is usually defined as

a(x = I
1 + eX

but other choices, (as the hyperbolic tangent), are equivalent as

long as the sigmol'dal shape 'is mantained.

While 'in the approximation by trigonometric functions the pa-

rameters wi have a simple interpretation in terms of frequencies,

in this case the meaning of the wi is less clear. If the expansion
(4) 'is considered from the point of view of projection pursuit re-

gression, riedman and Stuetzle, 1981 Hber, 1985) the wi are

the "relevant drections" that are supposed to encode the most

information about the function.

* Exponential sums: when the problem 'is one dimensional a

well known non linear technique consists in approximation by ex-

ponential sums (Braess, 1986; Gosselin, 1986; Hobby and Rice,

1967), and a number of results are available in this case. In more

than one dimension, the natural extension corresponds to ridge

function approximation with the choice:

Hi(x = x.w-
(5)

Notice that the bias terms dappear, since they are absorbed by
the coefficients.
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We group the rdge function approximation schemes together because
they all have the same general form: linear combination of nonlinear
function of the scalar product of the in ut vector wth the parameter
vector.

The main difference between these two classes of approximation schemes
(which, as we mentioned earlier, can be both derived from regularization in
terms of two dfferent classes of stabilizers, reflecting dfferent prior assump-
tions 1) seems to be related to the use of the scalar product x wi instead of
the weighted Euclidean dstance Jjx - tillw, as argument of the parametric
functions h.

At first sight, these two broad classes of techniques do not seem to have
any relationship. The main point of this paper i's to show that 'in some special
situations there is a close connection between these two classes of approx-
imation schemes and in particular between Gaussian GRBF (i.e. Hyperbf
networks wth W = I) and MLP with sigmoidal units in the hdden layer.

2 Nortnalized Inputs: Ridge Functions are
Radial Functions

In the case in which all the inputs variables are normalized, that i's they lie
on the unit d-dimensional sphere, there is a simple connection between rdge
and radial functions. In fact the following 'Identity

11 X _ 11 = XI12 1t112 - 2 x t (6)

for jjxj = I becomes:

11 X _ 11 = I 11tJ12 -2 x t (7)

We can now use identity 7) to obtain a ridge regression scheme from a
Radial Basis Functions scheme and vice versa.

'The formulation of the learning problem in terms of regularization is atisfying from
a theoretical point of view, since it establishes connections with a large body of results in
the area of Bayes estimation and in the theory of approximation of multivariate functions.
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9 From radial basis functions to multi'layer perceptrons.

Substituting 'Identity 7) in the Radial Basis Functions expansion

N

f (X) E c,,H(Ilx - tc, II') (8)
a=1

we obtain

N

f(x) EaH(X - tce + Oce) (9)
Ce=1

where we have defined

H(x = H(-2x) Oa = -- (I itcell') (I 0)2

We notice that eq. (10) is the expansion corresponding to a multilayer
perceptron network. The only difference is that while n the multilayer

4perceptron network the bias parameter 0, is allowed to vary along the
real line, in this case it is costrained to lie 'in the 'Interval - oo - ] We

2
therefore can conclude that, when inputs are normalized, given the RBF
network of eq. (8) with activation function H 'it is always possible to
define a multilayer perceptron wth the same number of units and wth
activation function ft that computes the same function. The synaptic
weights connecting the input and the hidden layer are the centers of the
Radial Basis Functions expansion and the bas parameters are uniquely
determined by the synaptic weights.

From multilayer perceptron to radial basis functions.

In the previous case we have seen that Radial Basis Functions can
be simulated by multilayer perceptron. This is not surprising since a
Radial Basis Functions unit has one parameter less than a multilayer
perceptron unit. For the same reason we cannot expect to simulate
a multilayer perceptron unit with d 'Inputs 'in terms of a Radial Basis
Functions unit with the same number of nputs. However this may
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be possible 'if we add to the Radial Basis Functions units a dummy
input, so that the coordinate of the center corresponding to the dummy
variable gives the missing parameter. Let us consider the multilayer
perceptron expansion,.

N

f (X) E C'a(X W + ')
CV=1

Using dentity 7) we obtain:

N

f (x) E ccor(- - jjx - wce 11' + d) 1 (12)
Ce=1 2

where we have defined

da ( + IWCe 112 + 

2 Ce

We now rewrite the expansion as a Radial Basis Functions expansion
in d I dimensions, in which one of the input variables 'is kept fixed,
and equal to some number (1, for simplicity). Introducing the d + 1
dimensional vectors

(X, 1) W = w, V")

we can rewrite the expansion 12 as

N I IAX = E ccea(-�IIR W CeI12 +�(i - VCt )2 + da) (13)

a=1

Expansion 13) becomes a Radial Basis Functions expansion if one of
the two following conditions is satisfied-

1. There exists v such that

(I a)2= -da (14)
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2. There exist functions g, and92 such that

Cr(- 1 + ) = gl(X)92(Y) (15)
2

In the first case in fact, the multilayer perceptron expansion becomes

N
- 112)f (X) Ca h(II X- W (16)

CV=1

where we have defined the function h(x) a(- 1 x). In the second case2
the multilayer perceptron expansion becomes

N
(II cvf (X) Cagi X W (17)

Ce=1

where c' =92(dc I Va)2).Ce 2

Remarks

- In case (1) a solution to eq. 14) does not exist unless the condi-
tion

+ Wa 1 2) + Oa !� 0
2

is satisfied. This condition on the weights wa and on the bias
parameter defines a subclass of multilayer perceptrons that
can be simulated by a Radial Basis Function network with the
same number of units and a dummy input, and therefore the same
number of parameters.

- In case 2), evaluating eq. 15) first at x = and y = we obtain
that

a(- 1 X) Cr (Y)291W 92(y)
92(0) 91(0)
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and after some algebra

a(x + ) - aWa(y) (18)
C (0)

It is well known that this functional equation has only one class
of solutions, given by

cr (x = cex Vc R

Therefore radial units can smulate arbitrary multilayer percep-
tron units only in the case 'in which the activation function of the

multilayer perceptron network 'is an exponential function. In this

case the corresponding Radial Basis Functions network is a Gaus-

sian network. In fact, setting a(x = ex in eq. 13) we obtain the

expansion

N
(--111X-Wa112)

(X) C e 2ce

ce=1

Notice also that in this case there is no need of dummy 'Input,

since the bias term can be dropped out by a redefinition of the

coefficients, due to the property (18) of the exponential function.

3 Signioid A4LPs and Gaussian GRBFs

In this section, we compare the igmOid and Gaussian function for normal-

ized input vectors jjxj = 1. Under these conditions the sigmoidal function

becomes a radial function, that can approximate any aussian function well

enough within a certain range of the bias parameter .

For normalized inputs, any ridge functions 'is equivalent to an appropriate

radial function. Consider the sigmoid fnction given by

(T(W - + ) - 1 E R d 0 E R
+,exp(_(W - + ))

The corresponding radial function parametrized by A E R is
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.X+O = S d R)
8'Cr(W + exp(-(w x + 0)) (sER, wER, Oc

(C (A) > 0) (19)
1 + (A) exp(Allx _ t12)

where we have defined 

t = W C(A = exp(-( + A(l - 1' (20)
TA 4A2

3.1 Sigmoids units can approximate Gaussian units

The existence of free parameter A indicates that any element of the one-
parameter family given by 19) is equivalent to each other for normalized
inputs. To compare Gaussians and the radial functions associated with sig-
moids, we should measure the discrepancy between the two functions. For
the purpose of the comparison, we first take the closest fnction to a Gaus-
sian among all the elements n the one-parameter family defined above. It
turns out that the radial function 19) approximates the Gaussian function
well, if C(A) > I holds (see figures 2 and 3 According to this observation,
adopting C(A) as a measure of closeness to the Gaussian, we consider the
function whose parameter A* corresponds to the maximum of C(A)

C(A* = max C(A)
A>0

Solving the equation OCIaA = , we get

A* = wil/2

Substituting A = wil/2, we obtain the following radial function R d --+ R
which has a center on a unit sphere sd-1

8CF(W - + = S (21)
1 + CO, 11w1j) exp 2 ix - W 1 2)

11W11

C(O, 1w1j = exp(-(O + 11w1j))
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Figure 2 The radial function f (r = 1/(1 + Cer2 ) associated with sigmoids
(see eq. 19), for 3 different values of C: C = 1 10-', 10-3.
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As shown in figures 2) and 3), the radial function 21) 'is quite similar to
Gaussian functions if C satisfies C I or equivalently, 'if the bias parameter
0 satisfies

0 < -IIWII (22)

This mplies that a MLP network can always simulate any Gaussian GRBF
network well enough, if both of the networks consist of the same number of
units (of course the MLP network has one more free parameter per hidden
unit than a GRBF network), snce can always be chosen to satisfy 22).

3.2 The Gaussian Radial Basis Function on the sphere

Let us first consider a Gaussian function for normalized inputs. When the
d-dimensional 'Input vectors E R d are normalized as IIxI = 1, for any
Gaussian function, the following relation holds:

c exp (_P21IX _ t2) = c(A) exp(-p'(A)'IIx - V(A) 112)

where A E R (A :� 0) is an arbitrary parameter and

_P2(j IItII2 2 t/ t
C'(A = c exp ( - A)(1 A - )), p(A = A (A) = 

This shows the representation c exp(_p2IIX _ tII') has redundancy for nor-
malized inputs. For example, for any aussian function c exp(_1,2 11 X _ t 1 2)1

the following types of Gaussians, which are given by setting A = IItII and
A = y-2 , respectively, are equivalent for normalized inputs.

(_P1IIX _ t112) t 1 2) _Y2(j _ IItIj)2))c exp = c' exp _12IItIIIjX (c = cexp(

= C11 exp _ II X _ 2tII2) (c =c exp ((I _ 2)(1 IItII2
P 2-M

The above indicates'that the total numberof free parameters-for a Gaussian
for normalized 'Inputs is d + 1, and that we may se either Gaussians with
normalized centers,
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cexp -p 2 x 2

or those given by

cexp(_11 X _ t2)

as basis functions for normalized inputs.

3.3 Can Gaussian units approximate sigmoid units?

ZFrom the above observation, we see that MLP can be more flexible than
Radial Basis Functions for normalized inputs, 'if the total number of units is
the same, and therefore the total number of parameters 'is larger for MLPs.
This 'is based upon one-to-one comparison of each unit of the networks. We
expect that it may be possible to approximate the radial function 21) using
a set of m Gaussians with the same center.

S M 2

r%'� E aj e-bjr (bj > 0) (23)
1 + e,3r2

j=1

Figure 4) shows the experimental results of approximating C = .01, 0.0001
using 3 Gaussians for each radial function (sigmoid). The results imply the
possibility of approximating a sigmoid by a set of Gaussians. The number
of parameters of a sigmoid is d 2 However, d + 2 - I parameters are
required for Gaussians to approximate a sigmoid according to 23) (thus in
the experiments, the total number of parameters of a sigmoid and a set of
Gaussians are d + 2 and d + 5 respectively.) In this subsection, we consider
the possibility of approximating a sigmoid by a set of aussians wth similar
number of parameters.

3.3.1 Approximation by Gaussians with Constant Scales

In (Poggio and Giros', 1990a) , we have extended our learning theory based
on regularization and -proposed the use of radial basis functions at multiple
scales. To explore the possibility of approximating MLP by Multiscale RBF
w'th a similar number of parameters, we consider the following basis function

'th constant scales Bj} 1:wi 1=

15
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Figure 4 Approximation of the radialfunctionf(r = 1/(l+Cexp(r 2)) (plot

1) by superposition of --3 Gaussians � (plot- 2):,- (a) C = 0.01, (b) -C. = 0.0001
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M

Oc = E acej e -B3 I X_tCX 112 1 (litcel = 1) (24)
j=1 -

which approximate the radial function 21)

1
1 + C exp(!�'a lix -t. 1 2)

2

In this case, the above multiscale function , has d m - I parameters. Snce
the center t and the input x are normalized, the condition

< jx - tall < 2

is satisfied. Therefore the coefficients ajj are determined solving the mini-
mization problem

2 M 2

H = E aje- Bjr 2 dr -- mnI C e 3'r 22

and are given by the solution of the following lnear system:

Ua = v 
2 2 -B-r2

(B-+Bj)r2 e S
Uij dr, V = 2drCell�r,2

In Fig. 5 6 and 7 we show experimental results of the approximation

error for = 3 4 5) (the number of parameters of each scheme is thus

d 2 d 3 d 4 respectively). The approximation errors are evaluated as

2 dr
HI + Ce w r)2

(1 'T

In the experiments, the scales Bjj are given by the results of experiment

(23). The results show that, if the length of the weight is not too large,

sigmoid for normalized inputs can be well approximated by superposition of

Gaussian with the same number of parameters.
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Figure 5: Approximation of radial function by Multiscale Gaussian: 3 scales.
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Figure 6 Approximation of radial function by Multiscale Gaussian: 4 scales.
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3.3.2 Approximation by Gaussians with Fixed Ratio of Scales

In the previous subsection, we have shown that superposition of Caussians
could approximate sigmoid units very well for certain range of parameters
with the same (or smilar) number of parameters. In this subsection we
consider as another possibility of approximating any sigmoid with Multiscale
GRBF, the following basis function

3

E (25)
j=1

where ratio of scales Bj (j 1 2 3 are constants. The total number of
parameters of this basis function is d 3 In Figure (8), we show some
results of approximation experiments. In the experiments, fBj} are given
from the results of experiment 23) as before and aj} are determined so
that

00 1 3 2

H + Cer2 E aje-B3-r }2 dr --+ min
j=1

Optimal jajj are obtained by solving the linear equations

Ua = v
1 00 r2

Uij V. �� drB + Bj I 1 - vil7 I Cer2/Bi

Table (1) shows the approximation errors given by

00 dr
HI (I Cer2)2

4 Experinlents

In the previous section, we have shown that sigmol'd MLPs can always sim-
ulate any gaussian GRBF network when both of the networks consist of the

same number of units (sigmoids and aussians). The converse i's also true

if MLP's bias parameters are restricted to a certain range given by 22) To

investigate whether this constraint 'is always satisfied in practice numerical
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C 1 0.1 0.01 0.001 0.0001 0.00001
C 0.00165 0.00243 0.0171 00204 0.0162 0.0307

Table 1: The relative approximation error that is obtained approximating
a sgmoid with a multiscale GRBF 'in which the ratio of the variances of the
Caussians are kept fixed.

experiments were carried out. Even 'if the original inputs are not normalized,
it 'is always possible to get normalized inputs by adding one more dimension
as follows:

= X1 Xd) 1X I

d
1: X,2xi (i

Xdl Xd+J z� f Vd d i
i=1

In the experiments, we tried to approximate one dimensional functions which
are mapped onto a hemi)circle using the technique shown above as

F (x, y = F (x) I x< 1, y = �- 72 �

Functions used in our experiments are as follows Fig 9):

F x

0 2 e-x2cos(,7rx)
4

0 3 e-X2cos(37rx)
2

F sin(3-7rx)
4 3-rx

F5 e-' sin(5x)

They were approximated with 2 dimensional MLP(sigmoids), constrained

MLP, GBF (aussians), and Multiscale aussians given below.

-, - I 
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Figure 9 The test functions we used in our experiments: F = x (plot 1),
F = X 2cos(rx) (plot2), = e-x2 cos(rx) (ploO), 4 -- sin(3,;rx) (plot4),

2 4 2 3,rx

F5 = ex sin(5x) (plot5).
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-- ---- -- .1

o MLP (Sigmoids)

K I

f (XI Y = E C"Or(w' -X + 0,) UU) + eU
Ce=1

* Constrained MLP(SI'gmoid)

K

f (Xi Y) E tcr(Wce Oa), ce 11Wce 112 1)
a=1

C(O., 11w.11 = ep(I(11W - 22 > 
4 all

* GRBF (aussians)

K

f (� Y) E C., exp(-11X t112)
ce=1

e Multiscale GBF

K m
(X (_/,201IX _ tce112)

I ) ccea exp Ce

Approximation performances were compared according to normalized L2and
L,, measured on both training set and evaluation set as follows.

�V 1 (F (xi)_ f (X,) 2 max� 1 1 F(xi - f (xi) IS -- - Z=
L2- E�v Fxi)2 I LO m<1-xN

2=1 I=, I F(Xi)

Y:M 1 (F(x P _ f Xp))2 maxM 1 1 F(x
L' P= L' P= P) f )l

2 EM F(xp)2 I 00 maxm- IF(xP=1 P= I P)

where xj}�Vj, xp}M1 are training set and evaluation set, respectively. In
our experiments, these sets are randomly chosen and the number of points
in the training set and evaluation set are N = 20 and M = 00 respectively.

25



In Table 2 we report the training and test errors, both in the L2 and L,
norm, that we obtained applying the techniques described above to the set
of test functions Fl,..., F5. In table 3 we report the value of CO", 11w,"11)
and 1w,11 for the hdden units of the MLP network. These results show
that condition 22) is not always satisfied. To see how target functions were
approximated by MLP (sigmoids), we show 'in fig. (1 0), (II), (1 2), 13) and
(14) the solutions obtained by our experiments.

5 Conclusions

This paper explores the relationships between MLPs and GRBF. Its main
point is that under the condition of normalized inputs the two representa-
tions are very similar, though not dentical. This is somewhat surprising,
especially since MLPs anf RBF can be regarded as representative of two dif-
ferent ways of approximating functions based, respectively on scalar products
and euclidean distances.

For normalized d-dimensional input vectors sigmoidal MLPs can always
approximate essentially arbitrarily well a gven GRBF (which has M less
parameters, where M is the number of hdden units). The converse 'is true
only for a certain range of the bias parameter in the slgmoidal unit. We have
veri'fied experimentally that in MLPs trained with backpropagation the bias
parameters do not always respect this condition. Therefore MLPS gener-
ated by backpropagation cannot in general be approximated arbitrarily well
by GBFs with the same number of hdden units and d less parameters).
GRBFs that have 3 Gaussians per center and therefore the same number of
parameters as a MLP network with the same number of hdden units yield
a reasonable approximation of a given sigmoid MLP but, again, not for all
parameters values. Within the framework of this paper, there seems to be
no simple answer to the question of what is the relation between MLPs and
radial HyperBF with full or diagonal W (a HyperBF network wth diag-
onal W has the same number of parameters as a MLP network wth the
same number of hidden units). All this implies that MLPs network are - for
normalized inputs - more powerful than GRBFs (and of course than RBF)
networks with the same number of'hidden units. Notice that the property of
being more powerful is not necessarily an advantage here, since the number
of parameters is larger (parameters to be learned are I per hidden unit in the
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Functio'n Scheme Units Parameters Lw L2 2

F1 MLP 2 8 0.00632 2.0 x 10-"- 000853 2.2 x 10-5
Constrained MLP 2 6 0.00558 3.3 x 1 0 - 0.00567 3.3 x 0

GRBF 2 6 0.0111 9.3 x 10-5 0.0513 0.000212
Multiscale GRBF 2-2 12 0.00724 5.2 x 10-1 0.0243 8.0 x 10-1

F2 MLP 3 12 0.00786 2.6 x 10 -.5 0.00895 5.3 x 10-
Constrained MLP 3 9 0.00764 5.7 x 10-5-- 0.00966 8.8 x 10-3

GRBF 3 9 0.0122 1.00 x o-.q 0.0144 1.30 x 10-1
Multiscale GRBF 2-2 12 0.00579 1.6 x 10-0 0.00740 2.4 x 10-1

F3 MLP 3 12 0.0106 5.4 x 10 0.0236 7.6 x 10-1
Constrained MLP 3 9 0.0935 0.0102 0.158 0.0159

4 12 0.0268 0.000257 0.134 0.00105
GRBF 3 9 0.0588 6.00323 0.0645 0.00484

4 12 0.0675 0.00351 0.0684 0.00503
Multiscale GRBF 2-2 12 0.0122 7.5 x 10-1 0.00941 6.4 x 1 0`��5

3-2 1 8 0.0157 9.9 X 1-5 0.140 9.2 x 10 - .5
F4 MLP 3 1 2 0.0130 0.000130 0.0153 0.000312

Constrained MLP 3 9 0.340- 0.182 0.392 0.231
4 12 0.181 0.0512 0.212 0.0689

GRBF 3 9 0.325 0.167 0.365 0.209
4 12 0.122 0.0283 0.281 0.0391

Multiscale GRBF 2-2 12 0.103 -0-00725 0.157 0.0114
3-2 18 0.00877 9.0 x 10-1 0.00862 9.1 x 10-15

F5 MLP 3 12 0.00874 9.9 x 10 -.5 0.0579 0.000719
Constrained MLP 3 9 0.0513 0.00307 0.151 0.00743

4 12 0.0375 0.00420 0.102 0.00810
GRBF 3 9 0.200 0.0740 0.334 0.0917

4 12 0.0668 0.0127 0.0872 0.0169
Multiscale GRBF 2-2 12 0.0260 0.00112 0.0775 0.00210

1 3-2 18 0.0082_1 9.3 x lo-7- 0.0661 0.000689-

Table 2 Training and test errors, both 'in the L2 and L norm, for the set
of test functions F1, . . . , F,5.
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Figure 10: Approximation of the function F by a MLP with 2 hidden units:
(plot 1) F = x, (plot2) basis 1, (plot 3 basis 2 (plot 4 result. Notice the
complete overlapping between the original function (plot 1) and the MLP
result (plot 4).
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Figure 1: Approximation of the function 2 by a MLP with 3 hidden units.
2 37X(plot 1) 2= e-x cos(� ) (plot 2 basis 1, (plot 3 basis 2 (plot 4 basis 3,

(plot 5) result. Notice the complete overlapping between the original function
(plot 1) and the MLP result (plot 5).
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Figure 12: Approximation of the function 3 by a MLP wth 3 hdden units:
_-2__ CS(3,(plot 1) = 2XX), (plot 2 basis 1, (plot 3 basis 2 (plot 4 basis

3, (plot 5) basis I basi's 2 (plot 6 result. Notice the complete overlapping
between the original function (plot 1) and the MLP result (plot 6).
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Figure 13: Approximation of the function F4b a MLP with 3 hidden units:
(plot 1) 4 - sin(3-rx) (plot 2 basis 1, (plot 3 basis 2 (plot 4 basis 3 (plot

3,rx
5) basis I basis 2 (plot 6 result. Notice the complete overlapping between
the original function (plot 1) and the MLP result (plot 6.
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Figure 14: Approximation of the fnction 5 by a MLP with 3 hidden units:
(plot 1) F5= e--rsl'n(5x), (plot 2 basis 1, (plot 3 basis 2 (plot 4 basis 3,
(plot 5) basis basis 2 (plot 6 result. Notice the complete overlapping
between the original function (plot 1) and the MLP result (plot 6.
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(C(01,IIWlll),IIWIII) (C(02,jjW2jj),jjW21D (03)jjW3jj),jIW31D

F, (0-089312-03)
2 1 (7-6716.30) (0-82910.492) (1.4 x 10-- 754)
3 1 (11.4110-5) (0.0037110-504) (I. 5 X 10-414.17)

4 1 (7.4818.01) (1.6018.63) (0-027117.70)
F5 1 (1.2512.37) (0.18216-63) (.1.2 x 10-5,7.64)

11 -11 11111410"I - -1 -- --- -I I I

Table 3 The values of CO, llw,,, 11) and llw,,, 11 corresponding to the hdden
uniits of the MLP network (a = 23).

case of RBFs, d + in the case of GRBF and d + 2 in the case of MLPs) and
actual performance should be considered (see Maruyama et al., 1991, for an
experimental comparison between dfferent approximation schemes).

How critical i's the condition of normalized inputs for the above argu-
ments? Mathematically there is no smple way of extending them to 'Inputs
that are not normalized. We have already mentioned the very recent re-
sults of Poggio and Giros', which show that HyperBF and some set of rdge
function approximation schemes are regularization networks corresponding
to two different classes of stabilizers (and therefore different priors 'in the
associated Bayesian nterpretation). In the context of the arguments of this
paper, it is interesting to remark that normalized nputs have been used 'in
several well-known applications, with good reported performances. NETtalk
is one example. In NETtalk the 'input layer consists of 7 groups of units
and each group contains 29 units (i.e. number of units in the input layer is
203). Each group corresponds to a letter presented to NETtalk, and each
units represents an alphabet (including period, blank, etc.). Therefore, when
input letters are presented, only one unit among those of each group has the
value "I" and the others have "O as

X = (01 II) 101 ... 01 1 10)

-%.10 01

group group 7

Clearly, jjxjj' const Talways.
For normalized 'Inputs it seems therefore that there 'is a strict relation,

almost an equivalence, between the vector of the weights w 'in a MLP network
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and the vector of the centers in the associated GBF network. This fact has
several potentially interesting consequences. The first one is that it may be

'ble to efficiently nitialize the weights of a MLP. In part
possi icular, if we have
a sufficient number of units (same as data sze), we can design an optimal
initial network utilizing the properties of RBF and of the sigmoid-Gaussian
quasi-equivalence. Several fast learning algorithms have been proposed for
radial (basis) functions. They include Moody and Darken's method (Moody
and Darken 1989) based on the k-mean algorithm and Kohonen's VQ. Our
arguments imply that it should be possible to exploit these algorithms also
for determining an initial structure of a MLP network.

The second point has to do wth the common interpretation of the weights.
T. Sejnowskl' (Sejnowski and Rosenberg, 1987) writes In NETtalk, the
intermediate code was semidistributed - around 15 of the hidden units
were used to represent each letter-to-sound correspondence. The vowels and
the consonants were fairly well segregated, arguing for local coding at a
gross population level something seen in the brain) but distributed coding
at the level of single units (also observed in the brain)." Our result seem to
suggest that the "intermediate code" may often be a collection of appropriate
"templates", in particular some of the examples.
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