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ABSTRACT

We analyze the difference between imprecision and uncertainty, trying to clarify
their difference, in particular when possibility theory is introduced. We compare
the applicablity of the various models for uncertainty.

1. Introduction.

The lack of a unique model to represent quantified uncertainty constitutes a prob-
lem for the user: which model should be applied in what situation ? We present some
models for the quantified representation of uncertainty, focusing on their applicability
more than on their mathematical structure. Imprecision often underlies uncertainty,
hence we will also study imprecision.

We define imprecision and uncertainty as follows. There is imprecision when-
ever the exact value of the truth status of a proposition of interest is not established
uniquely, i.e., whenever its truth status is equivocal. Uncertainty is an added informa-
tion that expresses the idea that the truth of some propositions is better ’supported’
than the truth of others. The paper will focus on trying to explain this distinction
that is often confusing, and confused.

1.1. The actual world.

The models we are going to study quantify the uncertainty held by an agent about
which possible world is the actual world. The general framework we use is based on
the idea of propositions and possible worlds, even though the presentation could also
be focusing on events, subsets, etc..... We consider that there is an actual world,
denoted by ω0, i.e., a world that corresponds to the actual state of affairs. The agent,
denoted by You, does not know which world in a set of possible worlds is the actual
world. This ignorance results from Your limited understanding (please, do not take
it personally), from Your ignorance about the truth status of some propositions in
the actual world. Should You know the truth status of every propositions of interest
in ω0, then you would know which world is ω0.

Formally, we suppose a propositional language L, supplemented by the tautology
and the contradiction, denoted � and ⊥, respectively. The set of propositions will
be finite even though the presentation could be adapted for countable or even un-
countable sets of propositions. Let ΩL denote the set of worlds that correspond to



the interpretations of L and built so that no two worlds denote logically equivalent
propositions, i.e., for every pair of worlds in ΩL, there exists a proposition in the lan-
guage L that is true in one world and false in the other (this avoids useless repetition
of logically equivalent worlds). Among those worlds in ΩL, a particular one, denoted
ω0, corresponds to the actual world. You ignore which world in ΩL is ω0. All You
can express is Your ‘opinion’ about the fact that the world ω0 belongs to the various
subsets of ΩL. This opinion can be representing some belief, probability, possibility,
etc.... The list is hardly limited and we will discuss hereafter about various forms of
‘opinions’ that can be described. I will present personal opinions about these ‘opin-
ions’ knowing that I might be biased, incomplete or, worse, wrong. But the nature of
these ’opinions’ is hardly well established and hoping for a perfect definition is just
unrealistic.

1.2. The evidential corpus.

The set ΩL is built independently of You, the agent. Your knowledge about which
world in ΩL is the actual world ω0 is encoded in what we call the evidential corpus,
denoted EC, where EC characterizes Your personal knowledge at a given time. The
intended meaning of EC is ‘all You know’, i.e., the background knowledge on which
You build Your opinions. It is not easy to formalize EC. Let 2L denote the Boolean
algebra of propositions built from L. Then EC contains a set K of propositions of
2L known to be true to You. K is assumed to be consistent and deductively closed.
Besides, EC also contains Your ‘opinions’ about the truth value in the actual world
of those propositions of 2L not in K.

That EC might and does contain more than what we have just put in it is not es-
sential to our presentation. The only question is to determine how Your ’opinions’ can
be represented in order that EC would be somehow ‘consistent’. Consistency is well
defined in classical propositional logic, hence for those propositions in K. But when
it comes to the ‘opinions’, what means consistency becomes unclear. For instance,
Bayesians require that in order to be consistent, ’opinions’ should be represented by
additive weights, the probabilities, such that, among others, the probability P (φ)
given to the fact that a proposition φ in 2L is true in the actual world and the prob-
ability P (¬φ) given to the fact that a proposition φ is false in the actual world add
to one, etc... The origin of their requirements is based on the concepts of rational
decision making and Dutch Books avoidance (see hereafter). Other proposals for con-
sistency could lead to other models, as it is the case with the u-possibility theory a,

aWe introduce the notation u-possibility and i-possibility to distinguish between the possibility theory
that deal with uncertainty (u-possibility) and with imprecision (i-possibility). Both are epistemic
constructs, but concerns different, even though related, problems.



the transferable belief model, etc...

2. Imprecision.

Given the set K of propositions in EC, You can construct the set ΩK of worlds
where all the propositions in K are true:

ΩK = {ω : ω ∈ ΩL, ω |= φ, ∀φ ∈ K}.

For what concerns You, Your universe is limited to ΩK as You know that the worlds
in ΩL not in ΩK do not satisfy Your knowledge encoded in K.

For φ in 2L, we denote by [φ] the set of world in ΩK where φ is true:

[φ] = {ω : ω ∈ ΩK , ω |= φ, φ ∈ 2L}

Notice that [φ] is defined relatively to ΩK and not ΩL. This reflects that for what
concerns You, only those worlds in ΩK are relevant as You are ‘sure’ that ω0 belongs
to ΩK (which might be wrong of course, but an agent may be wrong, which is not a
good idea but reflects personal freedom).

So for all φ in K, You know ‘ω0 |= φ’. For all φ such that ¬φ belongs to K, You
know ‘ω0 |= ¬φ’. If neither φ nor ¬φ belong to K, You know ‘ω0 |= φ or ω0 |= ¬φ’
(because of the excluded middle principle) but You do not know if ‘ω0 |= φ’ and You
do not know if ‘ω0 |= ¬φ’.

If all You know stops there, all You can state is that ω0 belongs to ΩK and if |ΩK |,
the number of worlds of ΩL in ΩK , is larger than one (as it is usually the case) Your
knowledge about ω0 can be qualified as imprecise. At first sight, we could state that
the largest |ΩK | the largest the imprecision. It is wrong: the concept of imprecision
is not related to |ΩK | (once |ΩK | > 1). Imprecision pertain only to the question
under consideration, where a question is a proposition for which You try to assess its
truth status in ω0. There are questions for which You know the answers (those where
the answer is the same in every world in ΩK , hence in ω0, whatever ω0 is actually)
and others that can admit several answers (those where the answer varies among the
worlds in ΩK). The first category is hardly interesting as far as the answer to the
question is obvious. The problem resides in the second case. In the first case we will
say that ‘φ is true in ω0’ is necessary (as well as it is possible), as it is true in every
world in ΩK and ω0 belongs to ΩK . In the second case we say that ’φ is true in ω0’
is possible (but not necessary), as there are worlds in ΩK where φ is true and other
where φ is false. In the first case we say that φ is necessary and possible, in which
case ¬φ is impossible. In the second we say φ is possible but not necessary, in which
case ¬φ is also possible but not necessary. As a shortcut, we will say that (given K

and for You), φ is necessary in the first case and contingent in the second case. Table
1 presents the four classical modalities, with their classical notation where ✷ denotes



Necessary and ✸ denotes Possible. Their link with the universal ∀ and existensial ∃
quantifiers are also indicated.

Necessary ✷ ¬✸¬ ∀x
Contingent ¬✷ ✸¬ ¬∀x

Possible ¬✷¬ ✸ ∃x
Impossible ✷¬ ¬✸ ¬∃x

Table 1: The four modalities.

Suppose a contingent proposition φ (a question) for which You want to assess the
truth status in ω0. What can You say about the truth status of φ in ω0? Up to here,
nothing more than it might be true or it might be false. You could start counting the
numbers of worlds where φ is true and those where φ is false, from which You can
compute the proportion p of worlds where φ is true (with p = |[φ]|/|ΩK |). Except
in the limiting cases where p = 1 or p = 0, in which case φ is trivially known to be
true or known to be false, respectively, You can say nothing except that φ is true in
a proportion p of worlds in ΩK , which should not induce You in believing that φ is
true with a degree p. Proportion in itself has nothing to do with beliefs, except in the
extreme cases. Proportions might become relevant to beliefs once ‘equiprobability’ or
similar extra properties are introduced in EC.

Besides, the meaning of that proportion p is defined relatively to L. If we change
the propositional space L into another propositional space L∗, usually the proportion
will also change. bWe had assumed some initial language L, but we could reconsider
the whole analysis by using another language L∗, and we feel that the opinion should
not be influenced by the nature of L as far as L is ‘rich’ enough to express Your
knowledge (whatever ‘rich’ means exactly, all we need is that at least φ ∈ 2L).

2.1. Ordering from implications.

Nowhere did we say, up to here, that the actual world has been selected by some
random process, randomness from which You could then deduce the ‘probability’ that
the proposition φ is true in the actual world ω0. Neither did we say, up to here, that
you have some weighted opinions (beliefs etc....) about which world is the actual
world. Without introducing such weights, all You can build if You want to quantify
Your opinion is an ordering about the propositions. Suppose two propositions φ1 and
φ2 such that φ1 implies φ2. In that case, whenever φ1 is true so is φ2, but φ2 might
also be true without φ1 being true. So You can defend that whatever the strength

bMost paradoxes built against the Principle of Insufficient Reason (that would advice You to allocate
a probability p to the fact that φ is true in ω0) come from the arbitrariness of L. There is no absolute,
definitive, ‘holy’ language L.



of Your opinion about the truth of φ1, the strength of Your opinion about the truth
of φ2 must be at least as large as the one given to φ1. These lead to an ordering
on a lattice, not to probabilities, etc.... If You could add to this natural ordering
the fact that You can compare the strength of the truth value given to any pair of
propositions, so You can establish for any φ1 and φ2 that φ1 is more, equally or less
supported than φ2, then the order becomes total (and it is not a big step to accept
that the order could be represented by a point on [0, 1]).

Sugeno’s fuzzy measure fits with this level of sophistication of Your opinion. In-
deed, in the finite case, as studied here, Sugeno’s fuzzy measure only requires that
opinion be quantified on the reals, and be ‘monotone for deduction’, which is all You
had achieved up to here.

Multi-valued logic could be used if we accept the idea that the degree of truth given
to a proposition φ is understood as the strength You give to the fact that φ is true
in the actual world. Furthermore, we limit ourselves to the qualitative component
of multi-valued logic, the one that acknowledges the fact that some propositions
are ‘truer’ than others and made every pair of propositions comparable for what
concerns their level of truth. It is still a very shallow form of multi-valued logic as
You cannot derive the truth of φ1 ∧ φ2 from the truth of φ1 and the truth of φ2

(i.e., we cannot define the strength given by You to the fact that φ1 ∧ φ2 is true
in ω0 from the strengths given by You to the fact that φ1 is true in ω0 and to the
fact that φ2 is true in ω0). The next step is to define properties for the operators
representing negation, disjunction and conjunction. If the domain of the truth value
is bounded (what can also easily be assumed) then the truth functionality of these
operators implies that they can be represented by triangular norms and conorms. It
is essentially sufficient to assume that conjunction be associative, commutative and
monotone with respect to the ordering. Adding idempotency or distributivity leads
directly to the use of the minimum operator for the conjunction (and the maximum
operator for the disjunction). A little extra is still needed to get the truth of the ¬φ
being the complement (to 1) of the truth of φ.

We will not argue on the representation of the implication operator as its prag-
matic meaning is not obvious. Its representation as a material implication is easily
achieved but implication is not so easily captured by the material implication, espe-
cially once it is used in a modus ponens.

So we have been able to describe and present a theory dealing with imprecision.
From the pure disjunctive form where we can only say ‘φ might be true but φ might
also be false’, we have reached a level of sophistication encountered in multi-valued
logic by essentially acknowledging the comparability of the truth value of any pair
of propositions. The role of the triangular norms becomes primordial for developing
the whole logic. But nowhere did we speak about uncertainty. We only consider



imprecision with an added order on the propositions that are contingent given EC.

2.2. Ordering induced by fuzziness.

Having been able to order the worlds with regard to the truth value of φ, we may
wonder about the origin of such ordering. The order on the lattice that results from
the implication was obvious (even thought it might be so degenerated that the order
is mapped on a two-value domain). The total order had to be assumed by accepting
the comparability between any pair of propositions. One origin for this total order
(when the domain is not degenerated to two values only) can be found in the use
of ‘fuzzy’ propositions where fuzzy is contrasted with vague. A vague proposition is
nothing but an ambiguous proposition as when I say ‘I will arrive at the station at
4.15 p.m. or at 5.20 p.m.’. A fuzzy proposition does not necessarily reflect ambiguity.
It requires intermediate truth values, i.e., values between true and false. When I say
‘I will arrive at about quarter past four this after noon.’, the statement can be true
(if I arrive at 4.15 p.m.), false (if I arrive at 9.00 p.m.) but if I arrive at 4.10 p.m. the
statement is more or less true, the less true, the largest the interval of time between
4.15 p.m. and the actual arrival time. Instead, vague statements can only be true or
false.

ADD IMAGE HERE
a
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Fuzziness is a source for ‘partial truths’. A statement built with a fuzzy pred-

icate, be it a gradable adjective or a fuzzy quantifier, is a typical example of such
fuzziness. For instance, ‘Paul is tall’, ‘John is rich’, ‘the speed of the car is high’, ’the
temperature of the furnace is low’, ‘few students are older than 30 years old’..... A
good way to recognize a fuzzy proposition is by adding the adverb ‘very’ (or similar
ones) to the adjective or quantifier around which the predicate is built, the resulting



proposition being still meaningful. I can say ‘Paul is very tall’, ‘John is very rich’, ‘the
speed of the car is very high’, ‘the temperature of the furnace is very low’, ‘the arrival
time is very close to quarter past four this after noon’, ‘very few students are older
than 30 years old’.... but I cannot say ‘Jack is very dead’, ‘the arrival time is very
equal to 4.15 p.m..’ (dead and equal are not fuzzy). The fact that intensity adverbs
like very, etc.... can be introduced without making the statement unacceptable is a
characteristic of the fuzzy propositions.

2.2.1. Fuzzy EC and crisp φ.

Once fuzziness is introduced, we can then speak about an ordering of the worlds.
Indeed, when building ΩK (where K included some fuzzy propositions like ‘Paul is
tall’ and EC includes what You understand by ‘being tall’) only those worlds in ΩL

where the fuzzy propositions are false, are eliminated when building ΩK . In every
world in ΩK Paul has a particular height, there is no fuzziness within the worlds
themselves. Of course, some worlds fit better than others with the requirement ‘Paul
is tall’. This ’fitting’ results from Your understanding of ‘being tall’, and we assume
You have only one such understanding, so we can accept that in every world in ΩK ,
You have the same understanding. For every world ω in ΩK (i.e. for every possible
value of Paul’s height) You can assess the degree of compatibility between the height
of Paul in that world and the statement ‘Paul is tall’, the largest the degree, the closest
Paul’s height is from the height of a tall person according to Your understanding of
‘tall man’. So in every world ω of ΩK , You can assess, in theory, the compatibility of
ω with EC. Let µEC(ω) be the degree of compatibility of ω with EC where µEC maps
ΩK to [0, 1] (we use the [0, 1] interval for convenience only, it is arbitrary but usually
perfectly acceptable). The understanding is that the largest µEC(ω), the largest is
the compatibility of ω with EC. The extreme values mean: 0 = not compatible at
all, 1 = fully compatible. We speak about the compatibility of ω with EC, not with
K, as the understanding of the fuzzy terms is part of Your EC without being in K.

It is straightforward to extend µEC to ΩL by defining µEC(ω) = 0 for all ω in
ΩL but not in ΩK . From here on the distinction between ΩL and ΩK is no more
important as far as µEC handles the difference.

Suppose a new proposition φ in 2L and let us ask if φ is true given EC, i.e.,what
is a truth status of φ in those worlds in ΩK . Each world ω is equipped with a number
µEC(ω) that represents its degree of compatibility with EC. Suppose a world ω∗ in
which Paul’s height is h∗ and let ‘Paul is tall’ be in EC. We understand µEC(ω∗) as
µTall(h

∗), the grade of membership of a person of height h∗ to the fuzzy set of tall men
according to Your understanding, and we see the whole fuzzy set theory introducing
itself in our description of Your ‘opinions’. Compatibility and grade of membership
come to share the same scale.

Let a crisp proposition φ (where crisp is used in contrast to fuzzy, hence φ is either



true or false). What might be its truth value in ΩK given EC ? What are the equiv-
alent of necessary and contingent when EC is fuzzy (contains fuzzy propositions).
In every world ω, we know if φ is true or false. Let [φ] be the set of worlds in ΩK

where φ is true, it will not be very hard to propose that the necessary or contingent
nature of φ given EC is a function of the value µEC(ω) for those ω in [φ] and with
some extra but natural assumptions (like those encountered when triangular norms
were introduced) we get that the necessity and possibility of φ given EC, denoted
i-N(φ|EC) and i-Π(φ|EC) are given by:

i-Π(φ|EC) = max
ω∈[φ]

µEC(ω)

i-N(φ|EC) = min
ω∈[¬φ]

(1 − µEC(ω)) = 1 − i-Π(¬φ|EC). (1)

When EC is not fuzzy, we could have said that φ is necessary if i-N(φ|EC) =
i-Π(φ|EC) = 1, and that φ is contingent when i- N(φ|EC) = 0 and i-Π(φ|EC) = 1.

The definition Eq. (1) has the huge advantage that it is robust and invariant
to any monotone transformation of the compatibility scale. It is the only solution
that satisfies monotony for deduction and that has this property that we feel must
be satisfied by any ‘realistic’ model, where ‘realistic’ means related to the ‘real world’
in contrast to ‘just mathematical’ (our aim is not to create beautiful mathematical
theories but theories that might be used to represent some reality, some physical,
objective or subjective processes).

2.2.2. Fuzzy EC and fuzzy φ.

Extension to the case where φ is itself fuzzy is direct. Let µφ(ω) be the degree of
compatibility of the world ω with Your understanding of the fuzzy proposition φ. So
attached to every world ω in ΩK , we have a degree of compatibility µEC(ω) of ω with
EC induced by those propositions in K and a degree of compatibility µφ(ω), both
resulting from Your understanding of the various fuzzy components (those in K and
in φ). The value µφ(ω) can also be understood as the truth of φ in ω, denoted νφ(ω).

Can we define i-N(φ|EC) and i-Π(φ|EC), the necessity and possibility of φ given
EC? In every world ω we know µEC(ω) and µφ(ω). It has been proposed that:

i-Π(φ|EC) = max
ω∈ΩK

(µφ(ω) ∧ µEC(ω))

i-N(φ|EC) = 1 − i-Π(¬φ|EC) = min
ω∈ΩK

(µφ(ω) ∨ (1 − µEC(ω)). (2)

The relations between i-N and i-Π are identical to those that link necessity and
possibility in modal logic, extended to the [0, 1] interval.



This possibility express the idea of the largest possible value of the truth of φ taken
over the possible worlds under the condition that the world is compatible with EC.
The use of min-max operators results again from the triangular norms requirements
and the order invariance for monotone transformation of the compatibility scales.

2.2.3. Crisp EC and fuzzy φ.

A third case would be if there is no fuzziness in K and only φ is fuzzy. Then
µEC(ω) would only be 1 for all worlds in ΩK , and 0 otherwise. So:

i-Π(φ|EC) = max
ω∈ΩK

µφ(ω)

i-N(φ|EC) = min
ω∈ΩK

µφ(ω)

Remember that µφ(ω) is the compatibility of ω with Your understanding of φ, and
can be understood as the truth of φ in ω0 The definitions of i-Π and i-N show that
i- Π(φ|EC) and i-N(φ|EC) are the largest and the smallest values that the truth of
φ can reach in those worlds compatible with EC.

The question is now: what do we model, imprecision or uncertainty ? In our
opinion, we feel that all we have developed up to here are related to imprecision.
The only delicate point is in deciding that µEC(ω) is related to imprecision or to
uncertainty. First, is it objective or subjective ? The value of µTall(170) is the value
You would personally give to the compatibility of a person of height 170 cm. with the
set of tall men. Hence, it results from Your opinion about what ‘tall’ means. So it is
subjective and personal. Is it uncertain ? For what concerns Yourself, it is not. You
have an understanding of what ‘tall’ means. It is Yours, but You are not uncertain
about it. So for what concerns You, there is no uncertainty involved. Of course,
if another agent is introduced, the value You will give to µTall(170) is uncertain for
the other agent who could only express his/her belief about what will be the value
You will give to µTall(170), but this is a totally different problem. So I think, all I
developed up to here is imprecision when seen under the single agent context.

There is another way to recognize that our development deals with imprecision:
eliminate fuzziness from both EC and φ and look to what Eq. ( 2) becomes:

i-Π(φ|EC) = 1, i-N(φ|EC) = 1 iff ∀ω ∈ ΩK , ω |= φ

(φ is necessary in EC)

i-Π(φ|EC) = 1, i-N(φ|EC) = 0 iff ∃ω ∈ ΩK , ω |= φ and ∃ω ∈ ΩK , ω |= ¬φ

(φ is contingent in EC)

i-Π(φ|EC) = 0, i-N(φ|EC) = 0 iff ∀ω ∈ ΩK , ω |= ¬φ



(φ is impossible in EC)
So all we have compute is a criteria (the pair i-Π, i-N) that states that φ is con-

tingent or not, exactly what we encountered in the case of imprecision. This limiting
behavior enhances that all we have achieved by introducing fuzziness is generalizing
imprecision, not introducing uncertainty.

2.3. Possibility distribution functions.

Suppose ‘Paul is tall’ is the only fuzzy proposition in EC. It induces the ordering
we have just developed. What can we say about Paul’s height ? You know for every
world ω in ΩK that µTall(h) = µEC(ω) where h is the height of Paul in world ω. The
possibility i-Π(A) that h belongs to A where A is a fuzzy subset of the domain of
Paul’s height can be written as:

i-Π(A|Tall) = max
ω∈ΩK

(µTall(h) ∧ µA(h))

Taking A to be a singleton of the height (in which case µA(h) = 1 if A = {h},
µA(h) = 0 otherwise), we have i-Π({h}|Tall) = µTall(h), and we can define πTall(h) =
i-Π({h}|Tall). We call πTall the possibility distribution related to the possibility
measure i-Π(.|Tall), hence:

i-Π(A|Tall) = max
ω∈ΩK

(πTall(h) ∧ µA(h))

where h is the height of Paul in world ω.
Notice that the relation between i-Π and π is similar to the one between the

probability distribution P and the probability density function p. Let Ω be a set and
A be a crisp set. Then, in probability theory, we have:

P : 2Ω → [0, 1], p : Ω → [0, 1] and P (A) =
∑

x∈A

p(x).

Identically, in possibility theory, we have:

i-Π : 2Ω → [0, 1], π : Ω → [0, 1] and i-Π(A) = max
x∈A

π(x).

This analogy does not mean that i-Π is automatically a measure of uncertainty,
even though P is it. Again the question is: what does i-Π(A) represent, imprecision
or uncertainty? For a single agent (You), it reflects Your subjective, personal opinion
about what might be Paul’s height given You know ‘Paul is tall’ and given the un-
derstanding You give to the fuzzy predicate ‘tall’. Does it quantify Your uncertainty
about Paul’s height ? No, it only fits with Your understanding, what is well defined
for what concerns Yourself.



We had defined imprecision as a property related to the content of a statement
when more than one world is compatible with the available information (and the truth
status of the proposition You want to assess varies among those worlds). Imprecision
is thus a property of the propositions in K and of Your understanding of them encoded
in Your EC. Suppose we accept that there is nevertheless uncertainty whenever K
includes a fuzzy proposition. In such a case, we must accept that imprecision is
uncertainty. Indeed, if we accept that there is uncertainty when the proposition ‘Paul
is tall’ is included in K, uncertainty quantified by i-Π(A|Tall) for instance, then
there is also uncertainty when the proposition ‘Paul’s height is between 160 and 170’
replaces ‘Paul is Tall’ in K. In that last case, i- Π(A|[160, 170]), with A being a crisp
subset of the reals, will be 1 if A ∩ [160, 170] �= ∅, 0 otherwise (and i-N(A|[160, 170])
would be 1 if A ⊆ [160, 170] and 0 otherwise). This behavior is exactly the kind
of statement that characterized imprecision, not uncertainty. The fact that Tall was
fuzzy does not justify the shift from imprecision to uncertainty. Intrinsically, fuzziness
is just a generalization of the concept of set, not a theory of weighted sets.

Of course, imprecision might be and is responsible for some further uncertainty.
Once You want to express Your beliefs about which of those worlds compatible with
EC is the actual world, You might not only listed the worlds in ΩK , but you could
express that some are more ‘believable’ than other. This would be a meta-property
built atop of the imprecision that results from the fact that there are several worlds
compatible with EC.

The compatibility of ω with EC, quantified by µEC(ω) , is a generalization of a
characteristic function. When µEC(ω) is seen as a function on ΩL, and when EC
is crisp, µEC(ω) is nothing but the characteristic function of the set ΩK as it is 1
when ω ∈ ΩK , and 0 when ω ∈ ΩL and ω �∈ ΩK . A characteristic function does
not represent uncertainty, only imprecision that appears when there are several ω for
which the characteristic function is 1.

3. Uncertainty.

Having developed a ‘full’ theory of imprecision what can we do with uncertainty
? To simplify the discussion, we temporally return to crisp predicates and leave aside
the fact that some predicates might be fuzzy. Uncertainty is a characteristic of the
state of knowledge of the agent about which of the possible worlds is the actual world.
It will be part of EC. What we introduce is an extra information that gives weights
to the various subsets of ΩK , weights that quantify the strength of Your opinion
that ω0 belongs to the various subsets of ΩK . The overall schema obeys to the next
development where we use Q to represent the strength of Your opinion about which
world in ΩK is the actual world. So for A ⊆ ΩK , Q(ω0 ∈ A) can be understood
as the probability, the possibility, the belief that ω0 belongs to A according to the
type of ‘opinion’ we consider (beware, possibility is not to be understood here as it



was previously, so we denote it u-possibility in contrast to the i-possibility we used
previously).

3.1. Possibility as uncertainty.

We have a set of possible worlds ΩK and we know that one of them, ω0, is the
actual world. Which world is the actual world is not known to You ? It might occur
that You have some extra ideas about which world in ΩK is ω0, and that these ideas
reflect some ‘preference’ about which world in ΩK is ω0. This preference will be
translated by saying that the fact that ω0 belongs to A is more possible than that it
belongs to B, for A and B subsets of ΩK . If such a comparison can be performed
between every pair of subsets of ΩK , then we obtain the possibility theory where
u-Π(A) will quantify the strength You give to the possibility that ω0 ∈ A. Just as it
was the case with imprecision, it is very easy to justify that

u-Π(A ∨ B) = max(u-Π(A), u-Π(B)) (3)

in which case, we derive again the whole possibility theory but with another
understanding. The primitive is no more in a fuzzy predicate but in an ordering
about the possibilities that ω0 ∈ A for every A in ΩK . The preference ordering
u-Π(A) > u-Π(B) translates ideas like ‘ω0 ∈ A’ is more natural, normal, typical
than ‘ω0 ∈ B’. The possibility measure can be seen as an ordinal measure, i.e.,
when only the order is relevant (like in Baconian probabilities). It is easy to justify
the maximum rule Eq. (3) if the compositionality (Π(A ∨ B) = F (Π(A), Π(B))),
idempotency (Π(A ∨ A) = Π(A)), associativity (Π((A ∨ B) ∨ C) = Π((A ∨ (B ∨ C))
and commutativity (Π(A ∨ B) = Π(B ∨ A)) are required. Troubles would appear if
possibility measure is understood as a cardinal because we cannot provide a meaning
to the value .7 in the statement ‘the possibility is .7 that the actual world is in A’.
I do not have the equivalent of a betting quotient to define what is meant by this .7
(see later on in the definition of a probability). Fuzziness should not be evoked to
explain the .7, as we try to define possibility outside the scope of fuzziness. So what
? When I say, ‘for all what I know, the possibility that Hans eats 3 eggs tomorrow
morning for breakfast is .8’, what is this .8 representing ?

Suppose we speak again about the weight of Paul and we accept cardinal u-
possibilities. Why the .7 in ‘i-Π([150, 170]|Tall) = .7’ is an imprecision whereas in
‘u-Π([150, 170]|[160, 180]) = .7’ it quantifies uncertainty. Why i-Π([150, 170]|Tall) is
not a measure of uncertainty. We said that we had to see what occurs to the possibility
when fuzziness is taken away. So suppose that Tall means [160,180] for You. Then
i-Π([150, 170]|[160, 180]) will not be .7 but 1. In fact, i-Π(A|B) ∈ {0, 1} if both A and
B are crisp. Take away fuzziness and intermediate values for i-Π disappear, which
is not the case for u-Π . This also enhances the fact that u-Π is derived from extra
assumptions present in EC : the preference ordering.



For the ordinal u-Π, the distinction is not so clear. Indeed, ordinal u-Π only creates
some order on ΩK . But we saw that such an order could also be achieved if we only
accept monotonicity for deduction and comparability. In fact, we had introduced that
ordering in the imprecision section and explains its origin from the presence of some
fuzziness. Such an ordering must be satisfied by any representation of imprecision and
of uncertainty, once we accept a domain that tolerates intermediate values. In the
imprecision section, the ordering on [0, 1] instead of {0, 1} collapses once fuzziness was
eliminated, whereas in the cardinal u-Π, the ordering on [0, 1] persists in the absence
of fuzziness. So in both cases, cardinal and ordinal, i-possibility and u-possibility are
not identical concepts.

We could still try to claim that u-Π and i-Π are not different concepts by further
degenerating the u-Π such that there is a unique set A∗ ⊆ ΩK with for all A in ΩK ,
u-Π(A) = 1 if A ∩ A∗ �= ∅, and u-Π(A) = 0 if A ∩ A∗ = ∅. We could end up with
a partition on ΩL made of A∗ , ΩK/A∗ and ΩL/ΩK , three sets that are usually non
empty.

With i-Π , the set A∗ is equal to ΩK by definition. Indeed, with imprecision, which
we got out of EC was the set ΩK , and for all subset A of ΩK , we deduced i-Π(A) = 1
if A ∩ ΩK �= ∅ and 0 otherwise. Instead with uncertainty, EC produces not only ΩK

but also the set A∗ , and we deduce that u-Π(A) = 1 if A ∩A∗ �= ∅, and 0 otherwise.
In this highly degenerated form of u-possibility, we face a set A∗ of worlds in ΩK

preferred to those in ΩK/A∗ . The problem is to give a meaning to the worlds in ΩK/A∗

in the u-possibility context. We know the worlds in A∗ are possible (given EC), those
in ΩL/ΩK are impossible (given EC). Those in ΩK/A∗ are compatible with K, but
are considered as admitting a zero possibility given EC. Their ‘impossibility’ does
not reflect a property in K but in EC/K, whereas for those worlds in ΩL/ΩK their
impossibility (in both i- and u-possibility cases) reflects a property in K.

The distinction might become clear if You revise EC by adding the information
ω0 �∈ A∗ to EC (and therefore to K). The u-possibility would have to be revised
in order to cope with this new information, and You would admit as possible now
that ω0 ∈ ΩK/A∗ . In the i- possibility case, if You add the information ω0 �∈ A∗ to
EC, there is no way to save EC from inconsistency (except by some drastic change
in EC that consists in eliminating some pieces of information in order to restore
consistency).

We could state that u-possibility is an ‘epistemic’ construct as u-possibility per-
tains to EC/K whereas the i-possibility is a ‘logical’ construct as it pertains directly
to K, except for the fact that the logical deduction on 2L obtained from K were
themselves based on the epistemic construct EC. The real difference is that in the
highly degenerated case, the i-possibility depends on EC through K whereas the
u-possibility depends on EC through K and EC/K.

Probably the u-possibility and the i-possibility can be assimilated to the epistemic



and the physical possibilities that were described by Hacking.

3.2. Probability.

3.2.1. Objective Probability.

The next theory about uncertainty can be constructed if we accept that the actual
world ω0 has been selected in ΩK by a chance set up. If ω0 corresponds to the
face of a coin that comes up when tossed, then You include this information in
EC. You can allocate to every subset A of ΩK a weight that quantifies the ‘chance’
that ω0 ∈ A. These weights are probabilities and satisfied Kolmogorof axioms for
probability functions. Are these probabilities objective or subjective? As described
so far, they look objective and exist outside of You. If we accept the concept of
objective probabilities, we obtain a theory of objective uncertainty which properties
are well established, but which meaning is seriously questioned by some philosophers.
What is an objective probability? Is it true that chance really exists, without involving
an agent? Are there random events in physics that exists without introducing the
observer’s uncertainty or limited knowledge about reality? Is the world deterministic?
These questions are still unsettled.

3.2.2. Subjective probabilities.

Some Bayesian extremists will claim that objective probabilities do not exist.
They claim that the probability .5 given to heads when tossing coins is neither a
property of the coin nor of the experimental set up that generates the outcome (my
thumb, the coin, me tossing the coin, the direction of the wind, the rotation of the
Earth....). The .5 is a property of the agent, You, who observes the experience.
That the coin falls heads or tails is a deterministic outcome, but due to Your limited
understanding, You cannot predict exactly the outcome and You can only express
Your subjective, personal opinions about the outcome. Then why .5 ? What does it
mean ?

3.2.3. Betting quotients.

The answer is to be found in the betting quotients and a study of Your behavior
when You must decide. The probability p of an event has been defined as a price You
would pay to enter a game where You would gain one unit of money if the event occurs
and nothing otherwise. Besides the bets must be so organized that the probability
assessor gives the value p and his opponent decides if the probability assessor will
be the player or the banker (the player pays p and gets one unit of money if the
event occurs, the banker receives p and pays one unit of money if the event occurs).



Refusing the bets is not allowed. A close analysis of the consequences of the forced
bets scheme shows that the only way the probability assessor can avoid a Dutch
Book (a set of bets that leads necessary to a sure loss whatever event occurs) is by
assessing betting quotients that satisfies probability functions assumptions. The idea
of betting quotients gives a meaning to the value of the probability and the Dutch
Book argument explains why betting quotients must be probability functions.

Equivalent results are not yet well established for possibility theory but the lack of
results cannot be used to reject that theory. Indeed probability theory was invented
by Pascal but it took a century to Bayes to propose the definition of a probability
as a betting quotient and in practice the betting quotient and Dutch Book argument
were developed in the 20’s century. It took two hundreds years to justify probability
theory. We can excuse the developers of possibility theory for not having produced
their own justification within the 15 years since their model was imagined.

Once subjective probability is acknowledged, the idea of a chance set up is not
necessary. You know ω0 is in ΩK and You might be ready to bet on ω0 ∈ A for every
A in ΩK . In that case, You would assess Your betting quotients, i.e., the probabilities
that the actual world belongs to A for every A in ΩK (using probability measures to
avoid to become a money pump).

This measure surely covers the domain of uncertainty. You have added extra infor-
mation about which world is ω0 and the information is represented by a probability
measure. But does this model cover every forms of uncertainty? Yes claim many
Bayesians. I feel the answer is not so definitive and I want to present alternative
models.

3.2.4. Probability of a fuzzy event.

The study of uncertainty measure can be extended to the case of fuzzy proposition
or propositions which truth value is in [0, 1] and not restricted to {0, 1} as in classical
logic. Let ν(φ|ω) be the true value of φ in world ω: ν : 2L × ΩK → [0, 1]. When ΩK

is such that all You know is that ω0 ∈ ΩK , then all You know for what concerns the
truth of φ is that ν(φ|ω0) ∈ {ν(φ|ω) : ω ∈ ΩK} and usually ν(φ|ω) will vary among
the world of ΩK in which case ν(φ|ω0) is imprecise. There would be no imprecision in
φ if ν(φ|ω) is constant for all ω ∈ ΩK , which against shows that the fuzziness of φ is
not in itself responsible for the imprecision. As already mentioned, fuzzy sets theory
is just an extension of sets theory and as such, it is not imprecision, exactly as sets
theory is not a theory of imprecision.

Now suppose, we have a probability measure over ΩK (we analyze the probability
case as being the simplest and most common). When the truth domain of φ is {0, 1}
(denoted {T, F}) , we can choose among the following expression that will translate
the same ideas. Let φ and ψ be two propositions in 2L.

P ((ν(φ|ω0) = T ) ∧ (ν(ψ|ω0) = F )) = .65



or equivalently:
P (ω0 ∈ [φ] ∩ [¬ψ]) = .65.

We could also write:
P (φ ∧ ¬ψ) = .65.

Suppose the truth domain is [0, 1], and let τ1 ⊆ [0, 1] and τ2 ⊆ [0, 1] be two subsets
of the truth domain. We get:

P ((ν(φ|ω0) ∈ τ1) ∧ (ν(ψ|ω0) ∈ τ2)) = .65 (4)

or equivalently:

P (ω0 ∈ [φ]τ1 ∩ [ψ]τ2) = .65

where [φ]τ1 is the set of world in ΩK such that ν(φ|ω) ∈ τ1 ⊆ [0, 1] (and similarly
for [ψ]τ2)

We cannot write anymore the equivalent of P (φ∧¬ψ) as the negation of ‘ν(φ|ω) =
.8’ is not ‘ν(φ|ω) = .2’ but ‘ν(φ|ω) �= .8’ (where truth domain is {0, 1}, ‘not 1’ is ‘0’
but when the domain is [0, 1], ‘not .8’ is ‘anything but .8’.) This remark is obvious
but its oversight has been at the origin of some nice errors.

The importance of this representation of P is that we end up with the probability
that deals with the localization of ω0. The .65 in Eq. (4) tells that the probability
is .65 that ω0 belongs to a subset of worlds in ΩK . Identical relations are obtained
with belief functions and also with u-possibility functions in which cases we end up
with bel(ω0 ∈ A) = .65 or u-Π(ω0 ∈ A) = .65, where the .65 quantifies the belief or
the possibility that ω0 belongs to a subset of worlds in ΩK . Using a crisp proposition
φ does not change the scheme. The uncertainty is still there. This contrasts with
what we had encountered with i-possibility theory when we spoke about imprecision
(probability and belief are never confused with imprecision and the only real problem
is with possibility theory because confusion can be immediate).

When we spoke about i-possibility theory in the imprecision context, we had
defined i-Π with a crisp EC and a fuzzy φ, as:

i-Π(φ|EC) = max
ω∈ΩK

ν(φ|ω)

It is not a measure of a subset of ΩK , it is just the upper limit (with i-N being
the lower limit) of the possible values of ν(φ|ω) in those worlds ω in ΩK . It does
not quantify the fact that ω0 belongs to some subsets. It just says: whatever ω0,
ν(φ|ω) will be at most i-Π(φ|EC) and at least i-N(φ|EC). All i-Π and i-N achieve is
a characterization of the imprecision we have about the value of ν(φ|ω0), not about
which world in ΩK is ω0.

3.3. Non-standard probability models.

We first consider the non-standard probability models, i.e., models that accept



an extended concept of probability functions. One of the assumptions defended by
the Bayesians is that for every event whatsoever, You can define - in theory - its
probability, in which case the only remaining problems are to assess these probabilities
and to apply correctly the rule of probability theory.

3.3.1. Upper and lower probabilities.

Some authors defend the idea that probabilities are not so well known. There
are cases, so they claim, where some objective probabilities exist but it is not known
exactly by You. All You know, is that the probability is between some boundaries.
This reflects nothing but imprecision about the value of some parameters (where
the parameter is the objective probability of the event under consideration). All we
said about imprecision can be introduced here and we derive a theory of imprecise
probability. In most practical cases, it turns out to be a theory of upper and lower
probabilities.

3.3.2. Meta-probability.

We could add some uncertainty measure about the value of the parameters and
as the parameter is a probability, the uncertainty measure will be called a meta-
probability or a second order probability. In that case, we are back to the classi-
cal probability model and everything is in theory well defined except for a serious
philosophical problem : what is a betting quotient when the event is the value of a
probability ? We have a first event A at the object level, we want to assess P(A), the
objective probability of A that we don’t know exactly. We say that the meta proba-
bility that ’P (A) ∈ [a, b] is .7’ where .7 is supposed to be the betting quotient. This
is perfect..... if someone can decide if I win or if I loose. So there must be a procedure
capable of deciding if P (A) ∈ [a, b] ? and the procedure should be objective. How
is it going to be established ? How to decide that it is true or not ? The question
and the lack of appropriate answer explain the discomfort encountered with regard to
meta-probability theory even though the model is mathematically elegant, beautiful
and convenient.

3.3.3. Dempster’s model.

A special form of upper and lower probability was developed by Dempster who ex-
amined the probability induced by a one-to-many mapping. Mathematically, Demp-
ster’s model is essentially a model based on random sets. Its importance today comes
from the so-called Dempster-Shafer’s model defended by Shafer (not in his book but
in some of his later papers) where he claims that beliefs on a frame of discernment Ω
are quantified by belief functions themselves generated by an underlying probability



on some space X and a compatibility relation (a one-to-many mapping) between the
space X and the frame of discernment Ω. The hints model of Kohlas and Monney
fits with Dempsters approach.

3.3.4. Family of probability measures.

Still other authors suggest that the belief’s state of an agent is not represented by
a probability measure but by a family of probability measures. The difference with
the upper and lower probability as seen before is that in the previous case, we had
assumed the existence of a probability measure and the ignorance by the agent on the
exact value of the probability measure. In the family of probability measure model,
there is no particular but unknown underlying probability measure. There is just a
family of probability measures that characterizes the agent’s belief.

3.4. Non-probabilistic models: the transferable belief model.

Finally, we have other models for uncertainty not based on probability functions
and classified as non-probabilistic models. We already saw the model based on pos-
sibility functions. We now examine the transferable belief model, a model for repre-
senting quantified beliefs built without requiring any underlying hidden probability
measures. The transferable belief model is essentially what Shafer’s book present, ex-
cept Shafer insists more on the sources that induce beliefs. In fact the two approaches
are so strongly linked that they can be equated.

When justifying the subjective probability, we insisted on the fact that the bets
were forced bets. Besides, we had also to insist on the fact that the agent was ready
not only to bet on any event, on the truth of any proposition, but further more that
beliefs outside such betting contexts did not exists (when betting has to be taken in
a very general sense). A contrario, I claim that belief can be held, can be entertained
without having to decide. But if such state of belief exists, as I defend it, then
the betting quotient and the Dutch Book arguments do not apply anymore. Hence
probability measure looses its justification. All we know is that once decision will have
to be made, we will have to build a probability measure on the possible alternatives
in order to make coherent, rational decisions (i.e., to avoid Dutch Books and similar
problems).

In the transferable belief model, I have introduced the distinction between a credal
level, i.e., a level where beliefs are only entertained, and a pignistic level, i.e., where
beliefs are used to make decision. At the pignistic level, uncertainty must be repre-
sented by a probability measure if we accept the Bayesian justification (personally
I accept it). At the credal level, nothing justifies the use of probability measure.
All that will be needed is a strategy to build the appropriate probability measure to
make decision when decision will have to be made. The transferable belief model is



exactly such a model where I assess that beliefs at the credal level is represented by a
belief function and I have developed and justified the transformation that applied to
a belief function generates the probability measure needed for decision-making. The
axiomatic justification of the use of belief functions at the credal level instead of any
other measure is based essentially on the idea that the belief state of an agent over
the frame of discernment is fully characterized by the belief function over ΩK and
that the way the belief was reached was irrelevant when beliefs must be revised for
new knowledge (the conditioning process).

The transferable belief model is thus a model that expresses the agent’s belief that
ω0 ∈ A for every A in ΩK . Its extension to other non- epistemic problems is imme-
diate, just like the extension of subjective probability to classical, physical processes.
So one should not restrict the transferable belief model only to subjective problems.
One can implement it in any reasoning structure, like a robot or a computer, in order
to take optimal decision in context where randomness and objective probability are
irrelevant. A major property that we observe in the transferable belief model is that
it degenerates smoothly and nicely into the classical Bayesian model whenever all the
ingredients needed by the Bayesian models become present. The advantage of the
transferable belief model resides in its ability to handle any level of uncertainty up to
the level of total ignorance whereas the Bayesian model requires a lot of knowledge
(like the knowledge of the probability of every event).

Bayesian and other probabilistic models often require an artificial probabilization,
i.e., the unjustified assumption of the existence of some probabilities.

4. Conditioning.

A model for the representation of quantified beliefs can not be completed if we
do not study how it behaves when new pieces of information become known to You.
Just to show the impact of such dynamic component, we consider three models for
uncertainty, and how they react when Your EC is revised by an information that says
that the actual world ω0 does not belong for sure to some subset [¬ξ] of ΩK . This
information corresponds to the conditioning process on ξ.

4.1. Static component.

We now consider how probabilities and beliefs can be defined in a possible worlds
context. Let ΩK be a set of world, one of them being the actual world ω0. In every
world, every proposition is either true or false. Suppose a proposition φ and let [φ]
be the set of worlds in ΩK where φ is true: [φ] = {ω : ω ∈ ΩK , ω |= φ}. We write



φ |= ψ if ω |= ψ for every ω in ΩK such that ω |= φ.

4.1.1. Probability functions.

Suppose we put non negative weights p(ω) on each worlds ω ∈ ΩK such that the
weights add to one. These weights p(ω) are the values of a probability distribution
function on ΩK . The probability P (ω0 ∈ [ψ]) that the actual world ω0 belongs to [ψ]
for [ψ] subset of ΩK (or equivalently the probability that ψ is true in the actual world
ω0) is obtained by adding the weights given to the worlds ω of ΩK where ω |= ψ.
Such a definition of the probabilities satisfies Kolmogoroff axioms (P is additive and
P (ΩK) = 1).

4.1.2. Transferable belief model.

Suppose we put non negative weights m([φ]) on each subset [φ] of worlds in ΩK

(representing the proposition φ) such that the weights add to one. These weights
m([φ]) are the values of a basic belief assignment defined on ΩK . The weight m(A)
represents the part of belief that supports that ω0 belongs to A, does not support that
ω0 belongs to B where B is any strict subset of A, but that could support B if further
information would justify it. Suppose a proposition ψ. The belief bel(ω0 ∈ [ψ]) that
the actual world ω0 belongs to [ψ] for [ψ] ⊆ ΩK (or equivalently the belief that ψ is
true in the actual world ω0) is obtained by adding the weights given to the subsets
of worlds [φ] of ΩK for those φ such that φ |= ψ and φ �= ⊥. Given such a definition,
bel is a belief function.

4.1.3. Probability of believing.

Suppose we study a set of possible worlds ΩK and a modal operator ✷ that means
‘I believe’. Let R be the accessibility relation described in Kripke semantics, and let
R(ω) denotes the set of worlds in ΩK accessible from ω: R(ω) = {ω′ : ω′ ∈ ΩK such
that ωRω′}. As in the probability case, each world ω in ΩK is equipped with a non
negative weight p(ω) and the p(ω)’s add to 1. The probability P ([✷ψ]) that You
believe ψ (or more specifically, the probability that You believe that ψ is true in the
actual world) is defined as the sum of the weights given to the worlds of ΩK where
‘You believe ψ’ holds. If we write Q([ψ]) = P ([✷ψ]), then it can be shown that Q is
a belief function defined on ΩK . The ✷ operator could as well have been defined as
‘You know’, ‘You prove’, ‘is necessary’, without changing the results.

4.2. Dynamic component.

We now study the impact of a conditioning event. It will enhance the difference
between the transferable belief model and the probability of believing solutions.



Suppose You learn for sure that ω0 is not in [¬ξ], (what would mean that ξ is true
in the actual world under the condition that there is at least one world in ΩK where
ξ was true, i.e., [ξ] ∩ ΩK �= ∅).

4.2.1. Probability Theory.

The conditioning information implies that the probability given to [¬ξ] should
become zero, which is achieved by putting all p(ω) to zero for those ω where ξ is false,
and rescaling the remaining probabilities in order to keep the probabilities normalized.
The requirement P ([ξ]) > 0 translates essentially the fact that [ξ]∩ΩK �= ∅. The case
P ([ξ]) = 0 is usually left aside. The result is the classical Bayes rule of conditioning
where the probability that the actual world is in [ψ] given it is in [ξ], is given by:

P ([ψ] | [ξ]) =
P ([ψ] ∩ [ξ])

P ([ξ])

4.2.2. Transferable belief model.

Suppose a proposition ψ. The conditioning information implies that the actual
world does not belong to those worlds in [ψ] where ξ is false. Hence the weight that
was given to [ψ] is transferred to [ψ ∧ ξ] = [ψ] ∩ [ξ]. Such a transfer leads to the so
called Dempster’s rule of conditioning described in Dempster-Shafer theory (where
normalization is applied but bel([¬ξ]) < 1 is required) and in the transferable belief
model (where no normalization is applied, hence conditioning on ξ when bel([¬ξ]) = 1
is manageable).

Unnormalized conditioning is given by:

bel([ψ] | [ξ]) = bel([ψ] ∪ [¬ξ]) − bel([¬ξ])

and its normalized version is given by:

bel([ψ] | [ξ]) =
bel([ψ] ∪ [¬ξ]) − bel([¬ξ])

1 − bel([¬ξ])
.

4.2.3. Probability of believing.

The impact of the conditioning event is not so obvious as in the previous case. We
could consider the hypothetical conditioning where we want to assess the probability
that You would believe that the actual world is in ψ if You restrict Yourself among
those worlds where You believed ξ. The result would be the geometrical rule of
conditioning, i.e.,



bel([ψ] | [ξ]) =
bel([ψ] ∩ [ξ])

bel([ξ])
.

Another case would be to compute the probability that You believe that the actual
world is in [ψ] after You add in every world that the actual world is in [ξ], hence after
changing the accessibility relation such that only those worlds where x is true are
accessible. So the accessibility relation R is transformed into the new accessibility
relation Rξ that satisfies Rξ(ω) = R(ω) ∩ [ξ]. Then the probability that the actual
world belongs to [ψ] is the sum of the probabilities given to those worlds of ΩK ∩ [ξ]
where ✷ψ holds according to the new accessibility relation Rξ. The results is again
Dempster’s rule of conditioning.

What happens with those worlds ω where R(ω)∩ [ξ] = ∅? Suppose a set of worlds
D such that R(ω) ∩ [ξ] = ∅ for every ω in D and with weight m(D) > 0. The weight
m(D) initially given to D is now given to a set of worlds that are in relation through
Rξ to no world, so every proposition (even ⊥) is ‘necessary’ and none is ‘possible’ in
those worlds in D. The problem is to know how to define ✷ψ when we want to express
‘I believe ψ’. If we want that ‘I believe ψ’ implies that ‘I don’t believe ¬ψ’, then the
weight m(D) given to D should not be included in the probability that I believe ψ
once I learn φ. Should we keep them and define a weight given to the contradiction
(what is indeed believed in those worlds in D) as I defend it in the transferable belief
model, or should we ‘throw them away’ and renormalized as done by Shafer is still
an debatable question.

In any case, as can be seen, the impact of the conditioning is not always obvi-
ous. In probability theory and in the transferable belief model, the solution is quite
straightforward, in the probability of believing, things become less obvious. The last
case justifies why I insist on the fact that theories should not be compared only on
their static components, but that their dynamic components must also be examined
before assimilating them. This criticism is essentially oriented toward those who as-
similated Dempster-Shafer theory and the transferable belief model to a theory of
random sets, to a theory of upper and lower probability, to a theory of probability of
provability. There are subtleties that must be correctly understood, and many appear
only once conditioning is analyzed.

5. Conclusions.

After this overview of the many models for imprecision and uncertainty, we should
stress that we have only tackled with their static structure, i.e.,how to represent the
state of knowledge, of belief, of opinion of an agent at a given time and with the
conditioning, a particular form of dynamic. Other dynamic component can be con-
sidered. Conditioning as considered classically in probability theory is just one very
particular form of dynamic. Revision, focusing, updating are more general concepts



than conditioning. We did not cover these problems here but we insist on the fact that
often models look similar at the static level (leading authors to equate them) even
though they completely diverge once their dynamic is analyzed. A real comparison
between models must be performed at least at both the static and the dynamic level
in order to be comprehensive.
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