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Abstract

This paper presents experiments using an adaptive learning compo-
nent based on Radial Basis Function (RBF) networks to tackle the
unconstrained face recognition problem using low resolution video in-
formation. Firstly, we performed preprocessing of face images to mimic
the effects of receptive field functions found at various stages of the hu-
man vision system. These were then used as input representations to
RBF networks that learnt to classify and generalise over different views
for a standard face recognition task. Two main types of preprocessing
(Difference of Gaussian filtering and Gabor wavelet analysis) are com-
pared. Secondly we provide an alternative, ‘face unit’ RBF network
model that is suitable for large-scale implementations by decomposi-
tion of the network, which avoids the unmanagability of neural net-
works above a certain size. Finally, we show the 2-D shift, scale and
y-axis rotation invariance properties of the standard RBF network.
Quantitative and qualitative differences in these schemes are described
and conclusions drawn about the best approach for real applications
to address the face recognition problem using low resolution images.

1 Introduction

The human face poses several severe tests for any visual system: the high degree of
similarity between different faces, the extent to which expressions and hair can alter
the face, and the large number of angles from which a face can be viewed in common
situations. A face recognition system must be robust with respect to this variability
and generalise over a wide range of conditions to capture the essential similarities
for a given human face. It 1s only recently that work on biologically-motivated,
statistical approaches to face recognition has begun to deliver real solutions. One
of the main problems that these approaches tackle is dimensionality reduction to
remove much of the redundant information in the original images. There are many
possibilities for such representations of the data, including principal component
analysis, Gabor filters and various isodensity map or feature extraction schemes.
A well known example is the work of Turk & Pentland [1], on the ‘eigenface’
approach, which is widely acknowledged to be useful for practical application.
However, the need for representations at a range of scales and orientations causes



extra complexity and updating the average eigenface (used for localisation) when
new faces are added to the dataset are problems for this scheme. These difficulties
have been overcome to some extent in later work by various researchers [2, 3, 4].
In particular, it seems that appropriate preprocessing of input representations for
a face recognition scheme can overcome the problems of lighting variation and
multiple scales. Other sources of variation such as face orientation, expression,
occlusion ete. still remain.

In our work we use an adaptive learning component based on RBF networks to
tackle the unconstrained face recognition problem. We want our face recognition
scheme to generalise over a wide range of conditions to capture the essential sim-
ilarities of a given face. The RBF network has been identified as valuable model
by a wide range of researchers [5, 6, 7, 8, 9, 10]. Its main characteristics are first,
its computational simplicity (only one layer involved in supervised training which
gives fast convergence), and second, its description by a well-developed mathemat-
ical theory (resulting in statistical robustness). RBFs are seen as ideal for practical
vision applications by [7] as they are good at handling sparse, high-dimensional
data (common in images), and because they use approximation which is better
than interpolation for handling noisy, real-life data. RBF networks are claimed
to be more accurate than those based on Back-Propagation (BP), and they pro-
vide a guaranteed, globally optimal solution via simple, linear optimisation. An
RBF interpolating classifier [11], was effective and gave performance error of only
5-9% on generalisation under changes of orientation, scale and lighting. This com-
pares favourably with other state of the art systems such as the Turk & Pentland
scheme. In contrast to more deterministic methods using warping based on reg-
istration of features, eg [12], our approach uses simpler preprocessing, but learns
to discriminate using the RBF networks to overcome occlusion arising out of head
rotation.

Cognitive studies of the way human faces are perceived (for example [13]) can
contribute to the design of systems that automate this kind of visual processing.
There is support for having ‘face recognition units’ (FRUs) for recognising familiar
faces [14, 13, 15]. This idea is partly captured by the standard RBF techniques
described next where the first layer of the network maps the inputs with a hidden
unit devoted to each view of the face to be classified. The second layer is then
trained to combine the views so that a single output unit corresponds to the
individual person. We have taken this idea further and have developed a ‘face unit’
network model, which allows rapid network training and classification of examples
of views of the person to be recognised. These face units give high performance
and also alleviate the problem of adding new data to an existing trained network.
We are use the various views of the person to be recognised together with selected
confusable views of other people as the negative evidence for the network. Our face
units have just 2 outputs corresponding to ‘yes’ or ‘no’ decisions for the individual.
This is in contrast with Edelman [11] who did not use such negative evidence in
their study. We show that this system organisation allows flexible scaling up which
could be exploited in real-life applications.



2 The RBF Network Model

The RBF network is a two-layer, hybrid learning network [5, 16], with a supervised
layer from the hidden to the output units, and an unsupervised layer, from the
input to the hidden units, where individual radial Gaussian functions for each
hidden unit simulate the effect of overlapping and locally tuned receptive fields.
They use the vector norm distance, |i— ¢, equivalent to Zi\;l(ix —¢z)?, between
the N-dimensional input vector i and hidden unit centre ¢ (N being the number
of input units). The output value can be seen to approach a maximum when i
becomes most similar to ¢. The input vectors are unit-normalised.

Fach hidden unit has an associated o (sigma) ‘width’ value which defines the
nature and scope of the unit’s receptive field response'. This gives an activation
that is related to the relative proximity of the test data to the training data,
allowing a direct measure of confidence in the output of the network for a particular
pattern. In addition, if the pattern is more than slightly different to those trained,
very low (or no) output will occur.

The output o for hidden unit A (for a pattern !) can be expressed as:

on(D) = expl- 0

the hidden layer output being unit-normalised, as suggested by [17]. For output
unit ¢, the output is:

oi(l) = > winon(l). (2)

Whilst the weights w;p can be adjusted using the Widrow-Hoff [18] delta learn-
ing rule, the single layer of linear output units permits a matrix pseudo-inverse
method [19] for their exact calculation. The latter approach allows almost instan-
taneous ‘training’ of the network, regardless of size?. The RBF network’s success
in approximating non-linear multidimensional functions is dependent on sufficient
hidden units being used and the suitability of the centres’ distribution over the
input vector space [20].

2.1 ‘Face Unit’ RBF Model

For the following tests, two types of network were used: a ‘standard” RBF model
and a ‘face unit” RBF model. The standard network is trained with all possible
classes from the data with a ‘winner-takes-all’ output strategy, whilst the ‘face
unit’ network produces a positive signal only for the particular person it is trained
to recognise. For each individual, a ‘face unit’” RBF network can be trained to
discriminate between that person and others selected from the data set, using
‘pro’ and ‘anti’ evidence for and against the individual. Details can be found
n [21]. Although this second approach increases complexity, the splitting of the

11t is equivalent to the standard deviation of the width of the Gaussian response, so larger
values allow more points to be included.

2 A network of 250 hidden units and 10 outputs, ie.2500 parameters, which required several
hours of Sparc 20 processing time for gradient descent can be computed in a small fraction of a
second.



Figure 1: Entire 10-image range (rotating around the y-axis) for one person before
preprocessing

training for individual classes into separate networks gives a modular structure that
can potentially support large numbers of classes, since network size and training
times for the ‘standard’ model quickly become impractical as the number of classes
increases.

3 Form of Test Data

Lighting and location for the training and test face images in these initial studies
has been kept fairly constant to simplify the problem. For each individual to be
classified, ten images of the head and shoulders were taken in ten different positions
in 10° steps from face-on to profile of the left side (see Figure 1), 90° in all. This
gave a data set of 100 8-bit grey-scale 384 x287 images from ten individuals.

A 100x100-pixel ‘window’ was located manually in each image centred on the
tip of the person’s nose, so that visible features on profiles, for instance, should be
in roughly similar locations to face-on. This ‘window’ region was sub-sampled to
a variety of resolutions for testing. Full details are given in [22]. The resolution
of the images is represented as ‘nxn’, a resolution of 25x25 being used for the
work reported here. The ratio of training and test images used is represented as
‘train/test’, eg ‘20/80°, where 100 images were in the data set and 20 were used
for training and 80 for test. The ‘face unit’ network size is denoted by ‘p + a’,
where p is the number of ‘pro’ hidden units, and a is the number of ‘anti’ hidden
units. Tests were made on a range of network sizes from 141 to 6412 (which are

effectively 2/98 and 18/82 networks).

3.1 Pre-processing Methods

Although the RBF network was able to learn the dataset without preprocessing,
ie.on pure grey-level values [23], the authors see preprocessing of the images as a
valid and important intermediate step, highlighting relevant parts of the informa-
tion, and adding an essential invariance to illumination [24].

Two main techniques are used for the preprocessing of the images: Difference of
Gaussian (DoG) filtering and Gabor wavelet analysis at a range of scales. One way
of thinking about these input representations and mapping them onto our RBF



networks is to use the analogy with visual neurons. The receptive field of such
a neuron is the area of the visual field (image) where the stimulus can influence
its response. For the different classes of these neurons, a receptive field function
f(z,y) can be defined. For example, retinal ganglion cells and lateral geniculate
cells early in the visual processing have receptive fields which can be implemented
as Difference of Gaussian filters [24]. Later, the receptive fields of the simple cells in
the primary visual cortex are oriented and have characteristic spatial frequencies.
Daugman [25] proposed that these could be modelled as complex 2-D Gabor filters.
Petkov et al [3] successfully implemented a face recognition scheme based on Gabor
wavelet input representations to imitate the human vision system. Our earlier
studies (see [23]) showed that these later stages of processing make information
more explicit for our face recognition task than the earlier DoG filters.

The experiments presented here concentrate on two specific applications of
these techniques:

e DoG convolution with a scale factor of 0.4, with a reduced range of grey-
levels. The sampled values were thresholded to give zero-crossings infor-
mation. A 25x25 image gave 21x21 convolved values, ze.441 samples per
image.

e Gabor ‘A3’ sampling (for details, see [23]), with a full range of grey-levels.
Data was sampled at four non-overlapping scales from 8x8 to 1x1 and three
orientations (0°, 120°, 240°) with sine and cosine components. A 25x25
image gave 510 coefficients per image.

4 Generalization Over Views (y-axis Rotation)
by the RBF Network

Fixed selections of images used for training to keep the experiments as constrained
as possible. Table 1 shows both the standard and face unit RBF network models
able to generalise very well over the different views with either the DoG or Gabor
preprocessing method.

(a) | Pre-processing | Initial % | % Discarded | % After Discard |
DoG 88 28 100
Gabor 94 30 100

(b) | Pre-processing | Initial % | % Discarded | % After Discard |
DoG 92 35 95
Gabor 95 25 100

Table 1: Effect of pre-processing methods on original dataset: (a) Standard 50/50
RBF Network (b) 6412 Face Unit RBF Network
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Figure 2: Shift-varying data for the ‘face on’ view of one individual: (a) top left
(b) top right (¢) normal view (d) bottom left (e) bottom right

Figure 3: Scale-varying data for the ‘face on’ view of one individual: (a) +25%
(uses 111x111 window) (b) +12.5% (107x107) (¢) normal view (100x100) (d)
—-12.5% (94x94) (e) —25% (87x87)

5 Shift and Scale Invariance Properties of the
RBF Network

Two further data sets were created to test the RBF network’s generalisation abil-
ities:

e A shift-varying data set with five copies of each image: one at the standard
sampling ‘window’ position, and four others at the corners of a box where all
z,y positions were £10 pixels from the centre (see Figure 2).

e A scale-varying data set with five copies of each image: one at the standard
sampling ‘window’ size, and four re-scaled at £12.5% and 425% of its surface
area, ranging from 87x87 to 111x111 (see Figure 3).

5.1 Inherent Invariance - Training with Original Images
Only

These experiments used only the original from each group of five for training, using
all the varied ones (and the remainder of the original ones not used for training)
for testing. This gives a measure of the intrinsic invariance of the network to shift
and scale, ie.the invariance not developed during training by exposure to examples
of how the data varies.



(a)

(b)

| Pre-processing | Initial % | % Discarded | % After Discard |

DoG

14

84

21

Gabor

35

82

47

| Pre-processing | Initial % | % Discarded | % After Discard |

DoG

51

30

51

Gabor

57

38

52

Table 2: Effect of pre-processing methods on shift-varying dataset (the original
from each group of five used for training) (a) Standard 100/400RBF Network (b)
10420 Face Unit RBF Network

(a)

DoG 58 63 78
Gabor 77 46 95
(b) | Pre-processing | Initial % | % Discarded | % After Discard |
DoG 69 40 69
Gabor 83 36 88

| Pre-processing | Initial % | % Discarded | % After Discard ]

Table 3: Effect of pre-processing methods on scale-varying dataset (the original
from each group of five used for training) (a) Standard 100/400 RBF Network (b)
10420 Face Unit RBF Network

5.2 Learnt Invariance - Training with Shift and Scale
Varying Images

These experiments again used a fixed selection of positions for training examples,
using all five versions of each original image. This gives the network information
about the shift and scale variance during training to help in learning this kind of
invariance.

(a)

(b)

| Pre-processing | Initial % | % Discarded | % After Discard |

DoG

72

46

94

Gabor

85

35

98

| Pre-processing | Initial % | % Discarded | % After Discard ]

DoG

84

32

93

Gabor

90

24

97

Table 4: Effect of pre-processing methods on shift-varying dataset (full groups
of five used for training) (a) Standard 250/250 RBF Network (b) 30460 Face Unit
RBF Network



(a) | Pre-processing | Initial % | % Discarded | % After Discard |

DoG 83 34 98
Gabor 90 26 97
(b) | Pre-processing | Initial % | % Discarded | % After Discard ]
DoG 91 24 97
Gabor 93 20 98

Table 5: Effect of pre-processing methods on scale-varying dataset (full groups
of five used for training) (a) Standard 250/250 RBF Network (b) 30460 Face Unit
RBF Network

6 Observations

Several points can seen from the results:
e The RBF network is shown to be able to generalise well in a non-trivial task
classifying y-axis rotated faces (3-D complex shapes).

e Gabor preprocessing is shown to give a more generally useful input repre-
sentation than the DoG preprocessing.

e Not suprisingly, the multi-scale Gabor preprocessing is shown to give greater
scale invariance than the DoG preprocessing.

e The Gabor preprocessing is also shown not to fail catastrophically on the
tougher shift invariance tests, unlike the DoG preprocessing.

e The RBF network is shown to have an inherent scale invariance on these
tasks that does not need to be explicitly learnt from examples.

e In contrast, RBF networks do not have an inherent shift invariance, but this
can be learnt from appropriate training data.

e The ‘face unit’ RBF network is shown to be superior to the standard network
in terms of lower discard proportions for a particular level of generalisation
performance.

Although only ten individuals are being classified here, this type of network
has been shown to work well with greater numbers of classes. For instance, the
Olivetti Research Laboratory database of faces® with 400 images of 40 people can
be distinguished with a high level of performance - with Gabor preprocessing, 95%
can be correctly recognised after discard (see [26]).

7 Conclusion/Future Work

In summary, the locally-tuned linear Radial Basis Function (RBF) networks showed
themselves to perform well in the face recognition task. This is a promising result
for the RBF techniques considering the high degree of variability introduced by
the varying views (y-axis rotation) of a person’s face in these data sets. By cen-
tering our sampled faces on the nose of the profile views, we can regard the partial
occlusion as simply missing features from the other side of the face. This is in

3 available via ftp, for further information: http://www.cam-orl.co.uk/facedatabase.html



accord with known results from Ahmad & Tresp [9] who trained a variety of nets
to recognise stationary hand gestures from computer-generated 2-D views (polar
coordinates) of fingertips. They obtained good generalisation for 3-D orientation
and showed that RBF nets were able to cope well even when much of the data
was missing. Although their standard test data was handled well by a BP net, it
performed badly with missing features and suffered a serious falling off in perfor-
mance as more elements were lost. They showed, however, that a Gaussian RBF
net (of the kind we used in our studies) could cope well, having a success rate of
over 90% even with 50% of the features missing. This behaviour is very useful for
coping with occlusion and other factors which lead to incomplete visual data.

We are now testing to see if the degree of view, scale and shift invariance that
can be learnt by the RBF nets is sufficient to cope with data isolated from real-
time video by a general purpose motion tracker. We are also studying invariance
to facial expression and refining an automated ‘face-finder’ routine. This is nec-
essary for the next stage of development in which people are to be identified in
natural image sequences with the usual variations in illumination as well as posi-
tion, scale, view and facial expression. The statistical nature of the information
successfully captured by RBF nets to do the classification task may also be effec-
tive for the face localisation task. Tt is clear from the work of Turk & Pentland [1]
and Bishop [10] and others using statistically based techniques that this is the key
to good performance and the RBF techniques are mathematically well-founded,
which gives a clear advantage in engineering a solution to our application prob-
lems. Current work [26] is tackling a much more unconstrained recognition task
using faces tracked in real-time and gathering enough information to classify them
accurately with good generalisation to other image sequences containing familiar
people.
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