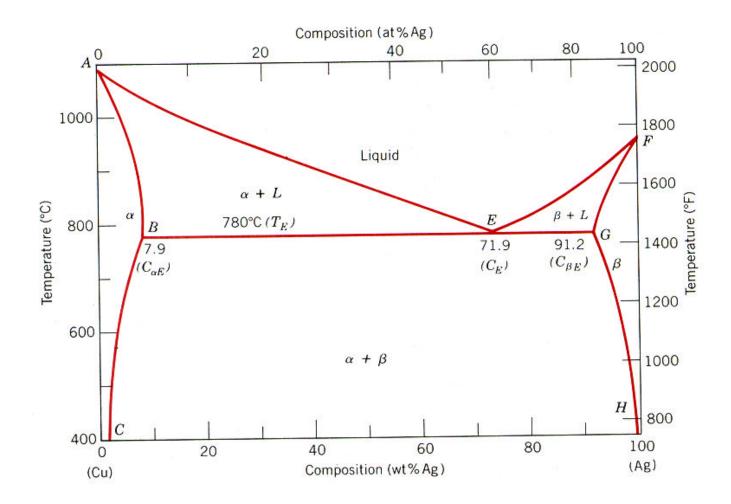
Lista de Exercícios

Difusão – Diagrama de Fases

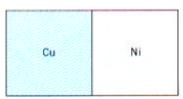
- 1. A purificação de hidrogênio pode ser feita por difusão do gás através de uma chapa de paládio a 600 °C. Calcule a quantidade de hidrogênio que passa por hora através de uma chapa de paládio com 6mm de espessura e área de $0.25~\text{m}^2$ a 600°C. Assumir um coeficiente de difusão de $1.7\times10^{-8}~\text{m}^2$ /s e que as concentrações de hidrogênio dos dois lados da chapa são $2.0~\text{e}~0.4~\text{kg/m}^3$ e que o sistema está em regime estacionário.
- 2. É feita a difusão durante 7h, a 1100° C, de boro numa pastilha de silício, inicialmente isenta de boro. Qual será a profundidade abaixo da superfície na qual a concentração em boro será de 10^{17} átomos/cm³, se a concentração em boro na superfície for de 10^{18} átomos/cm³?


Dados : solução da 2ª lei de Fick para difusão não estacionária

$$\frac{C_{x} - C_{o}}{C_{s} - C_{o}} = erf\left(\frac{x}{2\sqrt{Dt}}\right)$$

Coeficiente de difusão do B no Si a 1100°C: 4,0 x 10⁻¹³ cm²/s

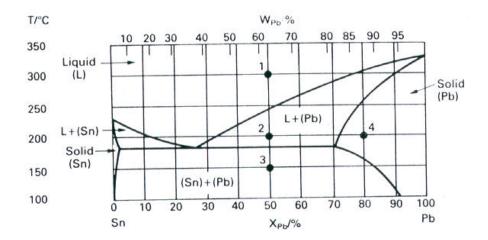
Tabela da função de erro							
Z	erf (z)	Z	erf (z)	z	erf (z)	Z	erf (z)
0	0	0,40	0,4284	0,85	0,7707	1,6	0,9763
0,025	0,0282	0,45	0,4755	0,90	0,7970	1,7	0,9838
0,05	0,0564	0,50	0,5205	0,95	0,8209	1,8	0,9891
0,10	0,1125	0,55	0,5633	1,0	0,8427	1,9	0,9928
0,15	0,1680	0,60	0,6039	1,1	0,8802	2,0	0,9953
0,20	0,2227	0,65	0,6420	1,2	0,9103	2,2	0,9981
0,25	0,2763	0,70	0,6778	1,3	0,9340	2,4	0,9993
0,30	0,3286	0,75	0,7112	1,4	0,9523	2,6	0,9998
0,35	0,3794	0,80	0,7421	1,5	0,9661	2,8	0,9999


- 3. Considere o diagrama Cu-Ag dado no verso. Uma liga com composição 71,9% Ag (% mássica) mantida inicialmente a 900°C é resfriada lentamente até 700°C.
 - a) Faça esboços das microestruturas que seriam observadas a 900°C e a 700°C, indicando em cada esboço quais seriam as fases presentes.
 - b) Determine aproximadamente a composição de cada uma das fases presentes a 700°C (em % mássicas)
 - c) Considerando que a massa inicial da liga era de 1kg, calcule a quantidade de cada uma das fases presentes a 700°C.
- **4.** Considere o mesmo diagrama Cu-Ag dado no verso. Uma liga com composição 40% Ag (% mássica) mantida inicialmente a 1000°C é resfriada lentamente até 800°C, e a seguir resfriada novamente, também de forma lenta, agora até 700°C.
 - a) Faça esboços das microestruturas que seriam observadas a 1000°C, a 800°C e a 700°C, indicando em cada esboço quais seriam as fases presentes.
 - b) Determine aproximadamente a composição de cada uma das fases presentes a 800°C e a 700°C (% mássicas)
 - c) Considerando que a massa inicial da liga era de 1kg, calcule a quantidade de cada uma das fases presentes a 800°C e a 700°C.

Exercícios Extras

Difusão

E1. Um par de difusão (Cu-Ni) similar ao apresentado na figura abaixo é construído. Após um tratamento de 700h a 1000° C (1273K) a concentração de cobre no níquel a uma distância de 3 mm a partir da interface é de 2,5%. Qual a temperatura para o par de difusão atingir a mesma concentração (2,5% Cu) em uma posição 2,0 mm dentro do níquel, supondo o mesmo tempo de tratamento? Dados: $D_0 = 2,7 \times 10^{-5}$ m²/s; $Q_d = 256$ kJ/mol; R = 8,31 J/mol


- E2. Para qual dos dois caminhos abaixo a energia de ativação para a difusão é maior? Justifique sua resposta
 - (i) Ao longo de defeitos cristalinos como discordâncias e contornos de grão.
 - (ii) No volume do material.
- E3. As expressões dos coeficientes de difusão do carbono no ferro α (ferrita) e no ferro γ (austenita) podem ser dadas respectivamente por:

 $D_{\alpha} = [0.0079 \text{ cm}^2/\text{s}] \exp[(-18100 \text{cal/mol})/(\text{RT})] \text{ e } D_{\gamma} = [0.21 \text{ cm}^2/\text{s}] \exp[(-33800 \text{cal/mol})/(\text{RT})]$

- a) Determine D_{α} a 800 e 1000° C e D_{γ} a 800 e 1000° C.
- b) Comparando os coeficientes de difusão do carbono no ferro-α e no ferro-γ (na temperatura de 800°C, por exemplo), você verificará que existe uma diferença. Explique essa diferença com base na estrutura cristalina do ferro-α e do ferro-γ.

Dado: $R = 1,987 \ cal/(mol \ K)$

- E4. Considere o diagrama Pb-Sn dado na figura a seguir.
 - a) Quais são a composição e a temperatura no ponto 1 indicado no diagrama? Quantas e quais são as fases presentes?
 - b) Indique no diagrama o ponto que representa uma liga de composição 70% Sn a 250°C.
 - c) Indique no diagrama o ponto que representa uma liga de composição 30% Sn a 250°C.
 - d) Descreva o que ocorre quando se resfria uma liga de composição e temperatura iniciais indicadas pelo ponto 1 mencionado no item (a) desta questão até 150°C. Quais são as fases presentes no ponto 2 do diagrama? Quais são as fases presentes no ponto 3 do diagrama?
 - e) Descreva o que ocorre quando se resfria uma liga de composição e temperatura iniciais indicadas pelo ponto 4 indicado na figura desta questão até 100°C.

