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Chapter 1

Introduction to Scilab

1.1 Introduction

These exercises are intended to introduce you to the computer environment SCILAB.

By the end of this tutorial you should have checked that your computer account is
working and you will have practiced using an editor and SCILAB.

One way or another you should try to get though all of this tutorial before the next
tutorial starts, as it will require some programming work, so do not hesitate to ask for
help.

In this session you will mostly gain some experience with the SCILAB package. We will
consider some simple SCILAB expressions and use them to consider some problems related
to the use of floating point arithmetic.

Along the way, questions will be asked. You should provide answers to these questions
in your lab book. Marks for the tutorial will be awarded based on the work presented in
your lab book.

1.2 Login

The startup procedure for SCILAB is a little different depending on what type of machine
you are on and how it has been setup. But essentially you need to startup a SCILAB ses-
sion, as well as an editor. For small calculations you can just use the SCILAB interactive
command line, i.e. just type commands straight into SCILAB. For anything more compli-
cated it is much more efficient to type your commands into a file (using your favorite text
editor), save the file and then execute the commands from the editor (or using the exec
filename command from the SCILAB command line).

I will go through the procedure in a little more detail for Windows and Mac machines.
So choose your system:
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1.3 Windows Login

The integration of SCILAB into Windows is quite good. For this operating system SCILAB
has an integrated editor. SCILAB is simply run from the application menu off the start
menu. At the ANU, SCILAB can be found under Mathematics Software menu item.

Once SCILAB is running you are met with the command window. Startup the editor
(from the menu bar) and you are ready to start playing with SCILAB, either from the
command line or from the editor.

1.4 Mac Login

Unfortunately the integration of SCILAB into the Mac world is still quite primitive. An
editor is not integrated into SCILAB. You must choose your own. And SCILAB itself needs
the Xserver running.

At ANU we have setup a text editor, “text commander” in the application folder to
help with the integration. If you use this application, you can edit files, and also startup
a SCILAB session. This is not as good as the windows environment, but it is a start.

If you don’t have access to the ANU system, the procedure for starting SCILAB is a
little more complicated. You will first need to ensure that an Xserver is running. This
will depend on how you have setup your system. Once you have your Xserver running you
will be able to start up an xterm. From the xterm command line, type scilab&. This will
startup SCILAB. Startup your favorite editor and you are ready to go.

1.5 Talking between Scilab and the Editor

From the SCILAB command window you can run SCILAB commands. In particular the
command pwd will tell you the directory you are present working in. This is were SCILAB
will look for files to execute. You can change this using CHANGE DIRECTORY item under
the file menu or from the command line using the command chdir directory.

From your text editor create some SCILAB commands such as

A=[123,;456;789]

and then save the file (say into file test-01.sce) into the same directory in which SCILAB
is looking (as shown by the pwd command).
Now we can run the commands in the file via the command at the SCILAB prompt

exec test-01.sce

As you make changes to your file, you will need to save those changes and then run
the exec command again (you can save typing by using the up arrow to recall previous
commands).

If you are using the editor integrated into SCILAB on the windows system, then the
editor automatically asks to save the file you are working on, and automatically executes
the file.
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1.6 Basic Commands

Now let us play with SCILAB.

Move the pointer to the SCILAB window and select the window (press the left mouse
button). Now you should be able to type commands into the SCILAB window. SCILAB is
made to easily work with vectors and matrices. First input a vector

x=[00;2; 5]

and then a matrix

|
W N W
[SASITN

via the command
A=[1 3 4;-1 2 5 ;4 -3 5]

The semi-colons may be replaced by returns.

SCILAB is case sensitive so that for example a and A will represent different variables.
All the built-in functions in SCILAB like the rank or the eigenvalues for a matrix, are
denoted by lower-case names, as in rank(A) or spec(A). If you cannot remember how to
use a particular SCILAB command try the help command in SCILAB. Try

help spec

SCILAB provides many vector and matrix operations. For instance we can multiply matrices
and vectors. Try the simple commands

Axx
AxA

Lab Book: Record the results of these calculations.

SCILAB does all its calculation in double precision but formats the output using a short
format. The format can be changed to show full precision with the SCILAB command

format (20,’e’)

Try some calculations to see the different format.
The format can be changed back using

format (10,’v’)

A semi-colon at the end of a line will stop SCILAB output for that line. This is useful if
you are working with large vectors or matrices. Try

y = Axx ;
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Note that the answer is not printed out. To see y just type

y

Let’s make some larger vectors. It is easy to produce vectors that have components which
increment nicely. Try

w=0:0.1:7

This will produce a vector starting at 0 and increasing by 0.1 until 7 is reached. Note that
a semi-colon at the end of the line would be helpful here.
We can take functions of vectors (or matrices). For instance try

z = sin(w)

Now we have two vectors w and z of the same length. We can plot the values of w versus
the values of z. Try

plot2d(w,z)
A plot of w versus z should be produced. You can save the graph to a file by using the
file—export menu item on the graphics window.

Lab Book: Print this plot and paste into your lab book

1.7 Matrix Vector problems

We can also solve matrix problems. Try
y=A\x

The vector y should solve the linear equation x = Axy (check this). The inverse of a matrix
can also be calculated using the inv command. Use the inv command to solve the matrix
equation Ay = x.

Lab Book: Compare the results of A\x and inv(A)*x. Are they equal? Why?

The SciLAB command rand (n,m) produces a random n X m matrix. Redefine A to be
a random 5 X 5 matrix and x a random 5 x 1 vector.

The \ command is more general and can be used to solve over-determined systems
(systems with more equations than unknowns) by finding a “least squares solution”. In
fact under-determined systems can also be accommodated.

Lab Book: Try solving an under-determined system (Matrix has less rows than columns).
Try an over-determined system (more rows than columns). Document your experiments.
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1.8 Loops and Conditionals

SCILAB provides for, while and if statements to control flow within a program. Consider
the example program for calculating e”.

ans = 0; n =1; term = 1;

while( ans + term “= ans )
ans = ans + term,;
term = term*x/n;
n=mn+1;

end

ans

Here "= means “not equal to”.

We can avoid retyping by saving the program in a file. Open up a text editor. Type
in the program. Save to a file using the file menu. You will be prompted for a file name.
Use the name ex.sci, the .sci is a standard extension for SCILAB function files. Go back
to the SCILAB window and test your program ex. Type in a value for x and then issue the
command exec(’ex.sci’). For instance try

x=1.0
exec(Pex.sci’)

to let SCILAB run your program with x = 1.0.

Lab Book: Using your program, what is the approximation to e!, e!? and e=1°.

We can make our program into a function. Return to the editing window and change
the program as follows:

function y = ex(x)
// EX A simple function to calculate exp(x)
y=0; n=1; term = 1;
while( y + term "=y )
y =y + term,;
term = term*x/n;
n=n-+1;
end
endfunction

The lines starting with // are comment lines.
Save your changes. Now you can use the command ex(x). But you must load in your
changes. Try

exec(Pex.sci’)
ex(1.0)
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Alternatively if you are using the editor supplied with SCILAB you can just use the menu
item “execute” to load in your file.

This algorithm is useless for large negative values of x. On the other hand, as in the
lectures we can use this algorithm as a basis for a more robust algorithm. First though we
need to become familiar with the if statement. The SCILAB if statement has the simple
form

if expression then
Scilab statements
else
Scilab statements
end

By the way, SCILAB has a for statement of the form

for i=v
Scilab statements
end

Here i is a dummy variable to be used in the loop, and v is a vector, usually a range of
numbers defined 1:20, that the dummy variable will iterate through. So

for j=-4:2:6
disp(j**2)
end

will print out the squares of the even numbers from -4 to 6.

Use your function ex and the if statement to produce a new function newex which
produces reasonable approximations of e~x for x positive or negative (as demonstrated in
the lectures). You can use the same file to define both the ex and the newex functions,
but you will have to use exec again to load in the new function newex.

Lab Book: Produce a table of the results of the ex, and newex functions compared to the
inbuilt exp ScILAB function. Do the table for a range of large negative through to large
positive numbers.

1.9 The Help Command

The help command is the easiest way to find out more about specific Scilab commands. If
you have forgotten small details, for example. The command help name gives information
about the Scilab command name.

help sin // Information about sin.
help + // Gives links to help on Scilab operator names
help log // This is enough information about log

// to show log means log to the base e .
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Note that often the help information provides an example of how the command is used.
This can be particularly useful when experimenting with a new command. You can use
cutting and pasting to run the example commands.

In Scilab the apropos command can also be used to search for relevant information.

apropos logarithm // Provides a list of
// functions related to logarithms

1.10 The Help Window

It is also possible to get help by clicking on the HELP menu above the command window.
From the HELP menu, select the HELP DIALOG item and the list of help topics is displayed.
The advantage of this method is that it is possible to navigate around different topics and
zero in on useful commands. For example, in the help dialog window click on the chapter
"Linear Algebra’. Then find the item ’linsolve’. Once found you click on ’show’ to see the
relevant help page. Note that double clicking doesn’t work in windows Scilab version 2.6
and there is a slight bug when you change chapters and scroll to new items. Choosing the
item a second time seems to work.
Generally the help window is a good way to explore Scilab’s commands.

Exercise 1.

1. Is the inverse sine function one of Scilab’s elementary functions? (The inverse sine
is also known as sin™!, arcsin, or asin.)

(a) How do you find sin™(.5) in Scilab? Use help to find out.
(b) If v = .5, is sin(sin ' (x)) — = exactly zero in Scilab?
(¢c) If v = m/3, is sin " (sin(x)) — 2 exactly zeros in Scilab? What about x = 5m /117
2. Does SCILAB have a function to convert numbers to base 16, i.e. to hexadecimal
form? (Hint: Use apropos to find a way to convert a decimal number to hex-

adecimal.) What is 61453 in base 167 Computers almost always represent numbers
internally as hexadecimals.

3. Look for information about logarithms. Note that searching for logarithms fails where
as logarithm succeeds. There are 8 entries, including the command, logn, for calcu-
lating the log of a matriz!

4. To wind down, use the SCILAB menu command DEMOS. This brings a menu of
demonstrations and examples to explore.

(a) Visit the graphics to see a number of attractive images.

(b) I also like the car and trailer parking demo.

Lab Book: Record your results in your lab book.
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1.11 Summary

We have tried to give a very quick idea of the facilities available in SCILAB and to the
give an idea of using the SCILAB program in conjunction with a text editor to efficiently
experiment with matrix problems. Also the demos available from the menu gives some
good ideas.

But now see if you can tackle the following problem.

1.12 Exercises

Exercise 2. Write a SCILAB program quadroots to compute and print the roots of a
quadratic equation ax® + bx + ¢ = 0 using the quadratic formula

b= Vb? — 4dac
a 2a '

X

It should run with a command like
quadroots(1,3,2)

for the case of x* + 3z +2 = 0. This program can be made to return both roots in a vector
by calling them, for example, rootl and root2 in the function file and starting the function
definition with the line

function [rootl, root2] = quadroots(a,b,c)

These can then be stored into two variables such as r1 and r2 by running the function with
the command

[r1 r2] = quadroots(1,3,2)

The program should avoid division by zero, printing an appropriate message in that case.
Make your own decision about what to do in the case of complex roots, since SCILAB can
compute and print complex values. Test quadroots on the following examples, checking
the results in each case, and pay particular attention to the last example.

1. 22+1=0

2. 022422 +1=0

3. 22 4+3x+2=0

4 4?4+ 242 +36 =0

5. 10822 —2—1=0

6. 1071822 —x 4+ 1 =0 (The roots are approximately 1+ 10718 and 10'® — 1), which you

can check by hand.)
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The last example above illustrates the problem of catastrophic cancellation. FEzxplain why
it makes one root highly inaccurate but not the other, and devise a better algorithm for
computing both roots accurately.

You can use the fact that the roots x1 and xo of ax® + bx + ¢ = 0 always satisfy
r1x2 = ¢/a.

Write a modified program quadroots2 using this improved method, and test it on the
same cases as above.

Unit Testing

It is very useful to write a test program which will test a program against known results.
Here is a program test_quadroots together with some auxiliary functions which takes a
quadroots function (quadroots or quadroots2) and tests the program with the examples
gien above. This is known as unit testing. Copy the following code into your SCILAB enuvi-
ronment, and test your quadroots functions with the command test_quadroots (quadroots).

//

// Test program for the quadroots function

//

// Test a range of inputs.
// Look at the expected results in the table
// to see how to code your function

function test_quadroots(quadroots)

n=0
table = zeros(1,5);

// Setup tests, a,b,c rl,r2 in a table
// rl and r2 are expected roots. We are using
// %nan for non real roots

// x2+1=0
n=n+1; table(n,:) = [ 1.0, 0.0, 1.0 %nan, %nan]

// 0x"2 +2x +1=0
n=n+1; table(n,:) = [ 0.0, 2.0, 1.0, -0.5, %nan]

// x°2 + 3x + 2
n=n+1; table(n,:) = [ 1.0, 3.0, 2.0, -1.0, -2.0]
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// 4x"2 + 24x + 36 = 0
n=n+1; table(n,:) [ 4.0, 24.0, 36.0, -3.0, -3.0]

//10°18 x°2 - x - 1

0
n=n+1; table(n,:) 1.

[ 1.0e18, -1.0, -1.0, 1.0000000005e-9, -9.999999995e-10]
//107-18 x”2 - x + 1 = 0 (The roots are approximately 1 + 10e-18 and 10718 - 1))
n=n+1; table(n,:) = [ 1.0e-18, -1.0, 1.0, 1.0e18, 1.0]

n = size(table, 1)
success = 0.0
for i=1:n,
success = success + ...
print_test(table(i,1),table(i,2),table(i,3),table(i,4),table(i,5),quadroots)
end
printf (’ \n’)
printf (’%g successful tests out of %g\n’,success,n)

endfunction
// Print whether specific quadtest is correct.
// Returns 1.0 if correct, 0.0 otherwise

function success = print_test(a,b,c,rl,r2,quadroot)
success = 0.0

printf (’ \n’)
printf (’TEST: %g x"2 + %g x + %g = O\n’,a,b,c)

printf (’Expect rl = %20.15e, r2 = %20.15e \n’,rl,r2)
[c1,c2]= quadroots(a,b,c)

printf (’Obtained rl1 = %20.15e, r2 = %20.15e\n’,cl,c2)

if( (isnan(r1l) & isnan(cl)) & (isnan(r2) & isnan(cl1))) then
printf (’TEST PASSED\n’)
success = 1.0
return

end
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if( (isnan(r2) & isnan(c2)) & close(ril,cl) ) then
printf (*TEST PASSED\n’)
success = 1.0
return

end

if (close(rl,cl)&close(r2,c2)) then
printf (’TEST PASSED\n’)
success = 1.0
return

end

if (close(rl,c2)&close(r2,cl)) then
printf (’TEST PASSED\n’)
success = 1.0
return

end

success = 0.0
printf (’TEST FAILED\n’)

endfunction

// Check whether two values are relatively
// close.

function r = close(x,y)
xx = max(abs(x),abs(y))

if xx "= 0.0 then
r = (abs(x-y)/xx)<leps*2
else
r = abs(x-y)<leps*2
end
return

endfunction
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FEvolve your quadroots program to a stage in which it successfully passes all of the
test_quadroots tests.

Lab Book: Add to the test_quadroots function a test for the quadratic 1071822 —x+1 = 0
which should have roots approximately 1 4+ 107! and 10'® — 1. Copy your commented
final code, with the functions quadroots, quadroots2 and your amended test_quadroots
function into your lab book. Present the results of the test_quadroots function showing
the success rate of your various implementations of quadroots.



Chapter 2

Matrix Calculations

2.1 Introduction

This tute is designed to familiarise you with matrix calculations in SCILAB.

Although ScCILAB is a useful calculator, its main power is that it gives a simple way of
working with matrices and vectors. Indeed we have already seen how vectors are used in
graphs.

Remember to keep typing in the commands as they appear here, and observe and
understand the SCILAB response. If you mistype, it is easy to correct using the arrows
and the [Del] key. Try to use the help facility to find out about unfamiliar commands.
Otherwise ask another student or a tutor.

2.2 Solving Equations

Most people will have seen systems of equations from school. For example, we may need
to find 1, z9, and x3 so that

T+ 21’2 — T3 = 1
—2[E1 — 6]32 + 41’3 = =2
—I1 — 3$2 + 31’3 =1

Although these problems can be solved manually by eliminating unknowns, this is unpleas-
ant. Besides errors usually occur.

In first year Mathematics the problem is rewritten in matrix-vector notation. We
introduce a matrix A and a vector b by

1 2 -1 1
A=| -2 =6 4]|,b=| -2
-1 -3 3 1

Now we want to find the solution vector « = [z, 2, x3] so that
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In spite of the new notation, it is still just as unpleasant to find the solution. In SCILAB,
we can set up the equations and find the solution x using simple commands.

// Set up a system
=[12-1;, -2-64; -1-33] // of equations.
b=1[1; -2; 1]

x = A\b // Find x with A x = b.

=
|

SCILAB should give the solution

T —1
T2 = 2
T3 2

A sound idea from manual computations is to substitute the computed solution back
into the system, and make sure all equations are indeed satisfied. In SCILAB we can do
this by checking that the matrix vector product Az gives the vector b, or better still, we
check that b — Az is exactly the zero vector.

Axx // Check that Ax and b are the same.
b
b - A*xx ; // So that we do not miss small differences,

// it is better to check that b - A x =0 .

The vector b — Az is known as the residual.

Lab Book: Change the middle element of A from -6 to 5 (i.e. ags = 5). What is the
solution to this new system? What is the new residual? Why is the residual not exactly
0?

Hint: In SCILAB the number 1.23 x 107° is displayed as 1.23e-05. The column vector
[1.23 x 107°;4.44 x 107%] could be displayed as

1.0e-004 =*
1.2300e-05
0.1234 or 4.4400e-06
0.0444

The user can control which form is used by using the command format. Essentially the
full accuracy can be seen using format(’e’,20).

Lab Book: Suppose the middle element is changed from -6 to -5. Can SCILAB solve this
third system? Explain what has happened.
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2.3 Matrices and Vectors

Much scientific computation involves solving very large systems of equations with many
millions of unknowns. This section gives practice with the commands that are needed to
work larger matrices.

The following code sets up a 4 x 4 matrix, A, and then finds some of its important
properties. When [ ] is used to set up matrices, either blanks or commas (,) can be used
to separate entries in a row. Semicolons (;) are used to begin a new row.

A= [1234;14916 ; 1827 64 ; 1 16 81 256 ]
A)

det (A)

spec(A)

[D, X] = bdiag(A)

inv(A)

Even in the simple 4 x 4 case, it is tedious to evaluate determinants and inverses. But in
Scilab they can be quickly calculated and used.
Indices can be used to show parts of a larger matrix. For example try

A(2,3), A(1:2,2:4), A(:,2), A@3,:), A(2:3%,9)

In general AC i:j, k:1 ) means the square sub—block of A between rows i to j and columns
k to 1. The ranges can be replaced by just ‘:’ if all rows or columns are to be included.
The last row or column is designated $.

Lab Book: How would you display the bottom left 2 x 3 corner of A? How would you find
the determinant of the upper left 3 x 3 block of A?

Lab Book: Find the SciLAB command to calculate the row echelon form of a matrix. The
row echelon form is never useful in practice, but it is handy for checking homework in other
subjects!!

2.4 Creating Matrices

Scilab also provides quick ways to create special matrices and vectors.

= ones(4,3)
= zeros(20,1)
= eye(5,5)
= diag( [2 10 -1 -2])
= diag( [1 2 3 4], -1)
= rand(5,5) // U is a 5 x 5 matrix
// of uniformly distributed random numbers.
R = rand(5,5,’normal’); // R is a 5 x 5 matrix
// of normally distributed random numbers.

O HQO
|
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(More information on each of these commands can be found with help.)

Matrix-matrix and matrix-vector multiplication work as expected, provided the dimen-
sions agree. Matrices and vectors can both be multiplied by scalars. In the next example,
B is another 4 x 4 matrix and c is a column vector of length 4 (i.e. a 4 x 1 matrix).

B=[1100

0210

0031

0004] // Rows can be separated by

// making a new line as well as using ;¢

c=[1; 0; 0; -1]
5%B // Multiply scalars and matrices.
Bxc // Multiply matrices and vectors.
AxB // Matrix by matrix multiplication.
Bx*A // Note: AB is not the same as BA !

Some of the following commands do not work. There is no harm in trying them.

c*c // Wrong dimensions for matrix multiplication.
c*A // Wrong dimensions for matrix multiplication.

c’ // The transpose of c, i.e. a row vector.

c’*A // Now matrix multiplication is permitted.

c*c’ // This multiplies a 4 x 1 by a 1 x4 matrix.
c’*c // What is this quantity usually called?

Lab Book: Calculate inv(A)*A and A*inv(A). Do they give the expected result? (Use the
help command if you can’t guess what the inv command does.)

Lab Book: Verify for the matrices A and B above that (AB)™! = B~1A~L

Lab Book: Verify that the SCILAB command AA(-1) can also be used to form the inverse
of A.

2.5 Systems of Equations

Consider again the problem of solving the system of equations Az = b. One obvious way
that appeals to Mathematicians is to calculate A=!b. As in the previous 3x3 case, we should
also check that the solution is correct. We do this by calculating the residual Az — b, for
our computed solution x. Because of roundoff errors this residual may not be exactly zero,
but all its components should be small; say less than 1 x 1071,

x = A"(-1)*b // Solve the equation A x =Db Axx , b
// Check x 1is correct by making
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//  sure it satisfies the equations.
resid = b - Ax*x // Check the residual is zero,
// at least to within roundoff.

In fact it is far quicker, and usually more accurate, to solve equations using the backslash
operator (\ ) introduced in the first section; rather than calculating with the inverse A1,
The next lines use the backslash command to the solve the equations Az = b, and check
that it gives the same answers as those that were calculated using A~

x1 =A\bDb // This is the fastest way to solve A x =D
x - x1 // Here both answers are the same (up to roundoff error).

Lab Book: Try the following exercises.

Exercise 3.

1. Solve the system of equations

1 1/2 1/3 1/4
1/2 1/3 1/4 |z=| 1/5
1/3 1/4 1/5 1/6

using \. Check that the computed solution does actually satisfy the equations (i.e.
check that b — Ax = 0, apart from rounding errors).

2. Use rand(n,m, normal’) to generate a 700 x 700 matrix, A, and a column vector b
of length 700. Solve the system of equations Ax = b using the commands x = A\b and
x = inv(A)*b, ttming each command with the timer () command. Which command
is the faster and why?

Hint: Before working with these large matrices use the command stacksize(m) to
increase the size of the memory used by SCILAB, here m is the number of words used
i memory. I would suggest usingm = 1e7.

3. Set up the 10 x 10 Hilbert matriz. The ij component is given by 1/(i+j —1). You
can use feval to produce the matriz given the function

function z=f(x,y)
z=1.0/(x+y-1)
endfunction

Create a right hand side vector b which is the first column of A, b = A(:,1). We are
now going to solve the equations Ax = b. This is a common test problem in linear
algebra. (What is the true solution x to the equations Ax =b?%)
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(a) Solve the equations Ax = b using the backslash command, and then check that
the computed solution satisfies the equations by calculating the residual, b— Ax.

(b) Now solve the equations by the command A~ (-1)*b and calculate the residual
for this second solution.

(c) Which gives the better (i.e. smaller) residual?
(d) Which method gives the smaller error?

Explanation: As b is the first column of A, you can work out the true value of x
without computation. (Explain this briefly.) The error is the difference between
Scilab’s computed solution and the true solution. (The true solution, the one you work
out by abstract thought, can be typed directly into Scilab.) The size of the error is the
largest absolute value of the components of the error vector.)? (Also SCILAB provides
the exact inverse of the Hilbert matrix with the command testmatrix(’hilb’,n).



Chapter 3

Data and Function Plots

3.1 Introduction

This tutorial is designed to familiarise you with plotting data and graphing functions in
SCILAB.

3.2 Plotting Lines and Data

This section shows how to produce simple plots of lines and data.
Suppose we wish to plot some points. For example we are given the following table of
experimental results.

e | 5719 [1.3]1.7] 1.8
yp | 121751152124

To work with the data in SCILAB set up two column vectors x and y.

x=[.5.7.91.31.71.81’
y=1[.1.2.751.52.12.417]’

(Vectors are discussed in detail in the next lesson; but we can use them to draw graphs
without knowing all the details.) To graph y against x use the plot command.

plot2d(x,y, style=-1)

The graph should now appear. (If not, it may be hidden behind other windows. Click on
the icon ‘Figure No. 1’ on the Windows task bar to bring the graph to the front.)

This graph marks the points with an ‘+’. Other types of points can be used by changing
the style=-1 in the plot2d command. (Use help plot2d to find out the details.)
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Plot showing data points

Lab Book: Experiment with different values for the style. Negative values give markers,
positive values coloured lines.

As you experiment you should erase the previous plot. Use the command
xbasc ()

Commands starting with x generally are associated with graphics commands (This comes
from the X window system used on Unix machines). So xbasc(), is a basic graphix
command which clears the graphics window.

From the graph it is clear that the data is approximately linear, whereas this is not so
obvious just from the numbers. Good graphs quickly show what is going on!

When you have finished looking at the graph, just click on any visible part of the
command window. More commands can then be typed in.

Lab Book: Plot the above data with the points shown as circles. You can either do this
via the style argument, but also via the edit menu on the figure

Lab Book: Plot the above data with the points joined by lines.
Hint: Use help plot2d).
Lab Book: Find out how to add a title to the plot.

Hint: Use the command apropos title.)

3.3 Plot data as points

Often people use the very simplest command to plot data and automatically type just

plot2d( x, y ) // The simplest plot command
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This simple command does not present the data here very well. It is hard to see how
many points were in the original data. It is really better to plot just the points, as the
lines between points have no significance; they just help us follow the set of measurements
if there are several data sets on the one graph. If we insist on joining the points it is
important to mark the individual points as well.

25

2.14

1.7

1.3

0.9

0.5

0

. 1 T T T
05 07 09 11 13 15 17 19

Simple plot2d command.

3.4 Adding a Line

From the graph it is clear that the points almost lie on a straight line. Perhaps the points
are off the line because of experimental errors. A course in statistics will show how to
calculate a ‘line of best fit” for the data. But even without statistics, the line between the
points (.5,0) and (2,3) is a good candidate for ‘a line fitting the data’. Lets add this line
to the plot and see how well it approximates the data. We do this by asking Scilab to plot
the points (.5,0) and (2,2.7) joined by a line.

xbasc()

x=1[.5.7.91.31.71.81";
y=10[.1.2.751.562.12.41]";

plot2d(x,y,style=-1)

x_vals = [ .5 2]7; // The X-coords of the endpoints.
y_vals = [ 0 2.7 ]7; // The Y-coordinates
plot2d(x_vals,y_vals)

legends([’Line of Best Fit’;’Data’],[1,-1],5)

xtitle( ’Data Analysis’)

Note that x_vals contains the x—coordinates, y_vals contains the y—coordinates, and the
two points are joined by a line because we don’t specify a style (default style is a line).
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Data Analysis

2.8
— bine of Best Fit

2.4 |+ Data

2.0 *
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The line of best fit can be found using the datafit function (we will come back to this
later in the course).

Lab Book: Produce this plot and add to your lab book

3.5 Hints for Good Graphs

There are many opinions on what makes a good graph. From the scientific viewpoint a
simple test is to see whether we can recover the original data easily from the graph. A
graph is supposed to add something, not remove information. For example if our data runs
from 1 to 1.5 it is a bad idea to use an axis running from 0 to 10, as we will not be able
to see the differences between the values. We give two more subtle recommendations.

Lab Book: Change the above plot commands to show the data more clearly by plotting
the data points as small circles joined by dotted lines. Hint:

Use help plot2d to see the possible arguments.

3.6 Choose a good scale

In the example in this section, it was easy to see the relationship between x and y from
the simple plot of z against y. In more complicated situations, it may be necessary to use
different scales to show the data more clearly. Consider the following model results

n |3 5 9 17 33 65
Sp | 257 | .0646 | .0151 | 3.96x1073 | 9.78x10* | 2.45%x 1074

A plot of n against s,, directly shows no obvious pattern. (Note the dots, ‘...’ in the next
example mean the current line continues on the next line. Do not type these dots if you
want to put the whole command on the one line.
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n=[35917 33 65 1]’;
s = [ 2.567e-1 6.46e-2 1.51e-2 ...
3.96e-3 9.78e-4 2.45e-4 ]’ ;
xbasc () // clear the previous plot
plot2d( n, s, style=-1) // This is a poor plot!!

In fact it is hard to read the values of s, back from the graph. However a plot of log(n)
against log(s,) is much clearer. To produce a plot on a log scale we can use either of the
commands

xbasc(); plot2d( loglO(n), loglO(s), style=-1)
xbasc(); plot2d( n, s, style=-1 , logflag = ’11’)

o -0.

10 +

+ -0.9
& -1.3 +
10 +

. -1.7 .
2| -2.1
10 . by .
103 + 2.9 i
. -3.3

. : B
194 10 10 04 06 08 1.0 1.2 14 16 1.8 20

These plots reveal that there is almost a linear relationship between the logs of the two
quantities.

Lab Book: Using help plot2d find a command which will use a log scale only for the s,
data. Is this better or worse than the log-log plot?

Lab Book: Add a title to the last plot above and label the X and Y axes.

3.7 Graphs

Consider the problem of graphing functions, for example the function

f(@) = alal/(1+2?)

over the interval [—5, 5].
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3.8 Function Plotting

Scilab provides a simple method for defining functions. For simple functions, the definition
can be written at the interactive prompt “on line”. For instance to define the function

flx) = xle|/(1 + 2?)
we would write

function [yl=f(x)
y = x*abs(x)/(1+x72);
endfunction

This will define a Scilab function with the name f. We can then evaluate the function as
such

£(3)

To produce a plot of this function we can use the fplot2d command. For instance to
plot the function f in the interval [0, 1] we use

x = (-5:0.1:5)’;
fplot2d(x,f)

The first command produces a column vector of x values from 0 to 1 in steps of .1. The
second produces the plot of the function f.

3.9 Component Arithmetic

we would like to be able to do componentwise arithmetic. This is how we do it.

x = (-5:.1:5)° ;
y=x .xabs(x) ./ ( 1+ x.72) ;
plot2d( x , y )

The first command produces a vector of x values from -5 to 5 in steps of .1. That is the
column vector x = [—5,—4.9,--- ,0,---4.9,5". The vector y contains the values of f at
these x values. As there are so many points the graph of x against y looks like a smooth
curve.

The novelties here are the operators .* , ./ and .~ in the second command. These
are the so called component-wise operators. In the above example x is a column vector of
length 101 and abs(x) is the column vector whose i entry is |x;|. The formula x*abs (x)
would be wrong, as this tries to multiply the 1 x 101 matrix x by the 1 x 101 matrix abs (x).
However the component-wise operation x.*abs (x) forms another vector of length 101 with
entries z;|z;|. Continuing to evaluate the expression using component-wise arithmetic, we
get the vector y of length 101 whose entries are x;|x;|/(1 + z?). (Of course we should not
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become overconfident. This rule for dividing by vectors cannot be used in Mathematics
proper.)

Note that p.*q and p*q are entirely different. Even if p and q are matrices of the same
size and both products can be legitimately formed, the results will be different.

Before more exercises, we show how to add further curves to the graph above. Suppose
we want to compare the function we have already drawn, with the functions z|x|/(5 + x?)
and z|z|/(% + x?). This is done by the following three additional commands. (Remember
x already contains the x—values used in the plot. These new commands are most easily
entered by editing previous lines.)

y2 = x .x abs(x) ./ (6 + x.72) ;
y3 = x .* abs(x) ./ ( 1/5 + x.72) ;
plot2d(x, [y y2 y31)

Note that x needs to be a column vector for this to work.

Lab Book: Use SCILAB to graph the functions cos(x), 1/(1+cos?(z)), and 1/(3+cos(1/(1+
2?)) on separate graphs.

Lab Book: Graph 1/(1 + ¢**), for —4 <2 <4 and o = .5,1, 2, on the one plot.

Lab Book: Use plot2d to draw a graph that shows

lim sin(z)

x—0 €x

=1.

Hint: Select a suitable range and a set of x values and plot sin(x)/x. If you get messages

about dividing by zero, it means you tried to evaluate sin(x)/x when z is exactly 0.

3.10 Printing Graphs

When the graph has been correctly drawn we will usually want to print it. As many graphs
come out on the printer, it is a good idea to label the graph with your name. To do this
use the xtitle command.

\\ Be sure to put quotes
xtitle(’Exercise 3.4 Kim Lee.’) \\ around the title.

Bring the plot window to the front. The title should appear on the graph. If everything is
okay, click on the ‘file’ menu — ‘print scilab’ item in the graph window. If everything is
set up correctly, the graph will appear on the printer attached to your computer.

After printing a graph, it is useful to take a pen and label the axes (if that was not
done in SCILAB), and perhaps explain the various points or curves in the space underneath.
Alternatively before printing the graph, use the SCILAB command xtitle with two op-
tional arguments and the legend argument of the plot2d command for a more professional
appearance. For instance
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xbasc ()
plot2d(x, [y y2 y3],leg="function y@function y2@function y3’)
xtitle(’Plot of three functions’,’x label’,’y label’)

Another option is to use the graphics window file menu item, export, or the xbasimp
command to print the current graph to a file so that it can be printed later. For example
to produce a postscript file use the command

xbasimp (0, ‘mygraph.eps’)

This will write the current graph (associated with graphics window 0) to the file mygraph. eps.
This file can be stored and printed out later.

3.11 Saving Graphs

The easiest way to save a graph is to save the Scilab command you used to create the
graph. These are usually only one or two lines. If the commands are more than one or two
lines long, they should probably be saved in a file (see later chapters.)



Chapter 4

Polynomials and Interpolation

4.1 Introduction

This tutorial is designed to familiarise you with polynomial evaluation and interpolation
and with least squares fitting of data with polynomials.

4.2 Evaluation of Polynomials

Use SCILAB to calculate the following functions in the obvious manner without rearranging
or factoring

8 82" +2828 —562° +70x* —562% +2822 —8x+1
(((((x —8)x+28)x —56)x+70)x —56) x4+ 28)x — 8) x + 1
hz) = (z—1)°

at the points 0.975:0.0001:1.025.

<

—~

=
I

Lab Book: Plot these points using SCILAB. Observe that the three functions are identical
mathematically but that the numerical results are quite different. Can you account for this
discrepancy.

SCILAB Hint: You might want to create a file where the three functions, f, g and h
are defined. In SCILAB the command x~4 will try to raise the matrix x to the 4th power
(using matrix multiplication). On the other hand the “dot” operator x.~4 will apply the
operation ~ to each entry of the matrix x. It is recommended that you always use the
“dot” notation when you define such functions.

4.3 Polynomials

We can use SCILAB procedures to deal with polynomials. The polynomial a; + asx + - - -+

amz™ 1 can be represented in SCILAB symbolically.
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In the following example, —4 — 3z + 22 is represented by the vector of coefficients
[—4 — 31] and by a polynomial p. We setup the polynomial with the command

[-4,-3,1]
poly(v,’x’,’coeff’)

v
P

We can also build up a polynomial in a more natural way.

X
P

poly(0,’x’) // Seed a Polynomial using variable ’x’
X2 - 3%x - 4 // Represents x"2 - 3 x -4

There are many useful functions that can be applied to polynomials. We can find the
roots (numerically) of a polynomial, evaluate a polynomial or find its derivative.

z = roots( p )

z(1)"2 -3*z(1) -4 // Two ways to evaluate the poly.
horner(p,z(1)) // at the first root.
derivat (p) // Calculate the derivative of the polynomial

The Scilab polynomial methods generalise to rational functions. For instance

x = poly(0,’x’) // Seed a Polynomial using variable ’x’
p=x"2-3xx - 4 // Represents x"2 - 3 x -4
r = x/p // Represents the rational

// function x/(x72 - 3 x -4)
horner(r,1.0) // Evaluate r at x=1

4.4 Interpolating Runge’s Function

Consider the function )

0= 1o

This function is known as Runge’s function.
Define a SciLAB function to calculate Runge’s function.

function y=runge(t)

//

// Runge’s Function

// Standard example of polynomial interpolation
// creating oscillations

//

y=(1.0)./(1+25%t."2)

endfunction



ANU Computational Teaching Modules, Scilab Tutorials 33

Note we have put parentheses around the (1.0) to ensure that the ./ command is used.
An expression of the form 1./(..) would actually use the / matrix operator!

Consider a polynomial
pu(t) = ijtj_l
j=1

which interpolates (coincides with) Runge’s function at n evenly spaced points between
—1 and 1 (i.e. at the points -1:2/(n-1) :1]. We have n unknowns z; for the coefficients
of the polynomial and n data points. This will provide us with a linear equation for the
polynomial coefficients given the values of the data points.

Create a function called polyfit, with calling sequence pp=polyfit(tdata, ydata),
that fits a polynomial of degree n — 1 to n data points t, y and returns a polynomial
pp.- You can easily add an extra argument to calculate the least square fit of an m < n
degree polynomial to the n data points. The result of polyfit should then be able to be
evaluated using the command

tt = -1:0.01:1; yy = horner(pp,tt)

Hint: You can use the standard backslash operator to solve for the coefficients once
you have the Vandermonde matrix. The feval command together with an appropriately
defined function

function z=vandermonde(t,q)
z=t."q;
endfunction

may be of help in producing the associated Vandermonde matrix.
You might like to use deff to define your function

deff (’z=vandermonde(t,q)’,’z=t."q’)

This is useful for short functions.

Lab Book: Use your polyfit function to calculate the coefficients of the degree 5 and
degree 10 polynomials which interpolate Runge’s function at 6 and 11 evenly spaced points
in the interval [—1,1].

Lab Book: How successful are the polynomial approximations about zero and the end
points?

4.5 Taylor Polynomials

Note that the expression 1/(1 +t) = 1 — ¢ + > — t3... easily gives the Taylor polynomials
centred about the origin of the Runge function to have the form

1 — 25t + (25¢%)% — (25¢%)°...
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Lab Book: Use this to plot the Taylor polynomial of degree four centred at zero for the
Runge function, over the interval [-1,1]. You should also plot the Runge function and the
Taylor polynomial over a smaller interval, say [-0.2,0.2]. Try to explain its accuracy, and
what you would expect the accuracy of the degree eight Taylor polynomial to be like.

4.6 Chebyshev Interpolation

Let us compute and graph polynomial approximations to the Runge function of degree
four and eight using interpolation at the Chebyshev points: for the case of degree four, the
SCILAB expression to compute the five points needed is

tdata = cos((1:2:(2*%5-1))*%pi/(2%5))

ydata = runge(tdata)

chebp = polyfit(tdata,ydata)
tt = -1:.01:1;

rr = runge(tt);

yy = horner(chebp,tt);
xbasc();

plot2d(tt,yy,style=1);
plot2d(tt,rr,style=2);
plot2d(tdata,ydata,style=-1)

The results are more accurate than with equally spaced points or Taylor polynomials but
still not very good: try to explain these observations.

Lab Book: Plot the result of using a range of higher order Chebyshev interpolants.

4.7 Spline Interpolation

The following SCILAB commands use the command splin to compute the natural spline
interpolate through the points specified by the vectors x and y. You use interp to evaluate
the spline at the points xx.

tdata = -1:.5:1;

ydata = runge(tdata);

ddata = splin(tdata,ydata);

tt = -1:.01:1;

rr = runge(tt);

ss = interp(tt,tdata,ydata,ddata);

Thus the spline approximation can then be graphed using
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xbasc();
plot2d(tt,ss,style=1);
plot2d(tt,rr,style=2);
plot2d(tdata,ydata,style=-1);

Lab Book: Change the code to plot the cubic spline approximations of the Runge function
using a set of nine equally spaced points, interpolating the Runge function.

4.8 Monotonic Cubic Interpolation

From the previous example we see that cubic spline interpolation can still introduce un-

wanted oscillations. There are many techniques which guarantee oscillation free interpo-

lation (though at a cost of possible lower order accuracy), for instance a fairly common

method is that of Fritsch and Carlson (SIAM J. Numer. Anal. 17, pp 238-246 1980).

SCILAB implements a monotonic interpolation method as an option to the splin function.
Here is some data

tdata = 0:1:10; ydata = [0 0 0 0 0.1 1.8 1.9 2.0 2.0 2.0 2.1];

Lab Book: Fit an ordinary spline function to this data set. Produce a plot
I obtained the following;:

1.8 +

1.4+

1.0

0.6

0.2+

The result is quite oscillatory, maybe not really what we want.
Now re do the spline interpolation of this data, but use the extra argument monotone”’.
Le. use

ddata = splin(tdata,ydata, ’monotone’);
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Now you can use tdata and ydata values together with the new derivative values to
produce an interpolant using the interp function.

Lab Book: Plot the data points, together with plots of the ordinary spline and monocubic
interpolant. Comment on the respective interpolants.

Hopefully you can see that in some cases it is useful to try to maintain the shape
implicit in your data sets. This is particularly true for coarse data sets.



Chapter 5

Sparse Matrices and Direct Solvers

5.1 Introduction

This tutorial is designed to familiarise you with sparse matrix calculations in SCILAB.

5.2 Sparse Matrices

ScILAB allows you to work with sparse matrices almost as easily as full matrices. Let us
make some sparse matrices.

5.3 Convert Full to Sparse Matrices

We can use the diag command to create a tridiagonal matrix. Try
A = diag(ones(20,1),-1) -2*diag(ones(21,1)) + diag(ones(20,1),1);

This should produce a 21 x 21 tridiagonal full matrix. You can convert to sparse storage
using the sparse command.

A = sparse(A);

With sparse matrices it is useful to look at the non-zero structure of the matrix.

The book “Engineering and Scientific Computing with Scilab” edited by Claude Gomez
provides some very helpful hints on working with SCILAB. In particular they have produced
some code which mimic the spy command form MATLAB. Here I have reproduced the code,
encapsulated in a function.

function spy(A)
// Mimic the Matlab spy command
// Draw the non zero components of a matrix
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// Taken from Engineering and Scientific Computing with Scilab’’
// edited by Claude Gomez

[i,3] = find(A~=0)

[N,M] = size(A)
xsetech([0,0,1,1],[1,0,M+1,N])
xrects([j;N-i+1;ones(i);ones(i)],ones(i));
xrect (1,N,M,N);

endfunction

Copy this code into your SCILAB workspace and execute it on the matrix A.
xbasc () ;spy(A)

The xbasc() is there just to clear the graphics window if you have already used it.

Lab Book: Explain the plot you obtain

5.4 Sparse Matrix Creation

When we created A we first created a full matrix and then converted to a sparse matrix.
Obviously we should avoid the full matrix. Use the whos() or whos -name A to see the
storage requirements of A before and after the conversion to sparse storage format.

Now let us create the matrix as a sparse matrix without using full storage. We can
use diag again but with an argument which is sparse. The following command will do the
trick.

n=21; B = diag(sparse(ones(n-1,1)),-1)
- 2xdiag(sparse(ones(n,1))) + diag(sparse(ones(n-1,1)),1);

Check out the matrix by printing out its entries or even printing out a full representation
of B.

B
full(B)

Don’t do this with large matrices! Also use spy to check out the structure.

The sparse storage format is essentially a list of 75 entries and corresponding matrix
values v of the non-zero entries in the matrix.

For instance try out
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ittt

dij = [(1:n)’, (1:n)’]; // i j coordinates of diagonal

dv = [-2*ones(n,1)]; // value of -2 down diagonal

udij = [ (1:n-1)’,(2:n)’]; // i j coordinates of upper diagonal
udv = [ ones(n-1,1) 1; // value of 1 for upper and lower diagonals
1dij = [ (2:n)’,(1:n-1)’]; // i j coordinates of lower diagonal

ij = [dij ; udij ; 1dij 1; // concatenate all the i, j coordinates
v = [dv ; udv ; udv 1; // concatenate all the values
C=sparse(ij,v) // create sparse matrix

full(C)

ittt

Make sure you know what this code is doing. Try a smaller value of n and printout each
step.

Lab Book: Compare the matrices A, B, C. Describe how each version has been created.
Comment on the efficiency of each method (speed and storage).

5.5 Matrix Graph Example

The help file for the mesh2d function provides some very interesting matrices associated
with triangulating a circular region. Here is a reproduction of the example given in the
help file. Copy this code into your SCILAB workspace.

function [al,a2,a3,gl,g2,g3]=mesh_examples()
//
// Code taken from the help file for mesh2d. Produces 3
// matrices and graphs associated with triangulating
// a circular region with a hole

//

// FIRST CASE
theta=0.025%[1:40]*2.%%pi;
x=1+cos(theta);
y=1.+sin(theta);
theta=0.05%[1:20]*2.*%pi;
x1=1.3+0.4*cos(theta) ;
y1=1.+0.4*sin(theta);
theta=0.1%[1:10]*2.*}pi;
x2=0.5+0.2*cos(theta) ;
y2=1.+40.2*sin(theta);
x=[x x1 x2];
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y=Lly y1 y2l;
[nu,al]l=mesh2d(x,y);

nbt=size(nu,?2);

jj=[nu(l,:)’ nu(2,:)’;nu(2,:)’ nu(3,:)’;nu(3,:)’ nu(l,:)’];
as=sparse(jj,ones(size(jj,1),1));
ast=tril(as+abs(as’-as));
[jj,v,mn]=spget(ast);

n=size(x,2);
g=make_graph(’foo’,0,n,jj(:,1)?,33(:,2)7);
g(’node_x’)=300%*x;

g(’node_y’)=300%*y;
g(’default_node_diam’)=10;

gl = g;

// SECOND CASE !!! NEEDS x,y FROM FIRST CASE
x3=2.*rand (1:200) ;

y3=2.*rand (1:200) ;

wai=((x3-1) .*(x3-1)+(y3-1) .x(y3-1));
ii=find(wai >= .94);

x3(ii)=[];y3(1i)=[];

wai=((x3-0.5) .%(x3-0.5)+(y3-1) . x(y3-1));
ii=find(wai <= 0.055);

x3(ii)=[1;y3@(11)=[];

wai=((x3-1.3) .%(x3-1.3)+(y3-1) .*(y3-1));
ii=find(wai <= 0.21);

x3(ii)=[];y3(1i)=[];

xnew=[x x3];ynew=[y y3];

fr1=[[1:40] 1];fr2=[[41:60] 41] ;fr2=fr2($:-1:1);
fr3=[[61:70] 61];fr3=fr3($:-1:1);

front=[frl fr2 fr3];

[nu,a2]=mesh2d (xnew,ynew,front) ;

nbt=size(nu,2) ;

jj=[nu(l,:)’ nu(2,:)’;nu(2,:)’ nu(3,:)’;nu(3,:)’ nu(l,:)’];
as=sparse(jj,ones(size(jj,1),1));

ast=tril(as+abs(as’-as));

[jj,v,mn]=spget(ast);

n=size(xnew,?2);

g=make_graph(’foo’,0,n,jj(:,1)?,jj(:,2)7);
g(’node_x’)=300*xnew;
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g(’node_y’)=300*ynew;
g(’default_node_diam’)=10;
82=g;

// REGULAR CASE !!! NEEDS PREVIOUS CASES FOR x,y,front
xx=0.1%[1:20];

yy=xx.*.ones(1,20);

zz= ones(1,20) .*.xx;

x3=yy;y3=zz;

wai=((x3-1) .*%(x3-1)+(y3-1) .*(y3-1));
ii=find(wai >= .94);
x3(11)=[1;y3(ii)=[1;
wai=((x3-0.5).%(x3-0.5)+(y3-1) .*(y3-1));
ii=find(wai <= 0.055);
x3(ii)=[1;y3(@ii)=[];
wai=((x3-1.3) . %(x3-1.3)+(y3-1) . x(y3-1));
ii=find(wai <= 0.21);
x3(11)=[1;y3(ii)=[1;

xnew=[x x3];ynew=[y y3];

[nu,a3]=mesh2d (xnew,ynew,front) ;

nbt=size(nu,?2);

jj=[nu(l,:)’ nu(2,:)’;nu(2,:)’ nu(3,:)’;nu(3,:)’ nu(l,:)’];
as=sparse(jj,ones(size(jj,1),1));
ast=tril(as+abs(as’-as));
[jj,v,mn]=spget(ast);

n=size(xnew,?2) ;
g=make_graph(’foo’,0,n,jj(:,1)?,jj(:,2)7);
g.node_x=300*xnew;

g(’node_y’)=300*ynew;
g(’default_node_diam’)=3;

g3=g;

endfunction

// Now run the function to produce the
// example matrices and associated graphs
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[A1,A2,A3,g1,g2,g3] = mesh_examples();

If you have loaded the previous snippet of code into SCILAB there should now be 3 new
matrices A1, A2, A3 defined in your workspace. Try spy on these matrices.
I obtained the following spy plot of the matrix A3

Spy plot of A3.

Lab Book: Printout the spy plot of the A2 matrix. Can you make any sense of this spy
plot.

Now the previous code has also produced 3 graph objects associated with each sparse
matrix.

Lets look at the graphs using the show_graph command. (If you want to do this on a
windows machine and are using an earlier version (2.6) of SCILAB you will have to load in
the scigraph package and use the show_scigraph command instead).

xbasc(); show_graph(gl);

Actually I think the g2 and g3 are more interesting. You can use the options submenu of
the graph menu to number the nodes. This can help to understand the strange structure
of the corresponding sparse matrix.

I obtained the following plot of the graph associated with matrix A3
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Graph associated with matrix A3.

Lab Book: Printout the graph plot corresponding to the matrix A2 matrix. Have a look
at the first column of the matrix A2. Reconcile this with the graph g2

5.6 Sparse Matrix Operations

Most of the standard matrix operations have been implemented for sparse matrices. You
can add, multiply, transform, invert and solve matrix equations.

For instance, you can find the inverse of Al the matrix created by the mesh_examples
function.

Alinv = inv(Al);

Look at the Alinv with the spy function. The inverse is nearly full. This is typical, the
inverse of a random sparse matrix is invariably full. The moral, avoid calculating the
inverse of sparse matrices!

5.7 Solving Sparse Matrix Equations

There are basically 3 methods available for solving matrix equations
e The backslash operator \
e The combination of the lufact and lusolve

e And for positive definite matrices, the combination of the functions chfact and
chsolve

e There is also a function spchol, but the chfact function seems to be more efficient.
Setup a test problem

[n,m]=size(Al);
ones(n,1);
Al*x;

X
b

So you have a right hand side b together with a solution vector x. Now lets see how well
each of the solution methods work. Use the help command to see how to call the different
factorisation commands. Use the timer () command to time each calculation. For instance

timer(); x1 = A1\b ; t1 =timer()
errl = norm(x1-x)
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5.8 Extensions

The chfact, chsolve combination of commands is quite efficient for positive definite ma-
trices as it uses minimum degree reordering (the lufact and spchol do not reorder).
Unfortunately the matrix Al is not positive definite!

Lets see if we can improve the efficiency of the lufact command by reordering the
matrix Al. The command bandwr will try to reorder a symmetric matrix to create a
reordered matrix with smaller bandwidth. Applying this to A1 (which is symmetric) try

[iperm,mrepi]=bandwr (triu(Al));
RA1 = Al(mrepi,mrepi);

xbasc() ;spy (A1)

xbasc () ;spy(RA1)

Note that the reordered matrix has a much smaller bandwidth. Determine whether the
solution methods work better on the reordered matrix.



Chapter 6

Iterative Methods Applied to
Membrane Problem

6.1 Introduction

In this tutorial we will investigate the solution of matrix problems which are commonly
found in the modelling of membranes, equilibrium temperature distributions and flow of
fluids through porous media.

We will first define the problem and solve it using standard the SCILAB sparse linear
equation solver. We will then investigate means of speeding up our method. In particular
we will see that the iterative method, the conjugate gradient method provides a good
method for solving larger problems. The tutorial will also give you some experience with
plotting functions of 2 variables (surface graphs).

There is a lot of code in this tutorial as we will be using quite sophisticated methods.
I suggest you cut and paste the code into SCILAB run it from there.

6.2 Setup Matrix

We will first setup a problem which models a membrane with loading, such as mass loads
or pressure. The membrane will be approximated by a 2 dimensional grid.
Let’s setup the grid

n=10; m = 15;
x =0:1/(n-1):1;
y =0:1/(m-1):1;
u = x’*y;

You can plot the value of u using the plot3d command. Namely

xbasc(); xselect();
plot3d(x,y,u)
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Rotate the plot (using the rotate button on the figure window) to get a better idea of the
shape of the surface.
You might want to try a shaded plot using the plot3dl command.

xbasc(); xselect();
plot3dl(x,y,u)

The default colour map does not produce a very nice plot. SCILAB 3.0 has three in
built colour maps, jetcolormap, hotcolormap and graycolormap. In SCILAB version 2.7
it seems that the function jetcolormap is not available. Here is the code for jetcolormap
taken from the SCILAB 3.0 distribution. If you are using SCILAB 2.7 or earlier, load in this
function so that you run the code given in tutorials.

function [cmap] = jetcolormap(nb_colors)

//  PURPOSE
// to get the usual classic colormap which goes from
// blue - lightblue - green - yellow - orange then red
//  AUTHOR
// Bruno Pincon
//
r = [0.000 0.125 0.375 0.625 0.875 1.000;...
0.000 0.000 0.000 1.000 1.000 0.500]
g = [0.000 0.125 0.375 0.625 0.875 1.000;...
0.000 0.000 1.000 1.000 0.000 0.000]
b = [0.000 0.125 0.375 0.625 0.875 1.000;...
0.500 1.000 1.000 0.000 0.000 0.000]
d = 0.5/nb_colors

x = linspace(d,1-d, nb_colors)
cmap = [ interpln(r, x);...
interpln(g, x);...
interpln(b, x) 1°’;
cmap = min(1, max(0 , cmap)) // normally not necessary
endfunction

You can set the new color map using the xset command. Try

xset("colormap", jetcolormap(64))
xbasc(); xselect();
plot3di(x,y,u)

Lab Book: Change the colour map. Produce a plot using the gray scale colour map, rotated
to give a good view of the surface.
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6.3 Setting Boundary Values

We want to model the situation in which our membrane is fixed around the edge. We will
specify the height of the edge nodes using a function. In the first instance lets set the
boundary to have a saddle shape given by the function

function u = saddle_function(x,y)
//
// Saddle point function to be used as
// boundary and exact solution

//
u = (x-0.5)"2 - (y-0.5)"2
endfunction

Load this function into SCILAB.
The boundary nodes correspond to the ¢, j valuesi =1,i=n, j=1and j = m. So
lets set those nodes to have the value given by the function saddle_function.

for i=1:n
for j=1:m
// 1f statement to determine boundary nodes
if( i==1 | i==n | j==1 | j==m) then
u(i,j) = saddle_function(x(i),y(j));
else
u(i,j) = 1.0;
end
end
end

Lab Book: Can you explain what the for loop is doing?

Lab Book: Plot the grid function .
I obtained the following plot using the plot3d command.
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6.4 Applying Tension
We want to apply a tension force to the membrane. We do this by specifying that

fo= Uip1j — 2Uij + Uiy = 2ui; + uij
] T

Az? Ay?

Here f;; is representing a vertical force applied to node i, j, and Az = ﬁ and Ay = ﬁ
The vertical force is most commonly interpreted as a gravitational force or a pressure force.

So we have a system of linear equations

Uiy1; | Ui—1j 1 1 Uij+1 | Uij-1
SN (T Y = £
Ax? + Ax? (Aa:2 + Ayz) g+ Ay? + Ay? Ji

Note that if Az = Ay then the equations can be written in the simpler form
Uigrj + Uim1j — iy + Uijr + iy = fiyAr®,

The number of nodes is nm, and so the corresponding matrix will be nm by nm.

Lets set up a sparse matrix which encodes all these equations. For the boundary nodes
we will set the corresponding row of the matrix to have only a diagonal equal to one and
set a right had side to be the boundary value. Initially we need to set up the sparse matrix
using the following create_matrix function.

function [A,b] = create_matrix_1(n,m)

//
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// Create a matrix associated with a grid
// nodes with x and y coordinates given as
// input, connected by springs with nodes
// on the boundary set the function boundary

//

dx = 1/(n-1);
dy = 1/(m-1);
dx2 = 1/dx"2;
dy2 = 1/dy~2;
x = 0:dx:1;

y = 0:dy:1;

A = speye(n*m,n*m) ;
b = zeros(n*m,1);

for i=1:n
for j=1:m
index = i + (j-1)*n;
if( i==1 | i==n | j==1 | j==m) then // Boundary nodes

b(index) = saddle_function(x(i),y(j));
A(index,index) = 1.0;
else // Interior Nodes
b(index) = force;
A(index,index) = -2.0*(dx2 + dy2);

A(index,index+1) = dx2;
A(index,index-1) = dx2;
A(index,index+n) = dy2;
A(index,index-n) = dy2;

end

end
end
endfunction

Load this function into SCILAB, and create the matrix A and right hand side b correspond-
ing to a 5 by 5 grid by using the command

[A,bl=create_matrix_1(5,5)

This will produce an error since the create_matrix function needs the variable force set.
Lets set it to 0 and try the command

force = 0.0; [A,bl=create_matrix_1(5,5)
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How large is the matrix A. What is its’ structure. Here is the code for the spy function
which is useful to view the structure of the matrix.

function spy(A)
// Mimic the Matlab spy command
// Draw the non zero components of a matrix

[i,j] = find(A~=0)

[N, M]

size(A)

// wrect=[x,y,w,h] frect=[xmin,ymin,xmax,ymax]
xsetech([0,0,1,1],[1,0,M+1,N])
xrects([j;N-i+1;ones(i);ones(i)],ones(i));

//  [x,y,w,h]

xrect(1,N,M,N);

endfunction

Lab Book: Explain what this code is doing, in particular how index is being used. Produce
a plot of the structure of the matrix A using the spy function.

6.5 Solving the Problem

So now we have a way of producing a matrix and a right hand side, so now we only have
to solve the equation.

Here is some code to setup and solve the problem. I have added some extra code which
times the code and also sets up a wrapper for the solver so that we can change the solver
later in the tutorial.

Load in the following code.

function [U] = solve_equation_1(A,b)
//

// Wrapper for linear solver

//
U = A\b
endfunction

function run_problem(n,m)
//
// Setup a problem, create matrix,
// solve and then plot result.
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//

// Input:

// n,m, number of grid points in x and y direction.
//

x = 0:1/(n-1):1;

y = 0:1/(m-1) :1;

// Setup creation and solver routines
create_matrix = create_matrix_1
solve_equation = solve_equation_1

printf (’Create Matrix:’)
timer ()

[A,b] = create_matrix(n,m);
printf(’ time = %g\n’,timer())

printf (’Solve Matrix problem:’)
timer ()

U = solve_equation(A,Db)
printf(’ time = %g\n’,timer())

u = matrix(U,n,m);

// Plot the solution

xset ("colormap", jetcolormap(64))
xbasc(); xselect();
plot3dl(x,y,u)

endfunction

Now we should run our code. We just have to run the run problem function. For
instance to run the code for a 10 by 15 grid use the command

run_problem(10,15)

When running the previous fragment of code I obtained the following plot.
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This is good, as you can now see that the membrane is fixed to the boundary and in
the interior the membrane seems to be pulling evenly in each direction.

Lab Book: Produce a plot of a membrane with the same saddle boundary, but with a force
of 5 is applied

Lab Book: Produce a plot of a membrane with a zero boundary condition, and force of 5
is applied. You will have to change the create matrix function.

Now lets try some larger grids. Try solving the problem for say a 40 by 40 grid or 50
by 50.

Lab Book: How long does it take to create the matrix associated with a 50 by 50 grid.
How long does it take to solve the associated equation. How big is the associated matrix.

6.6 Faster Creation of Matrix

So it is taking longer to create the matrix than to solve the matrix equation. Surely we are
doing something wrong! Well individual sparse matrix updates are very time consuming.
In the next implementation of the create matrix function we are using the diag(sparse)
functions to setup the matrix.

Load in the following new implementation of the create matrix function into SCILAB

function [A,b] = create_matrix_2(n,m)
//
// Create a matrix associated with a grid
// nodes with x and y coordinates given as
// input, connected by springs with nodes
// on the boundary set the function boundary

//
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dx = 1/(n-1);

dy = 1/(m-1);

dx2 = 1/dx"2;

dy2 = 1/dy~2;

x = 0:dx:1;

y = 0:dy:1;

Y A
// Setup Matrix

e

A = spzeros(n*m,n*m) ;

//
// Setup interior problem

//
d0 = -2x(dx2+dy2)*ones (n*m,1);

dmn = dy2*ones((m-1)*n,1)
dpn = dy2*ones((m-1)*n,1)
dml = dx2*ones(n*m-1,1)

dpl = dx2*ones(n*m-1,1)

//

// Apply Boundary condition
//

dO(n:n:n*m) = 1

do(1:n:n*m) = 1

do(1:n) = 1;

dO(n*(m-1) :n*m) = 1

dmn(1:n:n*x(m-1)) = 0
dmn(n:n:n*x(m-1)) = 0

dmn (n* (m-2) :nx(m-1)) = 0
dpn(l:n:n*(m-1)) = 0
dpn(n:n:n*(m-1)) = 0
dpn(l:n) = 0
dml(n-1:n:n*m-1) = 0

o

dmi(n:n:n*m-1) =
dmi(1:n-1) =0
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dml (n*(m-1) :n*m-1) = 0
dpl(n+l:n:n*m-1) = 0
dpl(n:n:n*m-1) = 0
dpi(1:n-1) =0
dpl(n*(m-1) :n*m-1) = 0

A = diag(sparse(d0)) + diag(sparse(dml),-1) + diag(sparse(dpl),1) + ...
diag(sparse(dmn) ,-n) + diag(sparse(dpn),n)

J e

// Setup rhs

[/=—===—m——m =

b = force*ones(n*m,1);

//

// Apply boundary condition

//

b(1l:n) = feval(x,y(1),saddle_function);

b(n*(m-1)+1:n%*m)
b(1:n:nx(m-1)+1)
b(n:n:n*m)

feval(x,y(m),saddle_function);
feval(x(1),y,saddle_function)’;
feval(x(n),y,saddle_function)’;

endfunction

Convince yourself that this code is doing the same as the previous implementation, i.e.
compare the results from the two create matrix functions.

Lab Book: Run the problem on a 50 by 50 grid. Compare the speed of this new imple-
mentation with the previous implementation. Is the code running quicker?

You can see that now the solution of the linear system is now dominating the execution
time.

6.7 Conjugate Gradient Method

We introduced iterative methods in the lectures. The conjugate method works very well for
matrices such as A. The matrix A is not actually symmetric, but as long as we ensure that
the initial guess satisfies the boundary conditions, then the matrix is essentially symmetric
with respect to the “interior” grid points.

The conjugate gradient method is not available in SCILAB by default, but it is a simple
algorithm and we can implement it via the following code (taken from “An Introduction
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to the Conjugate Gradient Method Without the Agonizing Pain”, by Jonathan Richard
Shewchuk)

function [x,i] = conjugate_gradient(A,b,x0,imax,tol,iprint)
//
// Try to solve linear equation Ax = b using
// conjugate gradient method
//
// Input
// A: matrix or function which applies a matrix, assumed symmetric
// b: right hand side
// x0: inital guess
// imax: max number of iterations
// tol: tolerance used for residual
//
// Output
// x: approximate solution
// i: number of iterations

//

i
// Check and set input arguments

nargin = argn(2)
if nargin<2
error(’need at least 2 input arguments’)
end
if nargin<3
x0 = zeros(b);
end
if nargin<4
imax = 2000;
end
if nargin<b
tol = le-8
end
if nargin<é
iprint = 0
end
function y = apply_A(x)
if (typeof(A)==’function’) then
y = A(x)
else
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y = Axx
end
endfunction

Il
N o

x0

= b - apply_A(x)
=r

rTr = r’*r

rTr0 = rTr

[o T B
|

while (i<imax & rTr>tol”2*rTr0),

q = apply_A(d)

alpha = rTr/(d’*q)

X = X + alphaxd

if modulo(i,50)==0 then
r = b - apply_A(x)

else
r = r - alphaxq

end

rTr0ld = rTr

rTr = r’*r

bt = rTr/rTr0ld

d =1 + btxd
i=1i+1
if modulo(i,iprint)==0 then
printf(’i = %g rTr = %20.15e \n’,i,rTr )
end
end

if i==imax then
warning(’max number of iterations attained’)
end
endfunction

Load this function into SCILAB and try on a small matrix and rhs such as

n=21;

B = diag(sparse(ones(n-1,1)),-1) - 2*xdiag(sparse(ones(n,1))) + ...

diag(sparse(ones(n-1,1)),1);
c = ones(n,1);
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by using the command

X = conjugate_gradient(B,c)

Well that is nice, but we can see a little more detail if we use a few more arguments,
X = conjugate_gradient(B,c,zeros(c),50,1e-9,1)

The 3rd argument provides an initial guess for the iterative scheme, the 4th gives provides
a limit on the number of iterations, the 5th a tolerance on the terminating relative residual,
and the 6th argument give the regularity of diagnostic output. The results show that the
square of the residual rTr decreases (slowly) until the 11th iteration which drops to zero.
This is typical of the method.

So finally we can use the conjugate gradient method to try to solve our membrane
problem. Our run problem function sets up the solve_equation function. To use the
conjugate gradient method set up the run_problem function to use solve_equation 2
function defined below.

function [U] = solve_equation_2(A,b)

//
// Get good initial guess, well at least one that

// satisfies BC

//

x0 =b

U = conjugate_gradient(A,b,x0,length(x0),1e-9,0)
endfunction

Lab Book: Run the membrane problem for a 50 by 50 grid, using the solve_equation_2
function. Comment on the relative speed of the new implementation of the code. Is it
better than the previous implementation. Find approximately how large a problem you
can solve in 20 seconds on your computer using the final implementation.

6.8 Faster Matrix Vector Multiplication

This actually is not the end of the story. First we can implement better methods for calcu-
lating the matrix vector multiplication (the most expensive part of the conjugate gradient
algorithm). Indeed if we are using an iterative method like the conjugate gradient method,
we only need to provide a procedure for calculating the matrix vector multiplication. So
here is yet another implementation of create_matrix procedure.
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function [A,b] = create_matrix_3(n,m)
//
// Create a matrix operator associated with a grid
// nodes with x and y coordinates given as
// input, connected by springs with nodes
// on the boundary set the function boundary

//

dx = 1/(n-1);

dy = 1/(m-1);

x = 0:dx:1;

y = 0:dy:1;

[ [=mmmmmmmm e

// Setup Matrix

// A function is being created
// which will be returned

// instead of a matrix

A
function y = A(x)

//

// Setup finite difference operator for Laplacian

//

dx = 1/(n-1);

dy = 1/(m-1);

dx2 = 1/dx"2;

dy2 = 1/dy~2;

x = matrix(x,n,m)

y =X

J=2:m-1

I =2:n-1

y(I,J) = -2.0%(dx2+dy2)*x(I,J) + dx2*x(I+1,J)
+ dx2*xx(I-1,J) + dy2*x(I,J+1) + dy2*x(I,J-1)

y = yG)
endfunction

// Setup rhs
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b = force*ones(n*m,1);

//

// Apply boundary condition

//

b(1:n) = feval(x,y(1),saddle_function);

b(n*(m-1)+1:n*m)
b(1:n:n*(m-1)+1)
b(n:n:n*m)

feval(x,y(m),saddle_function);
feval(x(1),y,saddle_function)’;
feval(x(n),y,saddle_function)’;

endfunction

In this case the procedure returns not a sparse matrix A but a procedure for apply A
to a vector.

Lab Book: Look at the new code for the create matrix procedure. Explain what the
procedure is doing. In particular explain the lines

J = 2:m-1
I = 2:n-1

y(I,J) = -2.0*%(dx2+dy2)*x(I,J) + dx2*x(I+1,J)
+ dx2*x(I-1,J) + dy2*x(I,J+1) + dy2*x(I,J-1)

Lab Book: Try this new method. How large a problem can you now solve in 20 second.
I got approximately 300 by 300, which corresponds to 90,000 unknowns and a 90,000 by
90,000 matrix!

6.9 Conclusion

Even now there is room for improvement. The iterative method can be improved using
what is called preconditioning. With these improvements it is possible to solve a 1000 by
1000 grid problem (1,000,000 unknowns) in ten seconds on a normal PC!

By the way, you might question why we need to solve 1000 by 1000 grid problems. In
geophysical situations there are often cases where we need to resolve flows over a few metres
(through faults) over regions over many kilometres, ie a range of scale over a thousand.



Chapter 7

QR Factorisation and Least Squares

7.1 Introduction

A nice way to understand (and in fact construct) many linear algebra methods is via matrix
decompositions or factorisation techniques.

For instance, Gaussian Elimination can be characteristed as an LU factorisation. In
lectures we saw how the process of Gaussian elimination can be considered as the appli-
cation of a sequence of elementary matrices which can be encoded in to a lower triangular
matrix L, and leads to an upper diagonal matrix U. SCILAB provides the command 1u to
calculate LU decompositions.

Similarly, the QR factorisation consists of applying a sequence of orthogonal transfor-
mations (usually Householder reflections), which eliminate variables, @) being the transpose
of the result of these reflections, and the R being the resulting upper triangular matrix.
QR factorisation is generally more stable than the Gaussian Elimination, but is generally
more expensive (about twice as expensive). SCILAB provides the command qr to calculate
LU decompositions.

By the way, there are many more factorisations which are useful. You should have
already studied eignevalues and eigenvectors. If a matrix has a complete set of eigenvec-
tors, then we obtain the factorisation A = VDV~ where D is a diagonal matrix of the
eigenvalues, and V' is a matrix of eigenvectors (as columns of V). SCILAB provides the
command spec to calculate eigenvalue decompositions.

Another very useful decomposition is the Singular Value Decomposition, or SVD. Here
for any matrix we can find two orthogonal bases, written as matrices U and V', such that
AV = US, where S is a diagonal matrix of non-negative values called the singular values
of the matrix. A can be decomposed, as A = USV*. SCILAB provides the command svd
to calculate singular value decompositions. The SVD is very stable, but is quite expensive,
being on average about 10-15 times more expensive than LU decomposition.

Once we have a decomposition of a matrix, we can use that to solve a matrix equation.
Suppose A = BC' and we want to solve Ax = b, then we would

1. Solve By = b.
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2. Solve Cx =y.

Of course to solve each of these steps, we should use any special properties of the B
and C' matrices to ensure efficiency and accuracy.

7.2 LU method

Lets have a look at the LU decomposition. Here is a method from generating a matrix
associated with the minimisation of curvature (elastic band).

function A = elastic(n)
A = diag(ones(n-1,1),-1) -2xdiag(ones(n,1)) + diag(ones(n-1,1),1);
endfunction

Use this function to produce a 5 by 5 matrix A. Then use the SCILAB command lu to
produce the L and U factors of A. Here is my code

[L,U] = 1u(h)

and here is the matrix I obtained

A =
- 2. 1 0 0. 0. !
! 1. -2 1 0. 0. !
! 0. 1 -2 1. 0. !
! 0. 0 1 - 2. 1. !
! 0. 0 0 1. - 2.1
and the L and U factors
U =
I - 2. 1. 0. 0. 0. !
! 0. -1.5 1. 0. 0.
! 0. 0 - 1.3333333 1. 0. !
! 0. 0 0. -1.25 1. !
! 0. 0 0. 0. -1.2 1
L =
! 1. 0. 0. 0. 0. !
I - 0.5 1. 0. 0. 0. !
! 0. - 0.6666667 1. 0. 0. !
! 0. 0. - 0.75 1. 0. !
! 0. 0. 0. - 0.8 1. !
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Notice that both of these matrices maintain the same banded structure as the original
matrix A. Notice that the inverse of A loses the banded structure. Here is the inverse

->inv(A)

ans =

I - 0.8333333 - 0.6666667 - 0.5 - 0.3333333 - 0.1666667 !
I - 0.6666667 - 1.3333333 - 1. - 0.6666667 - 0.3333333 !
I - 0.5 - 1. -1.5 -1. - 0.5 !
I - 0.3333333 - 0.6666667 - 1. - 1.3333333 - 0.6666667 !
I - 0.1666667 - 0.3333333 - 0.5 - 0.6666667 - 0.8333333 !

This is typical, and so you should normally avoid calculating inverses in preference to LU
factorisations.

Lab Book: Reproduce these results. Record your results in your lab book. Verify that
indeed A = LU (at least up to roundoff error).

Now let’s use the decomposition to solve a matrix equation. Take b= [11 ... 1]T. To
solve Ax = b we can use

z = L\b
x = U\z

or in one line
x = U\(L\b)

Actually we should use specially designed forward and backward substitution operators to
undertake the L and U solves. Unfortunately SCILAB does not provide such operators, so
for this investigation we will just use the backslash operators.

Of course, normally we would use the backslash operator just once

x = A\b

Lab Book: Use the LU decomposition to solve the equation Ax = b whereb = [123 ... n|T.

7.3 QR Factorisation

Apply the SCILAB method gr to the matrix A. The simple command is
[Q,R]=qr(A)

Here are the factors I obtained.
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R =
! 2.236068 - 1.7888544 0.4472136 0. 0. !
! 0. 1.6733201 - 1.9123658 0.5976143 0. !
! 0. 0. 1.4638501 - 1.9518001 0.6831301 !
! 0. 0. 0. 1.3540064 - 1.9694639 !
! 0. 0. 0. 0. - 0.8090398 !
Q =
I - 0.8944272 - 0.3585686 - 0.1951800 - 0.1230915 0.1348400 !
! 0.4472136 - 0.7171372 - 0.3903600 - 0.2461830 0.2696799 !
! 0. 0.5976143 - 0.5855400 - 0.3692745 0.4045199 !
! 0. 0. 0.6831301 - 0.4923660 0.5393599 !
! 0. 0. 0. 0.7385489 0.6741999 !

The R matrix is upper triangular, but the () matrix is near full. You might think it is
somewhat hard to work with. But calculate Q7Q. It is essentially the identity. This
is one of the properties of orthogonal matrices. Also calculate the 2-norm of A and R.
They should be the same. This is another property of orthogonal matrices. Application of
orthogonal matrices leaves the norm invariant.

Let’s solve Ax = b, with b = [1 1 ... 1]* using the QR factorisation. As @ is orthogonal
we can solve Qz = b by z = Q7b. Hence we can solve the equation with the code

z = R\(Q’*Db)

Lab Book: QR factorisations can also be applied to rectangular matrices. Create a random
10 by 5 matrix. Calculate the QR factorisation of this matrix. Once again verify that
A~QR, QTQ ~ I, QQT ~ I and that the norm of A and R are the same. Notice that R
contains a lot of zeros. SCILAB (and indeed most other matrix environments) provides a
method to produce a Q)R factorisation which economises on these zeros. Use the command
[Q,R] = gr(A,’e’) and investigate whether A ~ QR, QTQ ~ I, QQ" ~ I and whether
the norm of A and R are the same.

7.4 Conditioning

Random matrices are generally quite well conditioned. Matrices that occur from real
problems can often have quite large condition numbers.

Here are some functions to produce matrices somewhat related to real world problems.
Copy these into your SCILAB environment.

Here is a simple (not very efficient) function to calculate rectangular vandermonde
matrices of varying sizes. Vandermonde matrices are associated with fitting functions to
data.
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function A = vandermonde(n,m)
t = (0:1/(n-1):1)7;
A = zeros(n,m);
for j=1:m
AC:,3) = t.7(5-1);
end
endfunction

Here is the famous Hilbert matrix

function H = hilbert(n)

deff(’z = hh(i,j)’,’z = 1/(i+j-1)?)

H = feval(l:n,1:n,hh)
endfunction

Here is the elastic example used before.

function A = elastic(n)

A = diag(ones(n-1,1),-1) -2xdiag(ones(n,1)) + diag(ones(n-1,1),1);

endfunction

Here is some code to investigate the condition number of the square vandermonde

matrix over a range of sizes.

function [] = test_vandermonde(m)

data = zeros(1,m-1);

for i=1:m-1
A = vandermonde(i+1,i+1);
data(i) = cond(A);

end

scf (0)

xbasc()

xtitle(’condition VanderMonde’)
plot2d(2:m,data,style=-1)

endfunction

Here is the plot produce by the test_vandermonde function.
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condition VanderMonde
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This is actually not so useful. If we change the plot to vertical log scales we obtain:
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condition VanderMonde

and we see that the condition number of the square vanderMonde matrix increases expo-
nentially.

Lab Book: Recreate these plots and also produce the analogous plots for the Hilbert and
“Elastic” matrices. For the elastic problem, it is useful to use a log log plot. Try to estimate
the relationship of condition number versus matrix size for these matrices.

7.5 Solving Equations using Decompositions

To test efficiency of the different methods, we can estimate the number of floating point
operations, or more experimentally, we can measure the time it takes to solve a large
number of test problems.

To find some test problems, we need to find the exact solution of Ax = b for some
given right hand sides. Note that Ae, = a, where ey, is the k-th standard basis vector, and
a;, is the k-th column of A. So we have some exact solutions x.. Then we use our solution
technique to obtain an approximate solution x, and compare it to the exact solution x..
Sometimes you get unrealistic accurate results. We could of course specify a solution x,
and then calculate the rhs b = Ax,.. The trouble with this is that for ill conditioned
matrices the simple action of multiplying Ax, will introduce an error proportional to the
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condition number of the matrix. As a compromise, it may be worth using something like
x, = 1/3e; + 2/3e,, which mixes up the calculation a little.

Lab Book: Consider 10 by 10 elastic, VanderMonde, Hilbert and random matrices. For
each measure the relative size of the residual ||b — Ax,||/||b|| and the relative size of the
error ||x. —X,||/||xe|| for a test problem generated by the exact solution x, = 1/3e;+2/3e,,.
Use either the LU decomposition or the QR decomposition (results are similar). Comment
on the size of error and residual and the condition number of the matrix. Produce a table
of your results.



Chapter 8

Solving Initial Value Differential
Equations

8.1 Introduction

This tutorial is designed to familiarise you with solving ordinary differential equations
using the SCILAB procedure ode.

8.2 Scalar Ordinary Differential Equation (ODE’s)

Suppose we want to find the solution u(t) of the ordinary differential equation

du

o
This equation is a simple model for the spread of a disease. Consider a herd of P animals,
and let u(t) be the proportion of animals infected by the disease after ¢ days. Thus 1 —u(t)
is the proportion of uninfected animals. New infections occur when infected and uninfected
animals meet. The number of such meetings is proportional to u(t) (1—wu(t)). Thus a simple
model for the spread of the disease is that the new infections per day, du/dt, is proportional
u(t) (1 —u(t)). That is we obtain equation (8.1), where the constant k depends on the
density of the animals and the infectiousness of the disease. For definiteness, suppose here
P = 10000 animals and k£ = .2. Initially at time ¢t = 0 there is just one infectious animal,
and so we add the initial condition

= ku(t)(1—u(t), t>0. (8.1)

w(0) = 1/10000. (8.2)

We want to find how many individuals will be infected over the next 100 days, that is to
plot u(t) from ¢t = 0 to ¢t = 100. To solve this problem we need to define a function to
calculate the right hand side of (8.1), and then use the SCILAB program ode.

Create a SCILAB function which specifies the right hand side of the differential equation.
Make sure you get the calling sequence correct. For instance
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function udot=f(t,u)
udot = k*xux*x (1 -u);
endfunction

(Although t is not used in calculating udot, the SCILAB function ode requires the function
f to be passed to ode must have two input arguments (in the correct order). Use help ode
for more information.)

Having set up the problem, the differential equation is solved in just one SCILAB line
using ode!

0:100;

= 0.2;

ode( 1/10000, 0.0, t, f );
xbasc(); plot2d( t,u)

t=
k
u

Note that the value of k is available to ode and to £.

The function ode also has parameters which can be adjusted to control the accuracy of
the computation. Mostly, these are not necessary for just plotting the solution to ordinary
problems. It is always a good idea to check our the original solution by resolving the
problem with higher accuracy requirements. For example, we can use ode so that the
estimated absolute and relative errors are kept less than 1 x 1072, This is done with the
commands

uu = ode( 1/10000, 0.0, t, rtol=le-9, atol=le-9, f );
plot2d(t,uu,style=-1)

We immediately see that the solution computed in the first call to ode lies on top of
the more accurate solution curve. That is the two solutions coincide to graphical accuracy.
For this simple model it is possible to find an analytic formula for u(t). In fact
B 1
14 cexp(—kt)

u(t) where c¢=P —1. (8.3)

We can add this formula to the above graph as a final check.

t = 0:100 ;
c = 10000-1 ; k = .2 ;

function u=exactu(t)
u=1./ (1 + cxexp(-k*t));
endfunction

xbasc(); plot2d(t,u); fplot2d(t,exactu,style=-1 )

The exact formula gives a curve that is the same as the numerical solution. In fact the
difference between the two solutions is at most 2.5x10~7. So we can be confident in using
ode to solve the problems below.
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Exercise 4.

1. Check that (8.3) is a solution to (8.1). That is, when we differentiate this formula
for u(t) we get the right side of (8.1). And this formula satisfies (8.2)

2. From the graph of u(t), estimate how many days are needed for half the population
to be infected?

Hint: You can inspect the plot to get a solution up to the closest day. The com-
mand xgrid will make this easier to answer. You could also create a function using
the result from the ode procedure, which returns the ode solution minus 0.5 at any
particular time t. Then use £solve to solve the problem.

3. Suppose now that after the infection is noted at day t = 0, an inoculation program is
started from day 5, and 200 of the uninfected animals are inoculated per day. Aftert
days, the proportion of animals inoculated per day is 200(t—5)/10000. Here (t—5),
means max(t —5,0). These inoculated animals cannot be infected, an new infections
occur when an uninfected, un-inoculated animal meets an infected animal. Thus the
rate of increase of u s now modelled by the differential equation

du
- = ku(t) (1—wu(t)—.02(t=5)5),;

Now, how many animals are uninfected after 100 days with the inoculation program?

4. How many animals would be uninfected if only 100 animals could be inoculated each
day from day 5?2 How many animals would have been saved if 100 animals per day
were inoculated from day 07

This simple model problem also has a formula for the exact solution. However in
SCILAB it is very easy to get a numerical solution; and this can be done even in complicated
problems when there is no simple formulae for the solution. Using SCILAB we can simply
explore the model by altering the parameters and plotting the solutions!



Chapter 9

Chemical Reaction Example

9.1 Chemical Reaction Systems

Many interesting ODE’s can be constructed to describe the evolution of chemical reactions.
Suppose we have 4 chemical species A, B, C' and D. These might denote Oy, Hy, OH,
H>0 etc. We can write one reaction between these species via a chemical equation

A+B & Cc+D (9.1)

This reaction will not take place instantaneously, but will react at a rate proportional

to the concentration of the reactants A and B with a rate constant k;. Suppose we have
a second equation

A+A+C 2B (9.2)

and we suppose these two reaction equations fully specify the reactions taking place in our
system.

We can generate the evolution equations for the concentrations of chemical species as
follows

% = —ki[A][B] - 2k, [A)[A][C]
% = —k[A][B] + ka[A][A][C]
% = Ki[A)[B] - k[AJA][C]
d[D]

5 = klAlB]

where the square brackets denote concentrations.
Lets look at the first equation

d[A]

o= —hlA)B) 2k A)A)C
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The rate of reaction (9.1) will depend proportionally on [A] and [B], the constant of
proportionality given by k;. So the rate of reaction 1 will be given by k;[A][B]. Each
instance of reaction 1 will use up one unit of A. So the rate of change of concentration of
A due to reaction 1 will be equal to —k;[A][B]. The minus signifying one unit being used
up. There are similar terms in the other ODE’s corresponding to using up the species B
and creating species C' and D.

The rate of the second reaction will depend proportionally on [A], [A] again, and [C]
and so the rate of reaction (9.2) will be ko[A][A][C]. Each reaction (9.2) will use up 2
units of A, so the rate of change of concentration of A due to reaction 2 will be equal to
—2k1[A][A][C], with similar terms in the ODE’s denoting using one unit of C' and creating
one unit of B.

The creation of the differential equations can be automated given the reaction equations
and the corresponding rates. We leave it to the Chemists to give up a reasonable set of
reaction equations with corresponding rates constants.

Now lets see how we can use SCILAB to approximate the solution to this system of
ODE’s. We have 4 chemical species, so we will have a system of 4 equations. We will make
the relationship x1 « [A], 22 « [B], 23 < [C], x4 < [D].

In SciLAB we would encode the associated ode as

function dx = chemical(t,x)

f1
2

kl1xx(1)*x(2)
k2xx (1) *x (1) *x(3)

dx(1) = -f1 - 2%£f2

dx(2) = -f1 + £2
dx(3) = f1 - 2
dx(4) = f1
endfunction

(Be careful to get the t and x arguments in the correct order!)
Setting up the rate constants and an initial condition, we can obtain approximations
to the solution at the times ¢ = 0,0.001,0.002, ...0.1 using the code

k1
k2

le2
1

t =0:0.001:0.1;
x0 = [1 ;1; 0; 0];

x = ode(x0,0,t,chemical);

It is nice to produce some graphical output. I used
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xbasc ()

plot2d(t,x(1,:),style=1)
plot2d(t,x(2,:),style=2)
plot2d(t,x(3,:),style=3)
plot2d(t,x(4,:),style=4)

legends([’A’,’B’,’C’,’D’],[1 2 3 4],"ur")
xtitle(’Chemical ODE’)

to produce the plot

Chemical ODE

1.0

— A
0.9+ — 3

0.8

0.7
0.6
0.5+
0.4;
0.3+
0.2

0.1

wor—¥F———7——7—— 17—

9.2 Robertson’s Example

An idealised chemical reaction system which is often used to generate a stiff system of
ODE’s is given by the reaction equations

A2 B

B+B ¥ BycC

1.0e4

B+C — A+4+C

There are 3 chemical species and so there will be a corresponding system of 3 ODE’s mod-
elling the evolution of the concentrations of these chemicals. The choice of rate constants
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tells us that the first reaction will evolve slowly, the second reaction very fast, and the final
reaction fast.

Exercise 5.

1. Derive the system of ODE’s corresponding to Robertson’s example.

2. Use SCILAB to solve these equations with initial concentrations [A] =1, [B] = [C] =0
fort € [0,0.001]. Plot your results on the same graph using the command of the form

xbasc() ;plot2d(t’,y’,leg="AGBGC’)

I obtained the plot

1.0
0.9 7
0.8 7
0.7 7
0.6 7
0.5 7
0.4 7
0.3 7
0.2 7

0.1 7

01 T T T T T T T T T T T T T T T T T T T
0 le-4 2e-4 3e-4 4e-4 5e-4 6e-4 7e-4 8e-4 9e-4 10e-4

The concentrations of B and C are very small compared to A. It is sensible to
normalise these concentrations by the maximum value of each concentration. We can
use the max function, using the ’>c’ argument to produce a column vector containing
the maximum of each row. Ie

ymax = max(y,’c’);

The trick is now to scale each row of y by the corresponding entries of ymax. I came
up with
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yscaled = diag(1.0./ymax)*y;

Can you see what this is doing?

Now you can plot t versus yscaled with

xbasc();
plot2d(t’,yscaled’)
legends([’A’;’B’;’C’],[1;2;3])

I suggest producing a legend so that you can see which curve corresponds to which
variable. The format of the command associates a character string (such as >A’ with
a line style 1.

I now obtained the plot

Scaled Plots
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0.7 7
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0.5 7
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0.2 7

0.1 7

o

le-4 2e-4 3e-4 4e-4 5e-4 6e-4 Te-4 8e—4 9e-4 10e-4

Ow>

3. Interesting things happen for very small times as well as for much larger times. To see
these things produce approximations of the concentrations at times 2°, i = —20, ..., 10.
Plot the scaled three concentrations on the same plot using the previous scaled method.
You should use a log scale for the time axis. Use the >1n’ argument which tells plot2d
to plot the first axis using log scale and the second axis using normal scale

xbasc();
plot2d(’1n’, t’,yscaled’)
legends([’A’;’B’;’C’],[1;2;3])
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Here is the plot now

long time scaled

1.0
0.9 7
0.8 7
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0.6 7
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4. The concentrations are still in a transient state at time t = 1024. Run the cal-
culation to larger times to ascertain the long time behaviour of the system. What
concentrations do A B and C limit to?



Chapter 10

Boundary Value Problems

10.1 Introduction

This tutorial is designed to familiarise you with the shooting method for solving boundary
value problems. This is essentially a component of Heath’s computer problem 10.1. But
first we will have a look at a method for solving general equations

10.2 Plotting

Suppose we wanted to find the value of x = (x1, z3) such that

k(224 22)—2 = 0
(10.1)

kEsin(zize) = 0

for some value of k.

Perhaps the first thing we should do is plot these functions. We need to redefine the
function so that we can use the standard SCILAB plotting routines. I suggest defining two
functions for the two components of the function

function z = eqni(x,y)
z = kk(xk*k2+y**x2) - 2;
endfunction

function z = eqn2(x,y)
z = kxsin(x*y);
endfunction

We can plot the functions using the fplot3d or the fcontour2d functions. Try

k=1;
= -4:0.1:4;

™
|
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y = x5
xbasc(); fplot3d(x,y,eqn2)
Notice that we have set the value of k£ and it is being passed through to the function eqni
implicitly.

Contour plots can sometimes be easier to work with. A contour plot for the first
function can be obtained via

xbasc(); fcontour2d(x,y,eqnl,[0 5 10 20 25]);

Not that we have asked for the contour lines for 0 up to 25 in steps of 5. Make sure you
have a look at the plot.
Now let us over plot with the contours of the second function.

fcontour2d(x,y,eqn2, [0,1]);

The overall plot is quite complicated (at least to me). Perhaps you might like to plot both
functions separately to get an idea of the “shape” of both. But with both contour plots
on the same graph, use the 2d zoom facility of SCILAB to get an approximate solution (3
sig figs) of equation (10.1) (for k = 1).

10.3 Equation Solver

It is useful to automate the solution of equations. We have studied the use of Newton’e
method earlier in the course. SCILAB provides a procedure to solve general equations. The
procedure is called fsolve. This procedure requires an initial guess and the equations
written as a SCILAB function. For our problem we would produce a SCILAB function as
such

function y = f(x)

y(1) = eqni(x(1),x(2));
y(2) = eqn2(x(1),x(2));
endfunction

where the functions eqnl and eqn2 were defined in the last section. Of course you could
define the function without using eqnl and eqn2. Unfortunately the fsolve function
expects a very particular form, which is different than the calling form for the plotting
routines.

We would store this in a file and use exec to load the function. We could then solve
the equation using fsolve, as such

k=1;
[x,y] = fsolve([0;0], £f)
Does the solution provided by fsolve match the one you discovered manually?

It might be useful to get some feedback about what fsolve is doing. One way is to
provide some output from the function. Redefine the function f as such:
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function y = f(x)

y(1) = eqn1i(x(1),x(2));

y(2) = eqn2(x(1),x(2));

printf (°x(1)=Y%15e x(2)=Y%15e y(1)=%15e y(2)=%15e\n’,x(1),x(2),y(1),y(2))
endfunction

Take note of the printf function. This is the formatted print command (like the
corresponding C procedure). The formatting is accomplished using the codes like %15e
which will produce a decimal number using 15 characters.

Lab Book: Produce graphical output from your £ function, so that the values of x(1) ,x(2)
are plotted on each invocation of the function. I.e. add the command plot2d(x(1),x(2),style
= -1,rect = [-2 -2 2 2])

10.4 Two Point Boundary Problem

Consider the two-point boundary value problem
y' =10y +3y +t3, 0<t <1,

with boundary conditions
y(0)=0, y(1)=1,

We will try to use the shooting method to solve this problem.
To use the shooting method we must first be able to solve the initial value problem.
Then we must be able to test many initial conditions to find our required value.

e First setup a function which defines the differential equation using the calling se-
quence

function udot = shootode(t,u)

e Check your function by solving the ode with initial conditions y(0) = 0, ¢'(0) = 1.

e Plot the solution. Mine looks like the following
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fshoot(1)

e What is the value of y at 17 (I got about 5.1).

e Take your ode solver (with your plotting routines) and produce a function with calling
sequence

function y = fshoot(s)

which takes an initial value for the slope at 0 and returns the value of y(1) — 1. For
instance, fshoot (1.0) should return approximately 4.1.

e Finally use the fsolve function to find an approximation to the boundary value
problem.

Here is the graphical result I obtained when running fsolve(1,fshoot).
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10.5 Exercises
Solve the two-point boundary value problem

y' =8y  +3y—10, 0<t<1,

with boundary conditions
y(0)=0, y(1) =2
Hint: You might have to hunt for a good starting value for the slope, somewhere

between 2 and 3.9.
What is the slope at 0 for the function which solve this boundary value problem?



Chapter 11

Heat and Wave Equations

11.1 Introduction

This tutorial is designed to familiarise you with some methods for solving time dependent
partial differential equations. In particular we will implement some of the finite difference
methods introduced in lectures to solve the Heat equation and the Wave equation. In this
tutorial I will take you through the development of a series of SCILAB functions which will
implement the forward and backward Euler method for the Heat equation and the leap
frog method for the wave equation.

To save typing you can cut some of the code described in this tutorial into a file on
your machine which you can run with SciLAB. I will assume that you use a file named
pde.sce into which you put all your code.

To recall the Heat equation is

U = CUgy 0<x<1, t>20

u(0,z) = f(z) u(t,0) = « u(t,1) =4

and the Wave equation is
Upp = ClUgy 0<z<l1 t=>0

w(0,z) = f(z)  w(0,z) = g(x)
u(t,0) = « u(t,1) =p5.

11.2 Heat Equation

We will first concentrate on the Heat equation. The simplest finite difference method is
based on Euler’s method and is given as

k+1 _ ok ko, k ok
™ =+ S (w205 )
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uj=flz;)  w=a  uy=p
where uf represents an approximate of the solution u(kAt, jAx). Here we have discretised
the interval [0, 1] into n + 1 points x; = jAz where Az = 1/n and the time interval into
discrete times t, = kAt.
To implement this time stepping method we need a vector to contain the u values at
any particular time. Indeed it is useful to have another vector for the previous time. As
input to our heat function we specify

1. the number of subintervals n in the  dimension,
2. the size of the time step dt,

3. a function f defining the initial conditions,

4. the left boundary value alpha and

5. the right boundary value beta.

Our SciLAB function will have the following basic structure
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// The main time loop

closeMyplot ()

endfunction

Cut and paste this into your SCILAB file heat . sce.
Now let us expand the code. First, let us look at setting up parameters, as this allows
us to define some variables for subsequent use. I chose the following parameters

/)=
// Setup parameters

[/—=mmmm e
c =1.0;

dx = 1/n;

lambda = dt/dx"2x*c;

X (0:dx:1)7;
t = 0;

Note that I am using the comment lines to help you place the code correctly.

I needed c to define the constant in the heat equation, dx is obvious, lambda is a useful
combination of parameters that occurs in the updating of the solution vector (by the way,
the dt is being passed in so that you can play with changing it to test stability). I have
created an x vector so that I can plot our result x versus u. A variable for time t is useful
for the main time loop. Cut and Paste this code into your file pde.sce in the initial part
of the function.

The initial condition will be given by the value of a function f at the x values. It turns
out that we also need a second u vector ul which we create at this point. We simply use

A
// Setup initial conditions
[/==mmmmm e
u0 = f(x);

ul = zeros(u0);

We will need to define a function f. Lets do something simple like a sin curve. I used

function u=fsin(x)
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k=1
u = sin(%pixk*x)

endfunction
Put this in the file pde.sce file.

The boundary conditions can be simply set to a at the left hand end of u0 and 3 at
the right hand end.

[/=—=mmmm e
// Setup Boundary conditions
A
u0(1) = alpha;
u0($) = beta;

In most simulations it is useful to plot out results. This is particularly useful when
coding up a method as it often points to errors in the code. So lets plot the initial
condition. I suggest something like

myplot (x,u0)

The xselect () will bring the graphics window to the front and the myplot function is
just a function to plot x versus u vectors. Copy this code to the correct position within
your file.

Now we also have to define our plotting routine. I used

function []=initMyplot()
//
// Setup pixmap, this is good for animations

//

xselect ()
f=gcfO;
f.pixmap=’on’

endfunction
function []=closeMyplot()

//
// Turn off pixmap mode
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//
f=gcf O ;
f.pixmap=’off’

endfunction
function []=myplot(x,u)

xbasc();
plot2d(x,u,rect=[0,-1,1,1]);
xstring(0.9,0.9, time: *+string(t));
show_pixmap ()

endfunction

The main part of this function is just the standard plot2d command. I have added
show_pixmap() to make the plots look nicer when we have our time evolution working.

Lets try our code. Save your file and in the SCILAB command window load in the
functions and run the heat function.

n=20; heat(n,0.5/n"2,fsin,0,-1)

The right boundary condition doesn’t match up with the initial conditions. We could
run our method with this incompatibility, but let’s fix up the boundary conditions. With
new boundary conditions try

n=20; heat(n,0.5/n"2,fsin,0,0)

Nothing happens.
Now we can go back the code and add in the time evolution part. We need a loop, we
can use a for loop but I like using a while loop based on time. I.e. I suggest using

A Nttt
// The main time loop
A
while t<1
t=t+dt
et
// Update the solution vector
[/—=mmmm e

myplot (x,u0)
end
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This loop is a little incorrect, in that it may overshoot the final time by dt. Not to
worry. The main thing now is how to update the solution vector. The most obvious way
is to use a for loop to implement the finite difference update

w1 _ ok AL k| .k
™ =+ S (ug = 2uf )

The ué“ values will be stored in u0 and the new values uﬁ-”“ in the vector ul. Once the

update is completed we will over write u0 with the new ul. The code is

R
// Update the solution vector
[/——=mmm e
for j=2:n

ul(j) = (1-2+lambda)*u0(j)

+ lambda*u0(j+1) + lambda*uO(j-1);

end
u0 = ul;

It is always important to get the range of j correct. We only need to work with the
interior points. There are actually n + 1 entries in u0 and ul and so the range j=2:n
corresponds to interior points.

An alternative method to the for loop is to use the array notation in SCILAB

ul(2:$-1) = (1-2*lambda)*u0(2:$-1)
+ lambda*xu0(3:$) + lambda*uO(1:$-2);
u0 = ul;

This second method will be more efficient in SCILAB though the for method is closer
to what you would use in C or FORTRAN.

Use the first method initially and change over to the second if the evolution seems slow.
As we will be plotting the solution for every iteration the overall speed of the method will be
slow anyway. The array method becomes more important for higher dimensional problems.

Lets see if our method works. Add in the time loop code, load in the code with exec
and run the heat command again. You might like to increase the number of grid points
to say 100.

To stop the evolution you can use the Control menu with the pause, resume and abort
commands.

Lets try another initial condition. Go back to your code and add the following function
to your utility file.
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This is a solution of the Heat equation with the boundary conditions o = 0.5 and
[ = —0.5. The exact solution to the heat equation with this set of boundary conditions is
the straight line between these two points. Let’s check how our solver works.

exec heat.sce;
n=100;heat(n,0.5/n"2,fline,0.5,-0.5)

Why is the solution changing? Go back to your code and find the bug and fix it so that
the boundary condition is set properly.

11.3 Stability of the Method

Our analysis of the method tells us that we need At < Az—‘f for stability. Let’s see what
happens if we go over this constraint. Try

n=100; heat(n,0.52/n"2,fsin,0.0,0.0)

After some time you should see instabilities arising. You can use entrC to interrupt the
code and resume to start it up again.

11.4 Wave Equation

Let’s quickly produce an implementation of the leap frog method for the wave equation.
We need to implement the algorithm
A2,

o,k k=1 Lk k
—2uj u; +c—(uj+1 uj+uj_1)

k+1
U -
Ax?

J

We will use three vectors u2 to hold u?“, ul to hold u;“ and u0 to hold uf‘l. The
structure is similar to that for the heat equation.
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// Initialise plotting

[/—=mmmm e
initMyplot ()
/)=
// Setup parameters

A it
c =1.0;

dx = 1/n;

lambda = dt~2/dx"2*c;

// Setup initial and
// boundary conditions

u0 = f(x);
u0(1) = alpha; u0($) = beta;

ul = zeros(u0);
if (g==1) then
ul(2:$-1) = u0(1:$-2);
elseif (g==-1) then
ul(2:$-1) = u0(3:9);
else
ul(2:$-1) = 0.5%(u0(1:$-2)+u0(3:$));
end

ul(1) = alpha; ul($) = beta;
u2 = zeros(uo0);

u2(1) = alpha; u2($) = beta;
[/—————
// Plot the initial conditions
[/—————— e
xselect ()

myplot (x,u0)
myplot(x,ul)
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// The main time loop

[ [ ===
while t<20

t=t+dt;

/[ == mm

// Update the solution vector

Jfmmm

for j=2:n

u2(j) = (2-2*lambda)*ul(j) - u0(j)
+ lambda*ul(j+1) + lambdaxul(j-1);

end

ulO=ul;

ul=u2;

myplot (x,u2)
end
[ [ ===
// Close
T
closeMyplot ()
endfunction
e

11.5 Experimentation

We can use the initial conditions for u that we used for the heat equation.
Add in the code in the previous subsection to a wave. sce file. Load in the new functions
using exec. Now play around with the code. For instance try

n=100; wave(n,1/n,fsin,0,0,0)
Hopefully you will see an “oscillating string”.

Lets try a different initial condition, A bump in the middle of the string.

function u = fbump(x)

c =0.5; w
cl = c-w;
cr = ctw;

0.125;
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u = bool2s(x>cl & x<=cr)

endfunction

See how we can use comparisons to create interesting functions.
Now try out this initial condition

n=100; wave(n,1/n,fbump,0,0,0)

It looks cool as the disturbance reflects off the boundaries. It is amazing, we are actually
getting the exact solution.
You can get the bump to move either to the right or left using the g argument. Try

n=100; wave(n,1/n,fbump,1,0,0)

and

n=100; wave(n,1/n,fbump,-1,0,0)

11.6 Stability

Try testing the stability of the method for slightly larger timesteps. For even slightly larger
timesteps than 1/n you should see growing modes in the solution, especially if you use the
bump as an initial condition. The effect is not seen so quickly if you use smoother initial
conditions.

11.7 Exercises

1. You might like to play with a solver for the heat equation which uses the implicit
Euler method. Here is the code



ANU Computational Teaching Modules, Scilab Tutorials

92

c=1.0;
dx = 1/n;
lambda = dt/dx"2x*c;

x = (0:dx:1)7;
t=0;

// Call f to setup initial
// conditions.

// Setup the matrix A as a
// sparse matrix

A = (1+2xlambda)*diag(sparse(ones(n-1,1)))
-lambda*diag(sparse(ones(n-2,1)),-1)
-lambda*diag(sparse(ones(n-2,1)),1);

[/—=—mmmmmm e
// Setup Boundary conditions
A N
u0(1) = alpha

u0($) = beta

bc = zeros(n-1,1)

bc(1) = lambda

bc($) = lambda

Y R R S
// Plot the initial conditions
R
xselect ()

myplot (x,u0)

e
// The main time loop
[/==mmmmm e
while t<20

t = t+dt
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bc = u0(2:$-1);

bc(1) = bec(1) + u0(1)*lambda
bc($) = bc($) + u0($)*lambda
u0(2:$-1) = A\bc

myplot (x,u0)

closeMyplot ()

endfunction

Try

n=100; iheat(n,1/n,fsin,0,0)
Try

n=100; iheat(n,1/n,fbump,0,0)

You might even like to try larger values of n to slow down the evolution!

2. Use the code for heat and iheat to produce a program that solves the heat equation
using the Crank Nicolson method. Try a smooth initial condition like fsin and a
rough initial condition like fbump. Something strange happens with the rough initial
condition.

You might like to experiment with Crank Nicolson using £sin, but with progressively
high frequencies. Can you make a conjecture about the relative efficiency of Crank
Nicolson to damp out errors at different frequencies. How does this explain the
observed behaviour of Crank Nicolson method on the fbump initial data.



