
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 7, NO. 6, JUNE 1988 723

Multilevel Logic Minimization Using Implicit Don’t
Cares

KAREN A. BARTLETT, ROBERT K. BRAYTON, FELLOW, IEEE, GARY D. HACHTEL, FELLOW, IEEE,
REILY M. JACOBY, CHRISTOPHER R. MORRISON, RICHARD L. RUDELL,

ALBERT0 SANGIOVANNI-VINCENTELLI, FELLOW, IEEE, AND ALBERT R. WANG

Abstract-This paper describes a new approach for the minimization
of multilevel logic circuits. We define a multilevel representation of a
block of combinational logic called a Boolean network. We propose a
procedure, ESPRESSO-MLD, to transform a given Boolean network
into a prime, irredundant, and “R-minimal” form. This procedure
rests on the extension of the notions of primality and irredundancy,
previously used only for two-level logic minimization, to combinational
multilevel logic circuits. We introduce the new concept of R-minimal-
ity, which implies minimality with respect to cube reshaping, and dem-
onstrate the crucial role played by this concept in multilevel minimi-
zation. We give theorems which prove the correctness of the proposed
procedure. Finally, we show that prime and irredundant multilevel
logic circuits are 100-percent testable for input and output single stuck
faults, and that these tests are provided as a by-product of the mini-
mization.

I. INTRODUCTION
N THIS PAPER an “efficient” procedures is presented I for obtaining high-quality heuristic multilevel logic

minimization results for a given logic network and mak-
ing it much more testable than merely 100-percent test-
able for the conventional input and output single stuck
faults. The approach is based on determining the com-
plete don’t care set for each 2-level function embedded in
a network of such functions. Once this is done, a 2-level
minimizer can be used to minimize the subfunction. The
high degree of testability achieved by this approach re-
quires no separate test generation processing, since all
tests are produced as a by-product of well-known 2-level
minimization procedures.

We use the term “efficient” advisedly. It is clear that
all procedures for reducing either two-level or multilevel
Boolean networks into prime and irredundant form must

Manuscript received December 8, 1986; revised November 17, 1987.
This work was supported in part by the National Science Foundation under
Grant NSF DMC-8419744, by the General Electric Company, and by the
IBM Corporation. The review of this paper was arranged by A. J. Strojwas,
Editor.

K. A. Bartlett was with the University of Colorado at Boulder, Boulder,
CO. She is now at Seattle Silicon Technology, Inc., Bellevue, WA 98005.

R. K . Brayton was with IBM T. J. Watson Research Center, Yorktown
Heights, NY. He is now with the Department of Electrical Engineering
and Computer Sciences, University of California, Berkeley, CA 94720.

G. D. Hachtel, R. M. Jacoby, and C. R. Morrison are with the De-
partments of Electrical and Computer Engineering and Computer Science,
University of Colorado at Boulder, Campus Box 425, Boulder, CO 80309.

R. L. Rudell, A. Sangiovanni-Vincentelli, and A. Wang are with the
Department of Electrical Engineering and Computer Sciences, University
of California, Berkeley, CA 94720

IEEE Log Number 8719390.

be NP-complete or co-NP-complete (i .e . , all procedures
have O(2“) complexity). But given this ominous sign of
intractability, fairly large Boolean networks may yet be
minimized (up to 60 inputs at the time of this writing) on
available workstation size computers. In this context we
use “efficient” only in comparison to the trivial approach
of iteratively calling an automatic test generation tool and
modifying the network by hand each time a nontestable
fault is discovered (cf. Section VI-B below). Here the
“efficiency” of the presented procedures is derived from
the application of two-level logic minimization proce-
dures of proven efficiency to the multilevel case (cf. the
discussion at the beginning of Section 111). We expect that
these procedures will excel in applications where indi-
vidual nodes of the Boolean may have large sum-of-prod-
ucts representations.

The subject of 2-level logic minimization is well de-
veloped and well understood [5]. We know exact tech-
niques which provide minimum representations of the
given logic (cf. [23], [l l] , [28]). We also have seen two
generations of programs for generating near minimum
logic representations (cf. SHRINK [25], MINI [20], ES-
PRESSO-I1 [7], ESPRESSO-IIC [28], ESPRESSO-MV
[29]). We also know how to determine if two functions
are equivalent and when we have irredundant logic (cf.
[25], [30], [lS]). These notions have been extended to
multi-output functions, and functions of multi-valued
variables [20], [29]. Significant progress has been made
on the state-assignment problem and other encoding prob-
lems using two-level logic [13]. In short, this is a well-
developed science.

In contrast, multilevel minimization is less structured,
more difficult, and relatively new. A worthwhile long-
term goal is to bring understanding of this subject up to
the level of science currently established for two-level
minimization. Multilevel minimization as a science suf-
fers from the same things that make it attractive for im-
plementing logic, namely, it is very flexible. Hence, the
problems are not so well defined. In contrast, for two-
level minimization, we often have in mind a PLA imple-
mentation and, therefore, the minimization problem (i.e.,
minimize the number of product terms) can be abstracted
and made largely independent of the technology of the
implementation.

Multilevel synthesis has the advantage over PLA syn-

0278-0070/88/0600-0723$01 .OO O 1988 IEEE

-
1

~~ --
I - - I

124 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 7 . NO. 6. JUNE 1988

thesis in that it is good for representing and implementing
any type of logic. Typically, logic has been divided into
two groups, control and data-flow logic, with control logic
perceived as suitable for PLA implementation while data-
flow usually requires multilevel logic (sometimes called
random logic). This sometimes forces an unnatural de-
composition, with the control logic made by PLA gener-
ators and the data-flow hand designed or obtained from
parameterized libraries. Multilevel logic is suitable for all
types of logic, and automatic and optimal multilevel logic
synthesis forces no such dichotomy on the user. In many
applications it is more suitable in fact to mix the two types
of logic, for example, for more optimal logic (i.e., by
capturing mutual don’t care situations), because of layout
considerations, or for easier specification at the functional
level.

Historically, the literature on multilevel minimization
consists mainly of results on factoring (i.e., decompos-
ing) a single Boolean function [22], [9], [4]. Emphasis in
the present paper is on optimizing a given (i.e., already
decomposed) structure. Since multilevel logic is more dif-
ficult to optimize, most of the designs involving multi-
level logic have been carried out by hand, using a “bag
of tricks.” Recently, several approaches to automatic
multilevel logic optimization have been proposed and have
found application in a variety of technologies [12], [6],
[17], [14], [21]. In all these approaches, emphasis has
been placed on efficient decomposition and factorization
techniques which create a certain multilevel logic struc-
ture, which in this paper we call a Boolean network. Cre-
ation of this structure establishes the overall architecture
of the logic to be implemented, and roughly establishes
the final point to be reached on the area-delay tradeoff
curve; it has been shown in [2] that this process alone
seldom comes close to realizing the full benefits of min-
imization. However, two major tasks still need to be ac-
complished before the full potential of a given decompo-
sition may be reached: a) making the Boolean network
minimal with respect to its own intrinsic structure (i.e.,
finding an optimal point on the area/delay tradeoff curve)
and b) making it testable. Fortunately these objectives are
not mutually exclusive, and in fact are profoundly related
and can be simultaneously realized.

The connection between logic minimization and test
generation is well known [27], [3 I] , [26], but has not been
systematically investigated. Even modem books on mul-
tilevel circuit design [15] and on test generation and de-
sign for testability [16] contain no mention of this rela-
tionship. The connection rests on the simple observation
that the absence of a test is associated with redundancy in
the Boolean network. In 2-level logic the sources of re-
dundancy are well understood and efficient algorithms are
available for making a 2-level representation of an incom-
pletely specified logic function prime and irredundant.
However, the equivalent concepts for multilevel represen-
tations have not been fully developed, and only the D-
algorithm and its variants [16], [24], [3] have been used
to identify and remove redundancy. These algorithms

often incur great computational expense. An efficient al-
gorithm is badly needed since none of the factorization
and decomposition techniques yet proposed is guaranteed
to produce irredundant logic. Such an algorithm is the ob-
jective of our research, and would have great potential
impact because of the testability requirement.

We propose in this paper a don’t care algorithm for
making a Boolean network prime, irredundant, and R-
minimal (this last property is explained below). Further,
among different possible prime and irredundant Boolean
network representations of a given logic function, the pro-
posed approach utilizes two techniques to choose a su-
perior one. These techniques are: 1) utilization of the EX-
PAND and IRREDUNDANT-COVER heuristics of the
ESPRESSO-I1 2-level logic minimizer, and 2) develop-
ment of ESPRESSO’S REDUCE algorithm (which is a
limited form of the powerful but expensive decomposition
technique known as Boolean division [6]) to make the
Boolean network R-minimal. Further, we shall show that
primality can be regarded as a special type of irredun-
dancy, and that prime and irredundant Boolean networks
are 100-percent testable for the usual single stuck faults,
as well as for other types of “internal” stuck faults. Thus
we believe that the networks produced by our procedures
are the first to be synthesized with guaranteed 100-percent
testability, as well as minimality comparable to that avail-
able with state-of-the-art 2-level minimizers. For exam-
ple, the work of [26], although based on the D-algorithm,
did not claim complete testability, and was designed for
the 2-level case. Even if that approach were extended to
the multilevel case, it would not be able to promote a gen-
eral Boolean network to prime, irredundant, and R-mini-
mal status.

Briefly stated, R-minimality means that no one of the
individual 2-level functions in the Boolean network can
be reexpressed in terms of one or more of the others to
map the given prime and irredundant Boolean network into
another one with less logic cost. This important point is
illustrated in Fig. 1, which shows 4 equivalent Boolean
networks. The network of Fig.](a) has 3 nodes (gates,
functions), and is neither prime nor irredundant. Node F3
does not have tests for the following input stuck-at faults:
xI, and x 2 stuck-at-1 and y 2 stuck-at 0 (at the inputs of
F3). The equivalent Boolean network of Fig. l(b) is prime,
irredundant, and 100-percent testable and requires 9 liter-
als and 5 product terms. It is not R-minimal. The equiv-
alent network of Fig. l(c) is similarly prime, irredundant,
and testable but, by virtue of a call to REDUCE, is R-
minimal, and requires only 2 nodes, 5 literals and 3 prod-
uct terms. This example, as well as the concept of R-min-
imality, will be examined more closely in Section I11 be-
low.

We further show that the problem of transforming a
given Boolean network into prime, irredundant, and R-
minimal form can be reduced to that of solving the same
problem on a sequence of 2-level, single-output represen-
tations of the incompletely specified logic functions real-
ized at each node of the Boolean network. This is achieved

1 1

BARTLETT er U / . : MULTILEVEL LOGIC MINIMIZATION 125

t

(C) (4
Defining equations fur q’ Defining equation7 for q”’

DXI = DX2 = 0 D X , = x , D X 2 = r 2
F,’=r,r2 + y ,
F ~ ’ = x I Q x z F ~ ” ’ = x , + x I
F < = X , X z Prime. Irrcdundanl. 100% Tcruhlc
Prmc. I r rcdunbnt and 100% Tcslablc. and R~hl in imal (lowcr cos1 h a t q<)

F ,”’ = j 2

Fig. 1. Progressively optimized Boolean networks.

by determining a representation of the don’t care set for
each of these incompletely specified functions.

Our approach is rigorous in the sense that we prove that
at the end of the proposed procedure, the Boolean net-
work produced is definitely prime, irredundant, and prob-
ably R-minimal. This network is not only 100-percent
testable, but the stuck fault test vectors “fall out” as a
straightforward by-product of the aforementioned min-
imization of the component 2-level functions.

The sequel begins in Section I1 with a discussion of
basic definitions and background which focuses mainly on
the Boolean network concept. In Section I11 we introduce
the topic of multilevel logic minimization and discuss an
example in detail. Section I11 gives a characterization of
the don’t care sets, shows how to construct them, and
proves that this construction is correct. Section IV dis-
cusses the proposed procedure, which we call ESPRES-
SO-MLD (ML is for MultiLevel). In Section V we dis-
cuss some experimental results, and in Section VI we
present our testability results and discuss, in detail, the
connection between multilevel logic minimization and
testability. In Section VII, we present conclusions and
discuss the prospects for future research.

11. BACKGROUND AND BASIC DEFINITIONS
The primary object in our approach to multilevel logic

optimization is a Boolean network, defined formally be-
low, which is a technology-independent multilevel struc-
ture for representing an incompletely specijied logic func-
tion [5] . The Boolean network may be regarded as an

abstraction of an interconnected set of logic gates, as
might be specified by a netlist of standard cells. Consid-
ered in isolation, each gate in this network realizes a com-
pletely specified logic function, but in the context of the
network, it realizes an incompletely specified subfunc-
tion. Each interconnection represents a signal net associ-
ated with the output of one of the gates. Before formally
defining a Boolean network, we briefly introduce the con-
cepts of a) completely and incompletely specified Boolean
functions and b) their representations.

An incompletely specijied Boolean function (f, d, r) is
a set of 3 completely specijiedfunctions f : B‘ -+ B (the on
set), d : B‘ -+ B (the don’t care set), and r : B‘ + B (the
off set). The minterms off, d , and r completely partition
the vertices of the Boolean t-cube B‘. Here f may be
thought of as a function, f(U) , of a t-dimensional vector
U = (u l , v2 , * , U,). A simple incompletely specified
logic function is illustrated in Fig. 2. In this example U

= (u I , v 2 , u 3) , t = 3 , a n d f (v) = 1 for U E (000, 101,
010, l l l } , e lsef(v) = O ; d (v) = 1 f o r v E { 100, l lO},
else 0; and r (u) = 1 for U E (001, 011 } , else 0. An
incompletely specific logic function reduces to a com-
pletely specified function when d = 0, i.e., there is no
don’t care set.

Note that a completely specified function f (U) may be
independent of certain of the U , , and this fact is usually
reflected in the selection of a representation F o f f (U) .

The variables explicitly represented in F are called the
support of F. One representation o f f i s the sum of prod-
ucts form, e.g.,

F = ~ 1 Z 3 + 5 1 ~ 3 + E 2 + ~2

which is also called the disjunctive normal form. Note
that here the support of F is { u l , u2, u3 }, and that a vari-
able which a function does not depend on, like o2 in the
above example, may appear explicitly in the support of
the function. Other representations are possible and sig-
nificant, e.g., conjunctive form or factored form [22].
However, in this paper we use disjunctive form since we
rely heavily on 2-level, sum-of-products-based logic min-
imization procedures such as ESPRESSO-I1 as subpro-
cedures in our approach to multilevel logic minimization.

Product terms like v,V3 and z / I ~ 3 will be called cubes
in the sequel. Each cube consists of a set of literals, and
each literal appears in one of the two forms U , or 3,. If
‘ ‘ U , ” appears it stands for the predicate “ul = 1,” and if
U , appears it stands for the predicate “ U , = 0.” Thus the
cube u I V ~ stands for the conjunction of predicates ul = 1
and v3 = 0. A cube with fewer literals has, of course,
more vertices on the Boolean t-cube. In this sense we can
view the cube vIV3 as the intersection of the subcubes
(half spaces of the Boolean t-cube) u1 = 1 and u3 = 0
(cf. Fig. 2, in which the dimension of the Boolean t-cube
is t = 3).

-

Dejinition 1 (Boolean Networks)
As illustrated in Fig. 3 , a Boolean network, 7, is a pair

(F , P O) , w h e r e F = { F , , j = 1 , 2 , e - - , m } i s a s e t o f
m given representations of the on setsf, of incompletely

726 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 7, NO. 6 . JUNE 1988

Since 7 is completely determined by the pair (F , P O) ,
we write q = (F , PO) . However, 7 has further structure,
determined by the support sets SUPP (F,) of the represen-
tations, 4 . These sets determine the structure of a di-
rected graph, G = (N, E), with nodes

N = { 1 , 2 , , m , m + 1, , t }
~ r n I

t = I U S U P P (F ,) / > m.
;= 1

With each node i E N, we associate a logic variable U , .

With the first m nodes of N we associate the representation
F, and its corresponding variable y,, so that U , = y,, i =

1 , 2, * * , m. (This duplication of notation is quite useful
in the sequel). However, no F, is associated with the last
n = t - m logic variables in the vector U . Instead, these
nodes are identified with primary inputs of 7 , and are as-
sociated with duplicate logic variables PI = { x l , x2,
* -

* , n. Note that
the vector U can be viewed as the catenation v = (y, x) .

For each node j E N, we define the fan-in set (for short
fan-in) FZ,, as follows. I f j I m (intermediate variables),
FZ, = { i 1 U , E SUPP (F,) } , but i f j > m (primary inputs)
FZ, = 0. Thus the primary input nodes are terminal nodes
of the directed graph G. The edge set E of G contains
directed edge (i, j) if node i is in the fan-in of node j,
i.e., i E FZ,. Then we may define the fan-out, FO,, of node
j to be the set of all nodes i E N for which there is an edge
(j , i) E E. Similarly, we define the transitive fan-out,
TFO,, to be the set of all nodes i E N such that there exists
a (directed) path f r o m j to i in G, and the transitivefan-
in, TFZ,, to be the set of all nodes i E N for which there
exists a path from i to j in G. By convention, j E TFO,,

It is important to note that although 4 depends explic-
itly only on the variables vk E S U P P (F ,) , we may for-
mally view each F, as a function of the entire vector U =
(y, x) (recognizing, of course, that& may be functionally
independent of many of the vk). Thus we may write

F=XIX3+x,x3 0 = O N = l

, x,}. Thus U , + , = x, i = 1 , 2, r1 =oFF=o R = X , x ,
L J

=DON’TCARE =Oor 1 D=XlX3

Fig 2 . Incompletely specified Boolean function.

Pnmary ouiputs Po = (1,2,31

lntcrmcdmcs I V = (1.2.3.4.5 6)

but j TFZ,. 0

A (?) /j Rimarylnpuls PI= ~7.8,9,10,11,12,131

m = 6 = 1 I V I
n = 7 = I P I I

FI B m + n --f B
y I =FICy,x) l<j<rn

vI =y, l<j<m
v,+, = X I l<J<n

Fig. 3 A multilevel Boolean network

specified functions (&, d,, r ,) , j = 1 , 2, , m. With
each F, is associated a “local output” logic variable y,,
in the set ZV = { yI , y 2 , * , y,}, which we call the
intermediate variable set. The specified primary output
set, PO E { 1 , 2, . . * , m } , identifies the subset { y, I i E
P O } G ZV of the outputs of the F, as observable primary
outputs of the Boolean network. It is convenient to refer
to this subset as the primary output vector z , defined so
t h a t z k = y p o (k) , k = 1 , 2 , ’ * . , p , P = [P O I .

= yj = = 4 (y , .)
= F , (y (x) , x) , j = 1 , 2 , * . . , m (2.1)

as the basic constitutive relations of 7 . Note that as indi-
cated in the last identity, if (2.1) is satisfied f o r j = 1 , 2,
. . . , m, then the solution vector v (x) = (y (x) , x) is the
vector of values appearing at the nodes of the Boolean
network in response to the primary input vector x. In par-
ticular, z(x) represents the values at the primary outputs
of 7 in response to x, i.e., the same values that would
have been obtained by logic simulation of the vector x.
Thus given that (2.1) is satisfied, z(x) represents the IO
(input/output) map of 7 .

Thus a Boolean network 7 is a representation of a set
of incompletely specified functions, (f (i) , d (i) , r (i)),
one for each primary output z , (x) . Thus z , (x) can be
regarded as the “IO map” from PI to PO, of the Boolean
network 7 . A representation, OX,, of the completely spec-

BARTLETT et al. : MULTILEVEL LOGIC MINIMIZATION 121

ified “don’t care” function d (i) must come from the sys-
tem designer. We refer to OX, as the external don’t care
set, which arises from two phenomena. First, for a par-
ticular design the designer may decree that a particular
primary input vector x E B“ will never occur. The vector
x constitutes a don’t care minterm, and such minterms are
don’t care for all primary outputs. The set of all such min-
terms is labeled DXP. Second, the designer may state that
for any of the outputs z,, i E PO, the value of zi will not
be used for a set of primary input vectors (minterms) in
the set DXO,. Thus for each primary output the total ex-
ternal don’t care set can be written

D X ~ = DXP + D X O ~ , i = I , 2, . . - , p = I PO I .
(2 .2)

Equation (2.2) gives a representation of the completely
specified functions d (i) , i = 1, 2 , * , p (don’t care
sets) associated with the primary outputs of a Boolean net-
work. A principal objective of the sequel is to identify
representations of the analogous don’t care sets for each
of the incompletely specified functions associated with the
intermediate variables of a given Boolean network (and
their corresponding internal nodes).

A key concept in logic optimization is that of Boolean
equivalence. In the multilevel context, we wish to estab-
lish when a given Boolean network, 7, can be replaced by
another one, q ’ , with an equivalent IO map, z ’ (x) =
z(x). That is, the relation between primary inputs and
primary outputs is preserved. Thus 7’ represents the same
set of incompletely specified functions (f (i), d (i),
r(i)), v i E PO.

Dejinition 2 (Equivalence)
Boolean networks 7 = (F , P O) and 7’ = (F ’ , PO‘)

are said to be equivalent (written 17 = 7’) if there exists
a permutation q of { 1, 2, * - , p } such that for each
primary output z : (x) in PO‘, z : (x) = z q (,) (x) for all x

The permutation, q , in Definition 2 is needed to identify
the proper correspondence between the primary outputs
of the two Boolean networks, which may be very different
structurally. For simplicity, we assume, without loss of
generality, that q is the identity permutation.

We have, in separate research, demonstrated that a more
general definition of equivalence can be stated, but this
requires more information about the external environment
than just the external single-output don’t care set DX, for
i E PO. For example, the external environment may have
outputs i a n d j connected only to the inputs of an exclusive
or gate, in which case the environment would be unable
to distinguish between outputs y, = 1, y, = 0, and y, =
0, y, = 1. We will treat this more general definition of
the concept of don’t cares in a later paper. For now, we
observe that this generalization will enable us to handle
Boolean networks with nodes having multiple-output
Boolean functions rather than just single-output Boolean
functions.

Note that Definition 2 requires only that the primary

$ DXq(1,. 0

outputs of two Boolean networks match for each care in-
put vector. In particular, i t is not necessary to have iden-
tity or even correspondence between the intermediate vari-
ables of the two networks. For example, a 4-level net-
work could be equivalent to a 2-level network. The 2-
level network specified by the following equations is
equivalent to those of Fig. 1:

FI = ~ 1 . ~ 2 + 51x2 (2.3a)

F2 = ~ 1 x 2 + 51x2. (2.3b)

The task of minimizing a Boolean network 17 consists
of iteratively transforming 7 into an equivalent network
7’ where 7’ is smaller than 7 in some sense. Two prop-
erties of minimality, similar to those for the classical 2-
level case, are especially relevant to the multilevel case
(since Boolean networks having these properties are
shown below to be 100-percent testable for stuck faults).

Dejinition 3 (Prime and Irredundant Boolean Net-
works)

Given a Boolean network 7 = (F , P O) , a cube c of the
2-level representation of F, is prime if no literal of c can
be removed without causing the resulting network 17’ to
be not equivalent to 7. In more formal terms, 7’ = (F ’ ,
P O) is a Boolean network for which FJ’ = F,, V j # i and
F,’ = (F, - { c }) U c’, where c’ is c with one of its
literals removed. Similarly, a cube c of F, is irredundant
if c cannot be removed from the representation of F, with-
out causing the resulting network 7’ to be not equivalent
to 7. A Boolean network 7 = (F , P O) is said to be prime
if all the cubes in each of the representations F, of 7 are
prime, and irredundant if all of these cubes are
irredundant . 0

Note that these two concepts are associated with local
minima of a cost function which is nondecreasing in the
total number of cubes and literals required to represent the
incompletely specified logic functions, realized by the
given Boolean network.

We complete this section by defining the cofactor op-
eration on both representations of functions and on Bool-
ean networks.

Dejinition 4 (Cofactor Operation)
The cofactor of a sum-of-products representation, F =

{ c,}, of a Boolean function with respect to a literal v, is
defined to be

(W C , = U (C l) , , .

Here if literal vJ is contained in c,, (c,),, is just c, with
literal U , deleted, else if literal E, appears in c,, (c ,) , , =
0. If neither vj or EJ appears in c,, then (c ,) (~ = c,.

The cofactor of a Boolean network 17 = (F , P O) with
respect to a literal vJ is a Boolean network, q,., = (F,,,
P O) , where FZ,] = { (Fl)C)} is the set of cofactors of the
representations { F, } of the original Boolean network. We
denote the vector of logic variables in this cofactored net-
work to be (U) , , , with components (v ~) , ~ , (v 2) , , , . . - ,
(V,)*I].

1

728 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 7. NO. 6. JUNE 1988

Similar definitions apply when the cofactor is with re-
o

This definition is crucial to computation of the represen-
tation, D,, of the don’t care sets, d,, of the incompletely
specified functions (A , d,, r ,) which implicitly define the
structure of the Boolean network. Note in particular that
the edges of the Boolean network v,, are defined by the
support of the (F,),,,, from which the variable vJ is now
totally missing. Thus each node i in the fan-out of nodej
in 11 is disconnected from node j in 7 (’,.

111. MULTILEVEL LOGIC MINIMIZATION
Given a Boolean network 7, it is of obvious interest to

obtain an equivalent prime and irredundant network 7’.
One possible procedure to obtain this simplification is to
examine each cube as well as each literal in first encounter
order, and for each such cube or literal to construct a sim-
plified network v’, identical to 7 except for the removal
of the selected cube or literal. Then Definition 2 may be
embodied in a computer program such as [18] to check if
11 = 7’. If so, the cube or literal is redundant, and can be
removed from 7. If no cube or literal can be so removed,
then the resulting Boolean network is prime and irredun-
dant (Definition 3). This elementary minimization pro-
cedure is the one used to obtain the Boolean network of
Fig. l(b) from that of Fig. l(a). This procedure is inti-
mately related to the way in which the basic D-algorithm
(and its variants) [16] is used in test generation algo-
rithms. However, such elementary procedures are not ef-
ficient, and do not lead to high-quality minimization re-
sults (compare Fig. l(b) and (c)).

We present here a more efficient procedure which ap-
pears to give high-quality multilevel minimization re-
sults. The procedure is based on 1) computing, for each
intermediate nodej in 7, a representation DJ of the don’t
care set dJ of the incompletely specified function (A , d,,
r J) associated with n o d e j , j = 1, 2, * * e , m; and 2) min-
imizing the representation F, of with respect to DJ by
calling an efficient 2-level minimizer (we use the ES-
PRESSO-IIC program [5] for this purpose) to render 5
prime, irredundant, and approximately R-minimal. Note
that the properties of primality and irredundancy arise
from both the representation F, and the Boolean network,
7, in which it is embedded. This is because, considered
in isolation, the FJ are representations of completely spec-
ified functions, but embedded in the network, they are
representations of incompletely specified functions, i.e.,
they have a don’t care set. Thus a network of individually
prime and irredundant functions, such as that shown in
Fig. l(a), may be neither prime nor irredundant.

To discover such redundancies, we identify the don’t
care sets generated by the structure of a Boolean network.
We illustrate this by identifying a representation, D 3 , of
the don’t care set d3 of node 3 of the Boolean network of
Fig. l(a). For reasons discussed later in this section, we
can show that the 5-cube set

spect to the literal P J .

0 3 = J ~ (x I X ~ + 21x2) + ~ ~ (x I x Z + XIX2) + 21x2
is a valid representation of d,, assuming OXi = 0, i E

PO = { 1, 2 3 , i.e., that the Boolean network 7 has no
external don’t care set. Since FIX2 E D , it is clear that
cube FIX2 of F3 is redundant and can be deleted. Further,
since y2xIx2 E D3 , and y 2 x l x 2 + j Z x I x 2 = x I x 2 , literal
L2 may be dropped from cube x I x 2 j 2 in F3. After these
two typical minimization steps we have derived the prime
and irredundant network 7’ (Fig. l(b)) from 7 and have
in fact shown that 7‘ = 7.

The problem we faced in our research was how to com-
pute a representation DJ in the general case. To show how
this is done, we define two additional don’t care sets DZV
(the intermediate variable don’t care set, common to all
nodes j = 1, 2, . , m) and DT (the transitive fan-out
don’t care set, which is specific to n o d e j) . These are to
be appended to the appropriate external don’t care set to
form D J , as discussed below. We begin by defining DZV.

Dejinition 5
The “overall” intermediate variable don ’t care set,

DZV, is defined by
m

DZV = DZV, (3. l a)
J = 1

where

DZV, = y J q + L J F , = yJ 0 F,. (3 . lb)

Note by DeMorgan’s law, we have
m m

m = rI (y J = F ,) = n (j J q + y ,F ,) . 0

(3. I C)
It is thus clear that for any vertex in v E B‘ (represented
by the overall vector U of 7) which satisfies (2.1) f o r j =
1,2 ; . . , m , it follows that v E m. Conversely, if any
of the equations yJ = F, (U) is not satisfied, we have U E
DZV. These observations will be used repeatedly in the
sequel. Note that in the above example, the first 4 terms
in D , represent the contribution of DZV,.

We note that each member of the Clo and Coo “forcing”
sets defined in [32] corresponds to two literal implicants
of DZV. Thus their recurrence relation provides, in linear
time, a proper subset of DZV.

The origins of the transitive fan-out don’t care set rep-
resentation DT, associated with node j are subtler, so a
detailed discussion of these don’t care terms is deferred
until later in this section. However, in simple cases such
as that exemplified in Fig. 1, the transitive fan-out don’t
care set has a straightforward construction. Suppose that
V i E FO,,

i E PO and FO, = 0. (3.2a)

J = 1 J = I

Then

DT, = n Ell (3.2b)
IGFO,

where

BARTLETT et al. : MULTILEVEL LOGIC MINIMIZATION

Note that the condition (3.2a) applies in the case of
function F3 of the Boolean network of Fig. l(a) for which
(F I) 4 3 = X I X 2 + 1 = 1 and (F l) y 3 = FIX2. Thus E13 =
(1) (X I X 2) = X I X 2 and DT3 = E13 = T I T 2 , which can be
seen to be the last term in the representation D3 given
above.

A physical interpretation of DT, can be given as fol-
lows. Consider a primary input vector, x , and a corre-
sponding solution vector U (x) = (y (x) , x) , for which all
the primary outputs of 17 are insensitive to the values yJ
takes on under this set of inputs. Note in the example that
if x , = 0, x2 = 0 is applied to 11, the primary outputs are
FI = 1 and F2 = 0, regardless of the value of y 3 . Thus
DT, can be seen to specify a set of values for the vector x
such that the value of each of the primary outputs is in-
sensitive to the value of y , , and, by extension, to the rep-
resentation F J . As we shall show in Section VI, DT, is
simply the union of primary input vectors which do not
test for either yJ stuck-at-1 or y, stuck-at-0. Each such pri-
mary input vector represents a cube (not necessarily just
a vertex) in the overall space B‘, which is don’t care for
all the primary outputs since none of them are affected by
F,. The representation DT, of the transitive fan-out don’t
care set is the union of all such primary input cubes.

We have now given sufficient background to make a
precise definition of DT, meaningful.

Dejinition 6 (Transitive Fan-out Don ’t Care Set)
We denote, for each primary output i E PO f l TFO,,

the “transitive fan-out’’ don ’t care set associated with
function j by

DTIJ = (’ E B” 1 (U f) u J (.) = (x) } (3.3)

where (U ,) , and (u ,) ~ ~ are the logic variables associated
with the corresponding functions (F,)uJ and (F,); , , i.e., in
the cofactored Boolean networks, and PO n TFO, iden-
tifies the subset of primary outputs contained in the tran-

0
This definition plays a crucial role in the following defi-

nition and theorem, and is formed primarily to facilitate
theorem proving. In the algorithm of Fig. 4 , we actually
employ only the special case of (3.2), which is equivalent
to (3.3) when the condition (3.2a) is satisfied. Note that
because of Definition 4, DT,, = 0, V i E PO. The mem-
bers of the qJ “blocking sets” defined in [32] may be ob-
served to correspond to implicants of DTtJ. Again, a
proper subset of the implicants of DT,, is obtained, in lin-
ear time, by the procedure of [32].

sitive fan-out of F, .

Dejinition 7
A representation of the don’t care set, D J , imposed on

0, = DI, + (DX, + D T J) (3.4a)

nodej by the Boolean network is

,ePon TFO,

where

Corollary 1 below gives us reason to call this the “com-

~

plete” don’t care set. Note DIj G DZVderives solely from
0

It is of interest to observe the possible interrelationships
that exist between the transitive fan out and external don’t
care terms in (3.4). To this end, we present two exam-
ples.

the transitive fan-in of Fj.

Example 1
Suppose, for the network of Fig. l(c), we specify the

external don’t care sets DX, = x 1 and DX, = x2 . Then
the don’t care representation of (3.4) becomes, for node
2,

D2 = D12 + (DX, + DT,,) (DX, + DT2,)

= DXI DX,

in which D12 = 0, since F; has only primary inputs, and
DT12 = DT22 = 0, since y 2 and y l are both primary out-
puts (note j E TFO, by convention). Thus D2 = x I x 2 ,
which may be used to minimize Fg further, to

F;” = X I + ~ 2 .

Although further minimization of Fg was made possible
by introducing the above external don’t care terms, F;‘
remains prime, irredundant, and R-minimal, and so F,”‘
= F;‘. However, it should be noted that the don’t care set
for F;‘ is ltered by the minimization of Fg to F;” . In fact,
prior to this minimization, we have

0;‘ = Y , (X ~ , X? + X l X 2) + j l (~ I X 2 + X I X ~) + X I

~

Line

1
2
3
4

S

6
7

8

9

IO
11
12
13
14
15
16
17

I8

129

Procedure ESPRESSO-MLD (FPO .DX)
r
Input Bmlean Networkq=(FPO), ci.. Defmtion I.
well BS h e set DX of external don’t care res.
{DXIPX2;..DXP).
Outpul Minunired Network l)’=(F’PO).
A visitation index. VIS , IO employed. such hat
VlSk4l (not visited). 1 (visited not changed). - 1 (changed)
IfV/S,=l.’jc(l.2ml , l) ’ s p i m e andinedundant.

/
Begin
F I F
VI& to. k =1.2. ... m
For(k=l,2. m) D l t t C v , ~ k + j i Ft)
J +{I I VIS,=Oand F 0 , d O and

While(JtP))
FOt =0.t E FO,]

Begin

j +SELECTl(J)

DIA,cSELECT2(DI J)

I f o ~ P 0) T h e n D O , t 0

VIS, t 1

Else
DO, c 1
For (I EFO,)

Begin
DT,,+((Fs)y,=(F,)&)
DO, +DO, n(DT,, +DX,)
End For

DA, eDIA, +DO,
(F, .VIS,)+ESPRESSO-IIC(F, RA,)

F ’, t F ,
(F‘.F)tSIMPLIFY(F’.F)

If (FO, 4) F t F L A T T E N CI ,F)
If (~ d PO) F t F - F,
J t (j IVIS,=Oand F0,cPO and
F O t = 0 . t E FO,]
End While

Return (F’,VIS)
End ESPRESSO_MLD

End Else

Dl,+Y,F,+V,

INuallLc q’.
Iniualire vsimtion index.
Compute cornponenu o l l V DC ret

Minunimble ret (no remnvngent ian-out).

Whle there are funcuons

non-mmmned whch fan
out only IO Prim- outpulr.

selwt one and mark 85 v s m d

Select Intermediate don’t cares

Imtml1zcTransiuve Fan
out DC set 10 mulology.

Loop over fanout ol F,

Equ,valcnce of wfaclon

Update output DC %Cl.

for Function F, .

Acyclic Dc sets ior F, .
MinirniuF, w r 1 DA, rnd rebrl

VIS, UI - 1 ifchanged.
Updatc and simpltiy F‘ and F.
Update DI,
Flatten F, into FO, .
Delete 11 not p m a r y output.

Updatc minimiiable set

Return minmized Boolean Network.
Ii(VIS,=I.~)~’aPnmeandIrredundant

Fig. 4 . Procedure ESPRESSO-MLD.

730 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. I, NO 6. J U N E 1988

whereas after this minimization,

0;“ = y 2 (X I X 2) + L2(x1 + x 2) + xI f 0;‘

which proves that the don’t care set of function Fk is not
necessarily invariant with respect to the minimization of
F j , j # k . 0

Example 2
Consider some Boolean network (not that of Fig. 1) in

which F, = y j x l and Fk = y j X l , FOj = { i , k} C PO, and
FOi = FOk = 9. Then the special case assumptions of
(3.2) apply to the computation of DTu and DTkj, i.e.,

DT.. = X. DT = x
IJ I , kj I.

Thus from (3.4) we have

Dj 7 DZj + (OX; + DT,j) (Dxk + DTkj)

= DIj + DXjDxk + Dx;DTkj + DxkDT,j + DT,)

= DZj + DXjDXk + DXiDTkj + DXkDT,j.

Note that in this case, although

DTu and DT,, may, individually, still contribute to D j ,
0

We now give the theorem and corollary that show that
(3.4) gives a complete and correct representation of the
don’t care set.

assuming Ox; DTk, # 9 or DxkDTk, # 0.

Theorem 1
Let r] , r]’ be two Boolean networks where r] is identi-

cally r]’ except for FJ , which has been altered to F,’ in such
a way that TFZ, (7 ‘) C TFZ, (r]) . Then r] = r]’ if and only
if for all w E B”’”, either

i) FJ (w) = FJ’ (w) or
ii) w E 0,.

Proof (Ifpart): Suppose r] # 7’. Then by Definition
2 there exists x E B“ and some output i E PO, such that x
$OXl and U , (x) # (x) . Define w E B”’“ so that fork
E TFZ,, wk = vk (x) = vL (x) , and w, = x (i.e., the pri-
mary input subvector of w is the primary input vector x) .
The other elements wl of the vector w are chosen arbitrar-
ily. Thus w $ OXl (because x = w, $ OX,), and w $ DZ,
(cf. discussion of (2.1)). Since U , (x) # v: (x) , then cer-
tainly U , (x) # vJ’ (x) , since F, and F,’ are the only func-
tions which differ in r] and 7’. Thus since F, (w) =
F, (v (x)) = U , (x) and similarly for F,’ (w) , then F, (w)
FJ’ (w) . There are now two cases: U , (x) = 1, U,’ (x)
= 0 and vice versa. For the case U, (x) = 1, we have

(u ,) ~ ~ (x) ; hence x $ DT,,. The case U , (x) = 0 yields the
same conclusion. Thus w $ DT,,, so w $ D,, and we have
produced w E B n f m which contradicts i) and ii), which
proves the if part.

(Only Ifpart): Suppose there exists w E B”+” such
that F, (w) # F, ’ (w) and w $ 0,. Then w $ DZ,, which
implies that for x = w,, wk = vk (x) = U; (x) , k E TFZ,.

(v , > , (x) = v , (x) , (v,>z,(x> = u:(x>, so (U ,) &) f

This follows from the fact that the two networks r] and r]’

are the same in TFZ,, and hence for the same x , w $ DZ,
implies that w satisfies the same defining relations as vk
and vi, vk E TFZ,. Thus F , (w) = v , (x) and F,’(w) =
U; (x) . Also w $ 0, implies that there exists some i E PO,
such that x $ OX, and x $ DT,,. Since FJ (w) # F,’ (w) ,
then U,’ (x) # U, (x) . Suppose U, (x) = 1 , then U , (x) =
(D ,) ~ , (x) and v: (x) = (vI)s (x) and because x $ DTl,,
then U , (x) # (x) . Therefore, since x $ OX,, then 77 #

o
It is important to realize the intent of presenting this

theorem, which is to establish a representation for the
don’t care set d, of the incompletely specified function
associated with node j of r] . Once this is established, we
shall have reduced the problem of minimizing F, in a mul-
tilevel environment to a conventional 2-level minimiza-
tion problem. To this end we offer the following corol-
lary.

7’. The case U , (x) = 0 is similar.

Corollary 1
Dj is a representation of the don’t care set dj of the

incompletely specified function (4 , d j , r j) .
Proofi Dj represents the set of vertices U (x) E B” +”

such that the IO map z (x) of r] is insensitive to the specific
representation given for Fj . But this implies that Dj is a

Having finally determined a representation Dj of the
implied don’t care set for node j of Boolean network r] ,

we are now ready to present two key theorems in the de-
velopment of our algorithm for multilevel minimization.

representation of dj . 0

Theorem 2(a)
Cube c E Fj in Boolean network r] is irredundant if and

only if

c Q (Fj - {c)) U Dj. (3.5)
Proof. (Ifpart): Suppose c 4 (F, - { c }) U 0,.

Then, because Corollary 1 has established 0, as a repre-
sentation of the don’t care set d,, there exists v (x) E c
such that u (x) E A , the care on set of the incompletely
specified function associated with node j . That is, v (x)
is a relatively essential vertex [5], contained in c, so c is
irredundant .

(Only If part): Suppose c is irredundant (Definition
3). Then c contains a relatively essential vertex v (x)
(F J - {‘}I OJ’ 0

Theorem 2(b)
Cube c of function F, of r] is prime in variable v1 if and

appears as a literal of c, only if either a) neither vl nor
or b)

c’ $ F, U 0, (3.6)
where c’ is the cube obtained by deleting literal uI (q)
from cube c.

0

These two theorems result from the fact that 0, is a
“complete” representation of the don’t care component

Proofi Similar to that of Theorem 2(a).

BARTLETT PI nl. : MULTILEVEL LOGIC MINIMIZATION 73 I

d, of the incompletely specified function (A , d,,, r,) as-
sociated with nodej of the Boolean network. This fact is
the basis for the proposed approach to multilevel logic
minimization, and it will be shown in Section 4 below that
a prime and irredundant Boolean network can be obtained
by applying a 2-level logic minimizer to each of the rep-
resentations F, in sequence. This full sequence is then it-
erated until, on one complete pass through it, no repre-
sentation changes from what it has been on the previous
pass.

Equations (3.5) and (3.6) show how to make a Boolean
network prime and irredundant. But as discussed in Sec-
tion I, to make Fj R-minimal we also need to apply the
following REDUCE operation. As we shall see below,
this operation takes on added significance in the multi-
level case, and in fact, accounts for an entirely new aspect
of logic minimization.

Definition 8 (REDUCE Operation)
Cube c’ C c E F, is the reduction of c if a) 17 = v’,

where 9’ is defined by replacing F, with FJ’ = c r U (F j
- e) , and b) for all e” C c’, 17 # r ” , where F;’ = crr U
(F; - c) . 0

Proposition I
The reduction, e r , of cube c is unique.

Proof: Note e’ contains all relatively essential min-
terms of the representation F, of the single-output func-
tion&. If c’ were not unique then there would be another
reduction e’’ # c which would also contain these min-
terms for which 17 = 17”. Hence e’ and c” can both be
replaced by cube c’ fl c”, which also contains all these
minterms. Since e’ # c”, then either e’ f l c’’ C e’ or c’
n e‘‘ c e r ‘ , contradicting the hypothesis that both e‘ and
e’’ were reductions of e. U

Since the reduction of cube c is unique, the overall RE-
DUCE operation for c is composed of a sequence of
“atomic” REDUCE operations, carried out in any order.
Each of these atomic operations determines whether
equivalence at the Boolean network level is maintained if
c is replaced by c*, where c* is obtained from c by adding
literal vk, and where Vk is not originally present in e. If
the answer to this question is positive, then c can be re-
placed by e*. The process repeats until we have attempted
the addition of the positive and negative phase of every
literal not originally present in e. Note that if both ck and
2, can be individually added while maintaining equiva-
lence, then c is redundant and can be deleted from F j .

It is tempting to conjecture that as in the case for pri-
mality and irredundancy, the don’t care set D, is sufficient
to determine the reduction of cube c E F,. Unfortunately
this is not quite the case, although the following propo-
sition can be proved about a single atomic REDUCE op-
eration.

Theorem 2(c) (REDUCE Don’t Care Set)
The minimal and sufficient don’t care set for the atomic

REDUCE operation of adding literal U , to cube c E F, is
DR,,, = DI; + DI, + fl (DXi U D7’,) (3.7)

i E PO n TFO,

where DI, and DI, are defined by (3.4b).

Proof: The proof of Theorem 1 can be applied, mu-
tatis mutandis, noting that adding literal z.’k to cube c po-

0
Note that unlike D,, DR,, k includes intermediate vari-

able don’t cares from the transitive fan-in of both F, and
F,. Even though DRJk is sufficient for the single atomic
REDUCE operation associated with literal V k , a larger
don’t care may be required by the next atomic operation.
This is because the successful addition of literal vk adds
an edge to the graph (N , E) of the Boolean network 7,
and, therefore, may alter TFZ,. Thus if the entire RE-
DUCE operation is to be performed with a single don’t
care set, and if applicability to arbitrary Boolean networks
is desired, then the entirety of the overall don’t care set
DIV(cf. Definition 5) must be employed. This conclusion
is mitigated, however, by the following remarks.

tentially augments the transitive fan-in of F,.

Remarks

Note that e’ is a minimal (smallest) cube containing
all the relatively essential vertices of c [5] . Hence
e’ has more literals than c, hence e’ is reexpressed
in a larger support than c had. The remarkable fact
is that c r can, in principle, now depend on any vari-
able in the transitive fan-out of the transitive fan-in
of Fj . As shown for F I in the Example of Fig. 1,
this can lead to significant simplifications in the F,.
The REDUCE operation appears to be one of the
most significant parts of multilevel minimization.
Although the overall intermediate variable don’t care
set DIV is necessary to obtain the true reduction of
e , in practice we use an approximation DA,, where

DAj = DIA, + (OXi U D T j)) (3.8a)
i e P O (l TFO,

(3.8b)

is obtained from DIV by deleting the intermediate
variable don’t care contributions of the transitive
fan-out of F,. If this deletion were not done, cyclic
dependencies might (will) occur, i.e., some cube c
in FJ can be reduced until it contains literal U, itself,
and, on a subsequent EXPAND step, c might grow
to c = v J , leading ultimately to the correct, but triv-
ial, conclusion that U, = F,. We shall call the re-
duction of cube c with respect to DA, the acyclic
reduction of e.
Note that the operations of primality and cube re-
dundancy testing (cf. Theorems 2(a) and 2(b)) do
not alter the transitive fan-in of F,.
Note that (3.8) implies that 0, C DA,, so that DA,
is sufficient for establishing the primality and irre-
dundancy of cube c as well as for finding its acyclic
reduction. 0

As pointed out in [5 , sec. 4.71, reduction is an impor-
tant mechanism for minimizing the representation F, =
{ c i } . In fact, by reducing some prime cube ck E Fj to its
reduction c; (Definition 8), it is possible that after reex-

7 I

132 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 7, NO. 6. JUNE 1988

panding c; to a different prime c: # ck, a second, for-
merly irredundant prime cube, c[, may now become re-
dundant, 1 # k . This remark gives us, at last, sufficient
background to define R-minimality .

Dejinition 9
A prime and irredundant Boolean network 7 is R-min-

imal if there exists no cube ck E FJ of 7 whose acyclic
reduction c; (Definition 8) can be reexpanded (i.e., raised
back to primality) into cube c: such that for k # 1,

{ck, cl} (Fj - {ck, C I }) U c: U Dj. (3 .9)
That is, the introduction of the reduced and reexpanded
cube causes both the originally prime and irredundant

0
Note that the example Boolean network of Fig. l(c) is

R-minimal, because none of the cubes of either F, or F2
can be reduced.

It is expensive in practice to absolutely guarantee R-
minimality, but it is certainly possible in principle. ES-
PRESSO-IIC executes a routine for reduction and reex-
pansion called LAST-GASP which guarantees only an
approximate form of R-minimality. However, it has been
observed in all but a very few cases to date that the actual
results of LAST-GASP were, in fact, R-minimal. The
REDUCE operation and its variants (this was called “RE-
SHAPE” in MINI [20]) enable logic minimizers to
“climb out” of the local minima usually associated with
the current prime and irredundant representation. This is,
in many cases, the key to the high-quality results obtain-
able by heuristic minimizers.

cubes ck and cl to become redundant.

IV. THE ESPRESSO-MLD PROCEDURE FOR
MULTILEVEL LOGIC MINIMIZATION

Theorems 2 establish don’t care methods for applying
the EXPAND, IRREDUNDANT-COVER, and RE-
DUCE operations to the cubes of the function represen-
tations FJ of 7. We can now present an algorithm which
calls the 2-level logic minimizer ESPRESSO-IIC to carry
out these operations on each FJ in turn. On exit from ES-
PRESSO-IIC, FJ is prime and irredundant. However, ES-
PRESSO-IIC has the property that F, is left unchanged if
the first pass through the REDUCE, EXPAND, and IR-
REDUNDANT-COVER sequence fails to decrease a
given cost function measuring the number of terms and
literals of the result. Any other valid 2-level minimizer
which has this property will also produce a prime and ir-
redundant Boolean network. However, as discussed
above, ESPRESSO-IIC guarantees a weak form of R-
minimality as well. The algorithm uses the representation
of the don’t care set DA,, defined by (3.8) for function FJ
of Boolean network 7, to render all the cubes of FJ prime
and irredundant, V j E ZV, according to Definition 3 and
Theorems 2(a) and 2(b).

This algorithm is presented in Fig. 4 as Procedure ES-
PRESSO-MLD. ESPRESSO-MLD calls ESPRES-
SO-IIC to minimize the functions FJ in a certain order. In
most cases, it first minimizes the primary output func-

tions; since conditions (3.2a) are usually satisfied for pri-
mary outputs, they are in the first J constructed in line 4.
Clearly for any j E PO, DT,, = 0, and hence DT, = 0.
Then the algorithm selects for the next function (cf. lines
4 and 17 in Fig. 4) some unminimized function which has
only nonreconvergent fan-out to primary outputs, i.e., the
next function F, satisfies FO, E PO and FO, = 0, V i E
FO,. After minimizing this function, it is stored away for
future reference in the minimized function set F,’ (line 12),
and then “flattened,” i.e., substituted, into its fan-out
(line 13). If it is not a primary output it is then deleted
from 7. Because of this deletion, and because 9 is as-
sumed to be combinational, such a next function always
exists (but is not unique). Another such function is se-
lected next. This is repeated until all functions have been
minimized.

Note that ESPRESSO-MLD employs the device of car-
rying two separate versions, 7 and v r , of the minimized
Boolean network. Here 7’ is the version of the original
network 7, in which each function is replaced by its min-
imized version, i.e., the version which is prime, irredun-
dant, and, with high probability, R-minimal. This is the
version returned (line 18) by ESPRESSO-MLD. The sec-
ond version starts out the same as the original Boolean
network, but is modified on each pass through the while
loop (lines 5-17) by flattening the most recently mini-
mized function into its fan-out, and then deleting it unless
it is a primary output function. As discussed at the end of
this section, this device permits us to use the construction
of (3.2) in computing the transitive fan-out don’t care sets
DT,,, i E PO.

Note further that a subprocedure, SIMPLIFY, is called
(line 13) after replacing FJ and F,’ by the minimized ver-
sion of F, in the respective Boolean networks q and 7’.
SIMPLIFY checks for either of the conditions a) FJ U DJ
= 1, or b) FJ E 0,. In the former case, ESPRESSO-IIC
will return a representation consisting of a single cube with
no literals, and in the latter case, one consisting of an
empty set of cubes. In case a) the care off set of the in-
completely specified function (& , d,, r,) is empty, i.e.,
r, = 0. It follows that 7 ~ qt,, , so SIMPLIFY substitutes
U , = 1 into the functions in the fan-out of FJ . Case b), for
which we have& = 0, is similar, except U , = 0 is sub-
stituted. In either case the simplification is propagated re-
cursively toward the primary outputs and primary inputs.
In propagating toward the primary outputs, functions in
the fan-out of FJ are tested in turn for simplification by
SIMPLIFY. In propagating toward the primary inputs, we
note that after simplifying, FJ no longer depends on any
of its inputs. Thus edges in 7 associated with these inputs
may be deleted from the graph associated with 7. SIM-
PLIFY thus checks to see if FJ was the last fan-out of any
function F, such that j E FO,. If so, F, is deleted from 7
and y r . Note that if as a result of such simplification, some
function Fk has no remaining fan-out, i.e., FOk = 0,
then it may be seen from Definition 6 that DT,, = 1, V i
E PO. Consequently, in this case, when j is later equal to
k , the for loop (lines 8 and 9), which computes DOk =

BARTLETT er al. : MULTILEVEL LOGIC MINIMIZATION 733

I I I E p ~ n T ~ o k (OX, + DT,,), will initialize DOk to I , and
DOk will remain at that value unless OX, # 0 for some i .
Such functions thus will fall into category a) above. This
process continues recursively until the two networks sta-
bilize.

Even though F, is prime and irredundant on exit from
ESPRESSO-IIC, a function Fk previously minimized by
ESPRESSO-IIC may no longer be prime or irredundant.
This is because the don’t care set dk is not invariant with
respect to the minimization of F,. It is quite easy to con-

care set D G of the unflattened but minimized network 7’
returned by ESPRESSO-MLD.

Lemma Z
For each primary output i E PO, let DT,, be the transi-

tive fan-out don’t care set associated with the minimized
and flattened Boolean network 7 computed by ESPRES-
SO-MLD, and let 07;; be that associated with the mini-
mized but not flattened network 7’ returned by ESPRES-
SO-MLD. Then

struct examples which demonstrate this fact. Thus in or- DT,, 3 DT, , V i E PO. (4.2)
der to verify primality and irredundancy of the returned
network q’, procedure ESPRESSO-MLD uses a visitation
index VZS, to mark which functions were actually alerted
by the call to ESPRESSO-IIC. As stated above, Fj is left
unchanged unless ESPRESSO-IIC can obtain a finite de-
crease in the cost of Fj . If on exit (line 18), VZS, = l , V j
E (1 , 2 , * * . , m } , then it is true that no cube of any
function representation was altered by the calls to ES-
PRESSO-IIC, which proves, as shown below, that the
given Boolean network is prime, irredundant, and, with
high probability, R-minimal. Conversely, if on exit VZS,
= - 1 for any j , then, although we are sure that Fj is
prime and irredundant, we can no longer be sure that an-

Proofi By construction, 7’ is the minimized but not
flattened Boolean network with primary inputs x and IO
map ~ ’ (x) . Similarly, vh, is the cofactor of this network
with respect to the variable, U , , of the function to be min-
imized, which has the same primary inputs, x, but has IO
map zh, (x). Note that zh, (x) may be regarded as a Bool-
ean network with one “extra” primary input, namely U , ,
which has been set permanently to 1. By construction vu,
is just a flattened version of vh, which has the same pri-
mary inputs, x, but has IO map z,, (x) . But since vu, can
be obtained from qh, by flattening, it follows that these
two Boolean networks have identical IO maps, i.e.,

other function Fi is still prime and irredundant, where the
representation FL was returned by a previous call to ES-
PRESSO-IIC. Thus the whole procedure ESPRES-
SO-MLD should be called again. Since we are guaran-

z&) = Zh,(X> (4.3a)
and, similarly,

Zt, (4 = zt, (x). (4.3b)
teed that the overall cost function has a finite deciease if
any function is altered, we know that the sequence of calls
to ESPRESSO-MLD must ultimately converge, and, on
the last call, return an unchanged Boolean network. This
latter network is prime and irredundant and very likely R-
minimal.

It is of interest to discuss how the structure of the flat-
tened Boolean network 77 is exploited in computing the
transitive fan-out portion of the “acyclic” don’t care set
DA, prior to each call to ESPRESSO-IIC. By construc-
tion, 17 is just 7’ with all intermediate variables in the set
TFO, - PO flattened (line 15) and deleted (line 16), and
those in the set TFO, n PO flattened but not deleted. The
key observation is that flattening an intermediate variable
does not alter the IO map of a Boolean network. Hence y
and 7’ have identical IO maps, i.e., z (x) = z ’ (x) . Be-
cause of the flattening of intermediate variables in the
transitive fan-out of F,, we are able to use the construc-
tion of (3.2) in computing DT,, for each primary output i
E PO in Boolean network 7. Note that by construction of
7, FO, G PO and FO, = 0, V i E FO,. Thus the com-
putation DT,, is restricted to the case where F, has only a
direct dependence on U , , V i E PO f l FO,. That is, for
functions that fan-out only to primary outputs which have
no fan out, DT,, is equivalent to E,j, where (cf. lines 8 and
9)

E!, = (FO) , (q, + R,, m,. (4.1)

Finally, by the following lemma we are able to show that
this don’t care set is identical to the transitive fan out don’t

Since DT,, and DT, are specified by Definition 6 in terms
of the IO maps z,, (XI, zt, (x), z;, (x), and zh, (x) , it fol-

0
Now reconsider procedure ESPRESSO-MLD, which

calls ESPRESSO-IIC only for functions F, which satisfy
FO, E PO and FOk = 0, V i E FO,. Thus the transitive
fan-out don’t care set of function F, of Boolean network
77 can be computed according to the construction of (3.2)
(line 8) for each primary output in TFO,. By Lemma 1,
this is identical to in the Boolean network 7’ which
we are minimizing. Thus DTl, can be added to the external
don’t care set for each of the aforementioned primary out-
puts and intersected together (line 9 of the inner for loop)
to form the rightmost don’t care term in (3.4). This in-
terim result is stored in the variable DO, and is added to
the appropriate intermediate variable don’t care sets (cf.
(3.4) and the remark following (3.8)), to form DA, (line
10). This construction of the relevant don’t care sets per-
mits us to state the following key theorem, which, in es-
sence, proves the correctness of ESPRESSO-MLD.

lows that DT,, = DT,, so (4.2) is proved.

Theorem 3
Suppose that when ESPRESSO-MLD terminates, all rn

functions F, have had 2-level minimization applied to
them, without any changes to any of the F,. Then the re-
turned Boolean network, v’, is prime and irredundant.

Proof: The procedure uses the acyclic superset, DA,
of 0, for minimizing each of the F,, where D, is a repre-
sentation of the don’t care set d, of the incompletely spec-
ified function (& , d,, r ,) . Thus after each pass, by Theo-

1 -

~

734 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 7, NO. 6, J U N E 1988

rem 2, Lemma 1, and Corollary 1, the current F, is prime
and irredundant. Now if all m functions have failed to
change on one complete pass through ESPRESSO-MLD,
each has been shown to prime and irredundant given the
final state of q’. Thus by Definition 3 , q’ is prime and
irredundant . 0

V. EXPERIMENTAL RESULTS
Tables I and 11 illustrate the results of running ES-

PRESSO-MLD on some multilevel examples generated
using Weak Division [11. These computational results
were obtained using an approximate implementation of
ESPRESSO-MLD. The approximation made was the fol-
lowing. In practice DZA, can be quite large, so only a sub-
set of the complete DZA, was used in obtaining the results
of Table I. The subset used was the don’t care terms as-
sociated with the set of all intermediate variables which
are in the transitive fan-out of the transitive fan-in of F,,
but not in the transitive fan-out of F,. Thus the REDUCE
operation of ESPRESSO-IIC is limited to the introduc-
tion of either primary input variables or intermediate
variables which are in this set. This approximation is re-
turned (line 5) by the subprocedure call to SELECT2, and
is also an “acyclic” approximation for the REDUCE op-
eration in ESPRESSO-IIC. This acyclicity constraint pre-
vents, as discussed in the above Remark, trivial reduc-
tions of F, by the REDUCE-EXPAND-IRREDUN-
DANT-COVER sequence. However, note that this re-
quires EXPAND and IRREDUNDANT-COVER to op-
erate with a$xed intermediate variable portion of the don’t
care set, despite the fact that the transitive fan-in of F, is
being altered by REDUCE. Note that this means the ap-
proximately implemented version of ESPRESSO-MLD
does not guarantee primality , although ancillary experi-
ments have indicated that the computationally minimized
networks very probably are prime. Further, the experi-
mental results appear to have high minimization quality,
an observation based on attempts at further minimization,
which used alternative computational techniques.

In Table I “initial literals” refers to the number of lit-
erals in the original multilevel network. The next two col-
umns refer to the number of literals saved when using just
the intermediate don’t cares and when using both the in-
termediate and output don’t care sets. For example when
plab was minimized using just the approximation by
SELECT2 of DZA,, the resulting network had 9 fewer lit-
erals, but when both DZA, and DT, were used (line 10) the
resulting network had 20 fewer literals than the initial net-
work. This illustrates the significance of the transitive fan-
out don’t care set, since in all the examples of Table I we
assumed OX, = 0, V i E PO. No table entry indicates
that no function F, of the given network could be reduced
in cost by the implemented minimization procedure.

Runtimes in Table I are in CPU seconds on a Pyramid
90X, which is about twice as fast as a VAX 111780. The
CPU time requirements ranged from minutes on the me-
dium size jobs to hours on the larger ones. Use of the
“output” don’t care set DOJ (cf. lines 9 and 10 of ES-

TABLE I
ESPRESSO-MLD MULTILEVEL MINIM17ATION RESULTS

Literals Saved Runtime
Initial

Name Literals DIM, DIM, U DO, DIM, DIM, U DO,

mark
f O
f l
f2
f3
f4
f5
gerf
dec 1
fadd2

insdex
plac
8fun
exam2
rd53
adder
dec2
plab

clpl

24

8 1
1
1
4 28

73 1
75 2
75 4
17 I
52 1
29 3
19 2
79 5

191 7
83 3
73 3
62 14
48 4

149 3
119 9
58 14

::
2
2
5
1
I
3

5
28

3
3

24
4
4

20
20

1
1
1
9

28
87
44
I

21
2
5

40
1746

70
45
12
4

204 1
434

8

57
130
118

3
34

3

57
3733

152
73
26
87

7852
1850

77

PRESSO-MLD) typically incurs a factor of 2-4 increase
in CPU time.

Table I1 contains the results of experiments run on the
subset of the Table I examples for which the “SOCRA-
TES” expert system was used to further optimize the out-
put of the implemented version of ESPRESSO-MLD [11.
The purpose of this set of experiments was to see if
the technology-independent gains made by ESPRES-
SO-MLD were of value when its output was postpro-
cessed by a technology-specific optimized mapping into a
standard cell library. We used the SOCRATES expert
system for this purpose [11. In the headers of Table I , AA
corresponds to running Weak Division in area-specific
mode and then running SOCRATES in the area-specific
mode [l] . Similarly, DD corresponds to running Weak
Division in delay-specific mode and then running SOC-
RATES in delay-specific mode. The last 4 columns show
the effect of inserting ESPRESSO-MLD into the synthe-
sis loop. AA* corresponds to running ESPRESSO-MLD
on the output of Weak Division running in area-specific
mode and then running SOCRATES in the area-specific
mode, and DD* corresponds to running ESPRES-
SO-MLD after running Weak Division in delay-specific
mode and then running SOCRATES in delay-specific
mode.

It can be observed that when technology-independent
multilevel minimization was used as a preprocessor to
SOCRATES, the AA* area numbers were better than the
AA results in 8 of the 12 cases. In 3 of the other cases,
better area delay tradeoffs were exhibited. In the 6 0 0 ”
examples the delay was reduced (relative to D D) in all
but one case (exam). These numbers indicate that tech-
nology-independent multilevel minimization is often a
valuable step to take in the synthesis and optimization
process, even when the final result is postprocessed by a
technology-specific, optimizing expert system.

1

BARTLETT er al. : MULTILEVEL LOGIC MINIMIZATION 735

TABLE 11
WEAK-DIVISION-ESPRESSO-MLD RESULTS

AA AA DD DD AA* AA* DD* DD*
Area Delay Area Delay Area Delay Area Delay

fadd 39 12 47 9 32 9
adde 56 12 57 18 59 14
dec 1 73 12 84 6 69 10
24 76 13 117 16 58 16 61 14
rd53 89 22 90 1 1 82 15
15 97 14 124 1 1 95 14 109 8
exam 98 13 127 9 94 1 1 116 10
f4 103 13 118 10 103 9 124 8
8fun 107 14 141 13 110 13 128 10
plab 158 18 192 14 176 15
dec2 203 22 243 16 20 1 20
plac 249 22 337 16 256 26 336 15

In addition to assuring primality and irredundancy the
don’t care set may be used to alter the adjacency relations
of the Boolean network, as shown in the example of Fig.
l(b). It is of interest to observe that when ESPRES-
SO-MLD is run on this example, the starting represen-
tation (bottom left) is prime and irredundant. Thus the
first EXPAND and IRREDUNDANT-COVER opera-
tions in ESPRESSO-IIC will have no effect. We have ob-
served that this also occurred in each of the examples of
Table I , each of which was output from the “weak divi-
sion” process of algebraic decomposition [8]. We con-
jecture that this will always be the case for multilevel ex-
amples produced by Weak Division. However, in this
example, after the initial REDUCE operation is per-
formed, the prime, irredundant, and, with high probabil-
ity, R-minimal result will be obtained in the second or
third EXPAND step. This again occurred on all the ex-
amples of Table I for which minimization was successful.
We observe, in fact, that REDUCE is performing a major
part of the role of the minimization process referred to as
Boolean substitution in [8].

VI. TEST GENERATION AS LOGIC MINIMIZATION (OR
VICE VERSA)

We now state some basic results on testability, with the
intent of

1) establishing, in greater detail, the intimate relation-
ship between logic minimization and test generation;

2) demonstrating that after multilevel logic minimiza-
tion, a prime and irredundant Boolean network is ob-
tained for which there is no need whatsoever for either
test generation or testability analysis.

A. Test Generation as a By-product of Logic
Minimization

Our derivation of the complete don’t care set (cf. Theo-
rem 1) reduces the testing question for function F, of a
multilevel Boolean network 17 to, in effect, the 2-level
case. In fact, we shall show that any stuck fault test x* is
simply the primary input part of a solution vector u * (x *)

E E, C B” ’“, where

D, = D’, n (i e P 0 c fl TFO, m,~;). (6.1)

First note that because U* (x *) E m,, the local inputs to
FJ will have the same (cf. (2.1)) values they will have
under test, i .e., when x* is applied to theprimary inputs.
Further, because U* E E,, there will exist at least one
primary output node, i E P O rl TFO,, such that U* E E,
fl DTIJ. Because U* E El, we are assured that x* rep-
resents an external care condition for primary output i.
Finally, note that because U* E EIJ, we may conclude
that not only does the test produce a difference U, (x) f
U,’ (x) between the good (7) and fault (7’) machines, but
that this change is propagated to output i as well (i.e.,
U , (x *) # U,’ (x *)) . It may be observed that the condition
v*(x*) E E, plays the role of the “implication” phase
of the D-algorithm [25], and U* (x *) E T T , plays the role
of the “propagation” phase.

We begin our treatment of the interrelationship between
testing and logic minimization by showing that the tran-
sitive fan-out don’t care set of Definition 6 can be directly
related to the set of output stuck fault tests. This relation-
ship is made precise by the following theorem.

Theorem 4
Assuming that there are no external don’t care condi-

tions, don’t care set

DT,= DTJ

is the set of primary input vectors which do not test the
Boolean network 7 for either of the output stuck faults y,
stuck-at-1 or yJ stuck-at-0.

Proof: It was shown in [19] that a test x* exists for
the output fault yJ stuck-at-1(0) if and only if 7 f
7 v , c ~ ,) . Let T1, (TO,) be the set of all such tests. Hence,
by Definition 2,

I E p o n TFO,

some i E PO n TFO,}.

1

736 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 7 . NO. 6, JUNE 1988

Since U, (x) = l (0) implies that U , (x) = (u ,) ~ ~ , ((U ,) ; ,
(x)) , V i E PO, it then follows that for each such test, x ,
there exists some i E PO fl TFO, which has the property

(x) # (u ,) ~ , (x) . It follows from the Definition 6
0

This theorem shows that if no test exists for either yJ
stuck-at-1 or y, stuck-at-0, then DTJ is tautologous, i.e.,
DT, = 1. It is well known that in this case F, can be
deleted from the Boolean network (such deletions actually
occur frequently in practical multilevel logic minimiza-
tion). On the other hand, DT, = Q would imply that all
primary input vectors would be tests for either y, stuck-
at-1 or y, stuck-at-0. Since this is unlikely to occur in
practice, we conclude that the typical case is DTJ # 63,
hence DT, can be expected to be helpful in minimizing
F,. However, note, as shown by Example 2 of Section
111, that DT, can be empty, meaning that all primary input
vectors test for y , stuck-at-1, yet some of the DT,, can still
contribute to D,, due to the interrelationship with the OX,.

One interpretation of the typical case DT, + 1, DT,
f 63, is that F, may be partially redundant, in the sense
that some of its otherwise “care” on set minterms may
be covered by DT,. This type of partial redundancy must
be exploited in the minimization of F, if it is to be made
prime and/or irredundant.

Having established how the computation of the don’t
care set provides a direct and constructive link between
logic minimization and test generation, we now turn our
attention to the testability of a prime and irredundant
Boolean network. The usual measure of testability for a
Boolean network q is how many of its individual input or
output stuck faults are testable. One of the most signifi-
cant aspects of the relation between logic minimization
and testing is that making q prime and irredundant implies
much more than merely making it 100-percent testable for
the usual input and output single stuck faults. This dis-
tinction is further emphasized when the nodes of the Bool-
ean network are represented by complex gates (e.g.,
CMOS pluricells, domino logic, etc.) rather than simple
primitives like NAND’S and NOR’S. To show this, we need
to define a stuck fault model which is more fine grained
than conventional input or output stuck faults.

that DT, = (Tl, + TO,).

De$nition 10
An internal stuck fault is a fault in which literal vk (or

vk) of cube c of representation F’ of Boolean network q is
stuck at either its existing value vk (or i&) or its opposite

-

value Vk (or vk). 0

These faults are called internal, since they correspond
directly to transistor level faults in which the transistor
representing the specified literal in the implemented logic
is stuck on or off. Their definition enables us to prove our
main testability result.

Theorem 5
A Boolean network is prime and irredundant if and only

if it is 100-percent testable for internal stuck faults.

Proof (Ifpart): Suppose Boolean network q is prime
and irredundant, and suppose cube c of function F,, is
being raised to prime. Suppose c contains literal vk (i&)
and a logic minimizer is checking to see if c* G F, U D, ,
where c* is just c with literal vk (3k) replaced by Vk (u k) .
A negative answer implies that there exists a vertex x* E
B” such that u * (x *) E c*RJ, where R, = (F , U 0,). In
fact, the minimizer must discover such a vertex U* (x *) E
Bm + * before it can declare variable k of cube c of function
F, to be prime. Given U* (x*) , we simply take the primary
input part x* = V*(X*)~, to obtain a test for an input
fault. The fault tested is the internal stuck fault “vari-
able vk of cube c stuck at b,” where b = 1 if v k E c, and
b = 0 if 3, E c. Thus when x* is applied to q, the value
v: (x*) = 7; will appear as an input to FJ in the good
_ - machine, for which F, is off, i.e., uJ = 0, since U* E

F, D,. But with uk stuck at b, cube c in F, will be turned
on for input U* (x) , so that z; = 1 in the “fault machine’’
(a Boolean network which we call q’). Because U* is a
minterm of the don’t care complement E,, (cf. (6. l)), we
have v* DTk,, for some i E PO n TFO, , which by Theo-
rem 1 implies that primary output U , (x *) will have a dif-
ferent value in the good and fault machines, i.e., U , (x *)
U: (x *) , so that q # 7’.

This x is a test for input variable uk of cube c of FJ
“stuck at 6” faults, where uk appe_ars as b in c. To show
that tests are implied for “stuck at b” internal faults, con-
sider the action of ESPRESSO-IIC (in line 11 of ES-
PRESSO-MLD) in testing if cube c of function F, is ir-
redundant. It is clear that if cube c has been declared
irredundant, then c c (F , - { c }) U 0,. If this is the
case, then there exists a test vector x* and a corresponding
relatively essential vertex v*(x*) E c such that U* (x *) E
(F, - { c >) U DJ. Such a u * (x *) must be found by ES-
PRESSO-IIC before it can declare cube c irredundant.
The corresponding x* is a test for vk stuck at b, where vk
is any literal which appears as b in cube c . The test is for
uk stuck at b, because for ck = b, v*(x*) is such that
u z (x *) = b so that cube c is on for the good m-achine
and thus u J ” (x *) = 1. However, if vk is stuck at b, then
c is off and U* (x ”) is such that all the other cubes of F,
are off, so U , = 0 for the fault machine. Note here that
the fault assertion “vk stuck-at-6” has limited scope. That
i s , the assertion applies only to cube c, and not to other
cubes of F,. Hence all these other cubes, which are of in
the good machine, remain of in the fault machine. The
argument then concludes as it did for the stuck-at-b case,
which proves the if part. Note that x* tests any or all of
the variables in cube c stuck at their “opposite” value,
which constitutes a multiple rather than single stuck fault.
Of course, any of the single stuck faults are also tested.

(Only Ifpart): Assume q is 100-percent testable for
internal stuck faults. That is, for each cube c and literal
v k E c (we assume without loss of generality that vk ap-
pears positively in c) , there exists a test x for variable uk
stuck at 1. Since x is a test, cube c and literal vk will be
“off” in the good machine, i.e., v k (x) = 0, and v (x)

c, which implies vl (x) = 0 in the good machine. But

1

BARTLETT el U / . : MULTILEVEL LOGIC MINIMIZATION 737

with uk stuck at 1, cube c will be “on” in the fault ma-
chine. Thus ul (x) = l , and, because x is a test, 7 # 7’.
But uj (x) # U,! (x) implies c* $2 F, U D j , where c* is
just c with literal Vk replaced by &. This implies cube c
is prime in variable uk. The proof that cube c is irredun-
dant follows similarly from the assumed existence of a
test for variable vk stuck at 0 in cube c. This proves the

It remains to demonstrate that a prime and irredundant
network is testable for all the conventional input and out-
put stuck faults. To see that input stuck faults are all test-
able, note that in almost every case an internal stuck fault
is also an input stuck fault. The essence of the argument
is that since we have internal stuck faults for all variables
of all cubes if the Boolean network is prime and irredun-
dant, and since all the inputs of Fj are contained in one or
more of these cubes, the internal stuck fault tests cover
all input stuck faults. This is made precise by the follow-
ing result.

only if part. 0

Corollary 3
The internal stuck fault tests of a prime and irredundant

representation F, also test all input stuck faults.
Proofl First assume that the representation F, is bin-

ate in variable vk, i .e., that it contains (prime) cubes c’
and C O with literal vk appearing positively and negatively,
respectively. Now the argument of the proof of Theorem
5 shows that the test that showed c’ is prime in literal Vk

gives a test, x* , for input uk stuck-at-1. For this test, the
good machine, 7, has U, (x *) = FJ (y*, x *) = 0 , but with
vk stuck-at-1, cube c‘ turns on, so U; (x) = 1 in the fault
machine. The same argument applied to cube CO yields a
test for the input fault uh stuck-at-0.

Next assume that F, is unate [5] in uk, i.e., that F, con-
tains either positive or negative (in variable vk) cubes like
c’ or C O , but not both. Suppose, without loss of generality,
that there exists cube c’ E F, which contains literal vk, and
is irredundant. Then, as in the proof of Theorem 5 , there
exists a test x* for which c’ (and F,) are turned on, but
all other cubes in F, are turned off. Now if input uk to F,
is stuck-at-0, then c’ is turned off. Because F, is unate in
uk no other cubes in FJ are turned on by the vk stuck-at-0
fault, so we have U , = 1 in the fault machine and U; = 0
in the fault machine.

Note that in this case, the argument involving the pri-
mality of cube c’ still provides a test for vh stuck-at- 1.

Now in either of the above two cases we have u (x*) E
D,, else u (x *) would not contradict the nonprimality of
c’ (or C O) in the binate case or the redundancy of c’ in the
unate case. Hence the differences between U , (x*) and
U ’ (x *) propagate to some primary output (because v(x*)
:ElJ for some i) . Thus we have input stuck fault tests
for both z ik stuck-at-1 and VI stuck-at-0, and since this is
true for any k E FI,, F, is 100-percent testable for input

0 stuck faults if F, is prime and irredundant.

nal and input stuck faults. But there are also multiple stuck
faults which are guaranteed testable for a prime and irre-
dundant Boolean network. To see this, observe that the
internal stuck fault test, x*, for the primality of variable
vk in cube c’ E FJ also tests for the primality of vk in all
cubes c’ such that u (x *) E c’. So x* is a test for the in-
ternal faults vk stuck-at-1 in all of the cubes c’, and is also
a test for the multiple internal stuck faults for which uk is
stuck-at-1 in any subset of the cube set { c ’ }.

Similarly, the tests derived from the redundancy test are
also, typically, tests for multiple stuck faults. To see this,
note that the input vector, x*, which contradicts the re-
dundancy of cube c’ E F,, gives a stuck fault test for any
literal (uI or V I) . In fact, any multiple internal stuck fault,
comprised of any combination of the literals of cube c’
stuck at their opposite values, will also be tested by x*.
These latter multiple internal stuck fault tests are also
multiple input stuck fault tests for any subset of the set of
variables which have literals in any cube c’ such that F,
is unate in these variables.

The principle at work in all these stuck fault test argu-
ments appears to be the following. Suppose there exists
vertex v (x *) E FJ DJ (the care off set of F,) which is dis-
tance one in variable Vk from a vertex D(x*) E F, U D,.
Then x* tests for Vk stuck-at-I. Conversely, if u (x *) E
F, D, (the care on set), and is distance one in variable vk
from D (x *) E FJ U D,, then x* tests for vk stuck-at-0. It
is precisely because the tests for primality and irredun-
dancy tests are inherently obligated to isolate such vertex
pairs that prime and irredundant networks are 100-percent
testable for all input and internal single stuck faults. On
this view, the process of automatic test generation is one
in which one identifies care on set or care off set vertices
which are located in the distance one “shells” surround-
ing the off and on sets, respectively. In books, e.g. [16],
which take the traditional “simulation” (as opposed to
don’t care) viewpoint, this concept is expressed in terms
of the so-called Boolean differences.

To see that output stuck faults are also included in this
set of tests, note that F, U D, = 1 implies that FJDJ =
0, i .e., FJ has no “care” offset. In this case it is clear
that no test exists for U, = yJ stuck at 1. But in this case
every literal variable uk of every cube c of F, can be de-
leted in the minimized version of F,. This argument leads
us to the interesting conclusion that if there exists any
literal vk (or ik) of any cube c E F, which is prime, then
the test which has been shown to exist for the input fault
“variable uk of cube c E FJ stuck at b” (where literal U,

occurs as b in cube c) is also a test for the output fault
output ‘ ‘ U , = y, stuck at 1.”

A similar argument applies to the case where F, 5 D,,
which implies that F, E, = 0, i .e., F, has no care on set.
This argument leads to the conclusion that any input z lk

stuck at b test (for cube c E F,) is also a test for the fault
output U, = yJ stuck at 0.” Thus, in terms of the don’t

care sets, we can express the basis for the traditional

“

At this point we have established that a prime and ir-
redundant network is 100-percent testable for both inter-

“checkpoint” theorem, (cf. [I O , theorem 2.31).
We conclude that if 7 is prime and irredundant, it is

738 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 7, NO. 6, JUNE 1988

testable for all output stuck faults as well, i .e . , 77 is 100-
percent testable for input and output stuck faults.

Tests are also implicitly generated for an entirely dif-
ferent class of faults, the so called “extra device” faults.
In the AND plane of a PLA, for example, an extra device
fault could perhaps occur because of a discontinuity in an
isolation mask, and thus polysilicon is erroneously laid
over diffusion. This adds, in effect, an extra literal to some
cube of the AND plane. We claim that this type of fault is
also completely tested for by the operation of ESPRES-
SO-IIC when called at line 11 of Fig. 4. These tests are
implicitly generated by the REDUCE operation. Applied
to cube c , this operation attempts to add to c all literals
not originally present in c. If a literal cannot be added to
c without intersecting the care off set, ESPRESSO-IIC
will generate a test, as discussed previously, for the cor-
responding extra-device fault. Of course, if such a literal
can be added to c, the corresponding extra-device “fault”
is not testable. However, this type of extra-device fault
will cause no error in the IO behavior of the function.

The principal conclusion to be drawn from the above
discussion is that prime and irredundant Boolean net-
works are far more than merely 100-percent testable for
conventional input and output single stuck faults. In ad-
dition, they are testable for all the internal single stuck
faults as well as for many multiple internal and input stuck
faults as well as extra-device faults.

Remark
The tests for the stuck faults of Theorem 5 and its cor-

ollary are, in principle, supplied as a by-product of the
2-level minimization step (line 11 in ESPRESSO-MLD).
In fact if, as in the proof of the above theorem, cube c*
is being intersected with the representation RJ =
(F , U 0,) of the care off set, then if U* E c*RJ, then U;,

= x* is in internal stuck fault test. Providing the tests as
a by-product of the minimization is simply a matter of
outputting or otherwise recording such vectors x* as they
are encountered in the minimization. 0

Thus the relationship between testing and logic min-
imization is quite profound. In fact, it follows that once
all internal stuck fault tests have been identified and any
discovered logical redundancies removed, the Boolean
network is prime and irredundant. In brief, Boolean net-
works are prime and irredundant if and only if they are
100-percent testable (i.e., for conventional input or out-
put faults and internal single stuck faults). Many multiple
stack faults will usually be testable, and the tests for all
of these various stack fault tests and supplies as a by-
product of the minimization. No separate test generation
phase is necessary.

As a final comment, we observe that one cannot de-
crease the testability of any single function, F J , of a given
Boolean network by making that function prime and ir-
redundant. In fact, every single (input and internal) stuck
fault which was testable prior to calling EXPAND and
IRREDUNDANT-COVER to make FJ prime and irre-
dundant is still testable afterwards. Further, if FJ was not

previously prime and irredundant, there will now exist
tests for input and/or internal stuck faults which were not
previously testable. For example, the prime and irredun-
dant Boolean network of Fig. l(b) has three testable input
faults which were not testable in the given network of Fig.
1 (4 .

B. Logic Minimization as a By-product of Test
Generation

It is clear that all Boolean networks satisfying Defini-
tion 1 may be and-or decomposed into a “refined” Bool-
ean network in which each node is either an OR gate or an
AND gate. We assert that if a test generation tool is used
to generate tests for all input and output single stuck
faults, then the resulting Boolean network is prime and
irredundant. This presupposes, of course, that if any “un-
testable” faults are discovered, the offending node or edge
is deleted and the effect of this simplification is propa-
gated to the rest of the network. In this way, logic min-
imization can be viewed as a by-product of test genera-
tion. However, such a procedure would not take advantage
of the EXPAND IRREDUNDANT-COVER REDUCE
cycle, which is responsible for ESPRESSO-MLD’s abil-
ity to quickly reduce a given Boolean network into a
prime, irredundant and R-minimal form. It is in compar-
ison to this hypothetical procedure that we call ESPRES-
SO-MLD “efficient.”

VII. CONCLUSIONS
We have presented an approach to multilevel minimi-

zation based on don’t care sets implied by embedding
completely specified functions in a Boolean network. The
presentation has including the following:

Definitions of prime and irredundant networks have
been given, which are straightforward extensions of
those for the 2-level case, and which are based on
the notion of equivalence of two Boolean networks.
We have presented an algorithm, ESPRES-
SO-MLD, for multilevel minimization which trans-
forms Boolean networks into prime, irredundant,
and, with high probability, R-minimal form.
We have proven the physically plausible statement
that prime and irredundant networks are 100-percent
testable for conventional single stuck faults, and that
the converse is also true if the internal stuck faults
of Definition 10, which include multiple faults, are
also testable.
We have further shown how the stuck fault tests de-
rive straightforwardly from the minimization pro-
cess.
We have defined the transitive fan-out don’t care sets
both in terms of network equivalence and in terms
of the set of output stuck fault test vectors.
We have provided a proven construction of the rep-
resentation (3.4) of the don’t care set dj of the in-
completely specified function (&, d j , r j) . We have
observed that the representation D j is not invariant
with respect to the minimization of another func-

1 -

BARTLETT er al. : MULTlLEVEL LOGIC MINIMIZATION 739

tion, say Fk (cf. discussion of Example 2, Section
111).

It is a well-known fact that actual failure modes of fab-
ricated chips do not always correspond to the fault model
of single stuck faults. Nevertheless, it is also a fact that
complete testability of the single stuck faults usually leads
to a high percentage of working chips. We conjecture that
the “extra” testability associated with prime and irredun-
dant networks is at least partially responsible for this fact.
The conjecture is based on the hypothesis that designers
‘‘naturally” attempt to design prime and irredundant net-
works, without consciously seeking to do so. As dis-
cussed above, if this occurs, many “extra” faults are
tested.

Some readers may object to referring the transitive fan-
out don’t care set all the way back to the primary inputs,
thus creating something of a misnomer. Note that DTIJ
could have been premultiplied by DZ,, in Definition 6, and
then DTJ really would have depended solely on the tran-
sitive fan-out of F,. We believe that if Definition 6 were
so altered, the remainder of the theory of Section I11 would
remain valid (although we have not carried this exercise
through rigorously). It is not clear whether or not
(E, DT,J) has a more compact representatioh than DT,,,
since although the intersection with E, decreases the
number of minterms, this operation also “fractures” the
representation into smaller cubes. We prefer the form
given for Definition 6, because of the direct connection
to testability established by Theorem 4.

We have also given an exposition of the role of the ES-
PRESSO “REDUCE” operation in “reshaping” prime
and irredundant Boolean networks into more efficient rep-
resentations and in achieving the important property of
R-minimality. It has been observed that this part of the
minimization process is critical in breaking out of the lo-
cal minima associated with merely prime and irredundant
representations. ESPRESSO-MLD achieves high min-
imization quality by calling ESPRESSO-IIC, which loops
through the EXPAND-IRREDUNDANT-COVER-RE-
DUCE sequence. We have noted that while prime and
irredundant status is achieved in one pass in the 2-level
case, an iteration is required in the multilevel case, be-
cause of the interdependence of the individual 2-level
functions embedded in the Boolean network.

Computational results obtained using an approximate
“C” implementation of ESPRESSO-MLD were pre-
sented. We believe that the minimized Boolean networks
7’ obtained for the test problems are prime and irredun-
dant even though an approximated don’t care set was used.

We note that further research into multilevel minimi-
zation as a test generation method might be worthwhile,
especially in cases where 100-percent coverage is desired.
The basic D-algorithm [25] and its variants [16] typically
operate on Boolean Networks for which each function F,
is a primitive gate (NAND, NOR, XOR, etc.). In contrast,
ESPRESSO-MLD operates on a general Boolean Net-
work, where each of the FJ represents an arbitrary 2-level

function. Thus ESPRESSO-MLD is applicable to alter-
native technologies such as domino logic, NMOS, and
CMOS pluricells. Another contrast is that although some
modem D-algorithm variant, e.g., FAN [16], might, be-
cause of its restricted applicability, be much faster in find-
ing a single stuck fault, ESPRESSO-MLD might be faster
in finding all such faults. This is because ESPRES-
SO-MLD can use 0, , once it is constructed, to repeatedly
find all the internal and input stuck faults for the inputs
(and output) of FJ. ESPRESSO-MLD does, in this sense,
offer an interesting alternative to any D-algorithm variant
in finding all stuck fault tests, especially in Boolean net-
works from such technologies as domino logic or complex
CMOS, where individual nodes have “large” Boolean
functions.

Of course we must keep in mind that the mini-
mization .process described in this paper applies to a tech-
nology independent level of representation. This is no
problem for complex CMOS cells, but when standard cells
are required, care must be taken to use a technology map-
per (such a mapper is described in [2]) which preserves
the properties of primality and irredundancy and, hence,
100-percent testability. It seems reasonable to conclude,
therefore, that a Boolean network with one single func-
tion, F,, which is not prime and irredundant should be
minimized if we can afford the computational expense,
else we will be putting “fat” into silicon. Future work
must be done to characterize the domain of applicability
of the reported minimization procedure. There certainly
exist some practical Boolean networks which can be han-
dled, and some which cannot.

ACKNOWLEDGMENT
The authors acknowledge the benefits of helpful dis-

cussion and commentary from M. Lightner, A. R. New-
ton, T. Sasao, and T. Williams. A. DeGeus and D. Gre-
gory contributed valuable technical input as well as
making GE’s “SOCRATES” expert system available to
us for testing. Finally, we note that this work would not
have been possible without the continued support of B.
Chern of the National Science Foundation.

REFERENCES
K . A. Bartlett, W. Cohen, A. DeGeus, and G. D. Hachtel, “Synthe-
sis and optimization of multilevel logic under timing constraints,”
IEEE Trans. Computer-Aided Design, pp. 582-596, Oct. 1986.
K. A. Bartlett, D. G. Bostick, G . D. Hachtel, R. M . Jacoby, M. R.
Lightner, P. H. Moceyunas, C. R. Morrison, and D. Ravenscroft,
“BOLD: A multiple-level logic optimization system,” ICCAD87.
D. Brand, “Redundancy and don’t cares in logic synthesis,” IEEE
Trans. Computers, vol. C-32, pp. 947-952, Oct. 1983.
R. K . Brayton and C. T . McMullen, “The decomposition and fac-
torization of Boolean expressions,” in Proc. Inr. Symp. on Circuits
and Systems, Rome, pp. 49-54, 1982.
R. K . Brayton, G . D. Hachtel, C. McMullen, and A. Sangiovanni-
Vincentelli, Logic Minimization Algorithms f o r VLSI Synthesis.
Boston: Kluwer Academic, 1984.
R. K. Brayton and C. T. McMullen, “The Yorktown logic editor
users manual,” IBM Technical Report, Yorktown Heights, New York,
1984.
R. K. Brayton, G . D. Hachtel, C. McMullen and A. Sangiovanni-
Vincentelli, “ESPRESSO-11: A new logic minimizer for program-

- 1 - 1

740 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 7, NO. 6. JUNE 1988

mable logic arrays,” IEEE 1984 Custom Integrated Circuits Conf.,
Rochester, NY, May 21-23, 1984.

[8] R. K . Brayton and C. T. McMullen, “Synthesis and optimization of
multi-stage logic,” in Proc. IEEE Int. Conf. Computer Design, Rye,
NY, Oct. 1984.

the University of Colorado. She is currently employed by Seattle Silicon.
Her research interests include logic synthesis, design optimization, and sil-
icon compilation.

*
[9] M. A. Breuer, “Generation of optimal code for expressions via fac-

torization,’’ Commun. ACM, vol. 12, no. 6, June 1969.
[IO] M. Breuer and A. Friedman, Diagnosis and Reliable Design of Dig-

ital Systems. Potomac, MD: Computer Science Press, 1976.
[I l l M. R. Dagenais, V. K. Agarwal and N . C. Rumin, “MCBOOLE: A

new procedure for exact logic minimization,” IEEE Trans. Com-
puterdided Design, vol. CAD-5, Jan. 1986.

[I21 J. Darringer, D. Brand, J . Gerbi, W. JoynerandL. Trevillyan, “LSS:
A system for production logic synthesis,” IBM 1. Res. Develop., Sept.
1984.

[I31 G . DeMicheli, “Symbolic minimization of logic functions,” in Proc.
Int. Conf. on Computer-Aided Design, pp. 293-295, Nov. 1985.

[I41 J. Dussault, C . Liaw, and M. Tong, “A high level synthesis tool for
MOS chip design,” in Proc. 22nd Design Automation Con$, Albu-
querque, NM, June 1985.

[I51 A. D. Freidman, Logical Design of Digital Systems, 1975.
[16] H. Fujiwara, Logic Testing and Design for Testability, The MIT Press,

1985.
[17] D. Gregory, K. Bartlett, A. J. deGeus and G . Hachtel, “SOCRA-

TES: A system for automatically synthesizing and optimizing com-
binational logic,” 23rd ACM/lEEE Design Automation Conf. , June
1986.

[18] G. D. Hachtel and R. M. Jacoby, “Algorithms for multi-level tau-
tology and equivalence,” in Proc. IEEE Int. Symp. on Circuits and
Systems, Kyoto, Japan, June 1985.

[19] G. D. Hachtel and R. M. Jacoby, “Verification algorithms for VLSI
synthesis,” in Proc. NATO AS1 on Logic Synthesis and Silicon Com-
pilation for VLSI, The Netherlands, 1987.

[20] S . J. Hong, R. G. Cain and D. L. Ostapko, “MINI: A heuristic ap-
proach for logic minimization,” IBMJ. Res. Develop., vol. 18, pp.
443-458, Sept. 1974.

[21] T. Hoshino, M. Endo, and 0. Karatsu, “An automatic logic syn-
thesizer for integrated VLSI design systems,” IEEE 1984 Custom In-
tegrated Circuits Conf. Proc., Rochester, NY, May 21-23, 1984.

[22] E. L. Lawler, “An approach to multilevel Boolean minimization,”
J . ACM, 1964.

[23] S . Muroga, VLSI System Design When and How to Design Very-Large-
Scale Integrated Circuits.

[24] B. C. Rosales and P. Goel, “Results from application of a commer-
cial ATG system to large-scale combinational circuits,” in 1985 Int.
Symp. on Circuits and Systems Proc., Kyoto, Japan. pp. 667-670.

[25] J . P. Roth, Logic Synthesis and Verification. Potomac, MD: Com-
puter Science Press, 1980.

[26] J. P. Roth, “Minimization by the D-algorithm,” IEEE Trans. Com-
puters, vol. 35. May 1986.

[27] -, private communication.
[28] R. Rudell, A. Sangiovanni-Vincentelli and G . DeMicheli, “A finite-

state machine synthesis system,“ in Int. Symposium on Circuits and
Systems, Kyoto, June 1985, pp. 647-650.

[29] R. Rudell and A. Sangiovanni, “ESPRESSO MV: Algorithms for
multiple-valued logic minimization, in Proc. Cust. Int. Circ. Conf.,
Portland, OR, pp. 230-234, May 1985.

[30] G. L. Smith, R. J . Bahnsen, and H. Halliwell, “Boolean comparison
of hardware and flowcharts,” IBM J . Res. Develop., vol. 26, no, 1 ,
Jan. 1982.

New York: Wiley, 1982.

Robert K. Brayton (M’75-SM’78-F’81), for a photograph and a biog-
raphy, please see page 437 of the April 1988 issue of this TRANSACTIONS.

*
Gary D. Hachtel (S’62-M’65-SM’74-F’80), for a photograph and a bi-
ography, please see page 640 of the May 1988 issue of this TRANSACTIONS.

*
Reily M. Jacoby, for a photograph and a biography, please see page 640
of the May 1988 issue of this TRANSACTIONS.

*
Christopher R. Morrison received the B.S. de-
gree in electrical engineering from Yale Univer-
sity, New Haven, CT, in 1977.

From 1977 to 1982, he was with IBM at the
East Fishkill Facility in Hopewell Junction, NY.
His last assignment at 1BM was as a Senior As-
sociate Engineer in the Computer Aided Circuit
Design Department working on the circuit simu-
lation program ASTAP. Since 1982, he has been
on educational leave from IBM at the University
of Colorado at Boulder, studying for the Ph.D

degree in electrical engineering. He received an IBM Fellowship award for
academic years 1984-85 and 1985-86. He has done research work in rout-
ing algorithms, in particular, channel routing, and is currently working on
optimization algorithms for multilevel combinational logic circuits. He has
cowritten the program ESPRESSO-MLT (multilevel logic minimizer) and
has written the program TECHMAP (technology mapper). In addition, he
assembled the BOLD (Boulder Optimal Logic Design) system

*
Richard L. Rudell received the B S degree in
electrical engineering from the University of Min-
nesota in 1983 and the M S . degree in electrical
engineering from the University of California in
1986 He is currently working towards the Ph D
degree in electrical engineering at the University
of California, Berkeley

From 1980 to 1983 he worked part-time at the
Honeywell Corporate Computer Science Center in
Minneapolis in the area of computer-aided design
This work was in the areas of the test pattern gen-

eration, high-level synthesis tools, and floor planning algorithms for VLSI
More recently, he has spent the summers of 1984 and 1985 working at the
IBM T. J. Watson Research Center in the area of multiple-level logic syn-
thesis. His current interests are in the area of multiple-level logic optimi-
zation, including design specification, factoring of Boolean equations,
multiple-level minimization, and optimal technology mapping

*
[31] T. W. Williams, private communication.
[32] L. Trevillyan, W. Joyner, and L. Berman. “Global flow analysis in

automated logic design,” IEEE Trans. Cclmput., vol . c.35, pp, 77-
81, Jan. 1986.

Albert0 Sangiovanni-VincenteIli (M’74-SM’81-F’83), for a photograph
and a biography. please see page 519 of the April 1988 issue of this TRANS-
ACTIONS.

* *
Karen A. Bartlett received the B.S. degree in
computer science from Washington University, St.
Louis, MO, in 1980 and the M.S. degree in elec-
trical engineering from the University of Colo-
rado, Boulder, in 1986.

From 1980 to 1983 she was employed by GTE
Laboratories in Waltham, MA, where her projects
included symbolic layout and VLSI database de-
sign and evaluation. Since June 1983 she has been
active in the area of logic synthesis, first at Gen-
eral Electric’s Microelectronic Center and then at

Albert R. Wang received the B S degree i n com-
puter science and applied mathematics from the
University of California, San Diego, in 1984 He
is currently working towards the Ph.D degree in
the Department of Electrical Engineering and
Computer Sciences at the University of Califor-
nia, Berkeley

His current research interests include multiple-
level logic synthesis and optimization, multiple-
level logic verification, and sequential logic ayn-
thesis and optimization

1 -

