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Abstract-This paper describes a new approach for the minimization 
of multilevel logic circuits. We define a multilevel representation of a 
block of combinational logic called a Boolean network. We propose a 
procedure, ESPRESSO-MLD, to transform a given Boolean network 
into a prime, irredundant, and “R-minimal” form. This procedure 
rests on the extension of the notions of primality and irredundancy, 
previously used only for two-level logic minimization, to combinational 
multilevel logic circuits. We introduce the new concept of R-minimal- 
ity, which implies minimality with respect to cube reshaping, and dem- 
onstrate the crucial role played by this concept in multilevel minimi- 
zation. We give theorems which prove the correctness of the proposed 
procedure. Finally, we show that prime and irredundant multilevel 
logic circuits are 100-percent testable for input and output single stuck 
faults, and that these tests are provided as a by-product of the mini- 
mization. 

I. INTRODUCTION 
N THIS PAPER an “efficient” procedures is presented I for obtaining high-quality heuristic multilevel logic 

minimization results for a given logic network and mak- 
ing it much more testable than merely 100-percent test- 
able for the conventional input and output single stuck 
faults. The approach is based on determining the com- 
plete don’t care set for each 2-level function embedded in 
a network of such functions. Once this is done, a 2-level 
minimizer can be used to minimize the subfunction. The 
high degree of testability achieved by this approach re- 
quires no separate test generation processing, since all 
tests are produced as a by-product of well-known 2-level 
minimization procedures. 

We use the term “efficient” advisedly. It is clear that 
all procedures for reducing either two-level or multilevel 
Boolean networks into prime and irredundant form must 
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be NP-complete or co-NP-complete ( i .e . ,  all procedures 
have O(2“)  complexity). But given this ominous sign of 
intractability, fairly large Boolean networks may yet be 
minimized (up to 60 inputs at the time of this writing) on 
available workstation size computers. In this context we 
use “efficient” only in comparison to the trivial approach 
of iteratively calling an automatic test generation tool and 
modifying the network by hand each time a nontestable 
fault is discovered (cf. Section VI-B below). Here the 
“efficiency” of the presented procedures is derived from 
the application of two-level logic minimization proce- 
dures of proven efficiency to the multilevel case (cf. the 
discussion at the beginning of Section 111). We expect that 
these procedures will excel in applications where indi- 
vidual nodes of the Boolean may have large sum-of-prod- 
ucts representations. 

The subject of 2-level logic minimization is well de- 
veloped and well understood [5]. We know exact tech- 
niques which provide minimum representations of the 
given logic (cf. [23], [ l l ] ,  [28]). We also have seen two 
generations of programs for generating near minimum 
logic representations (cf. SHRINK [25], MINI [20], ES- 
PRESSO-I1 [7], ESPRESSO-IIC [28], ESPRESSO-MV 
[29]). We also know how to determine if two functions 
are equivalent and when we have irredundant logic (cf. 
[25], [30], [lS]). These notions have been extended to 
multi-output functions, and functions of multi-valued 
variables [20], [29]. Significant progress has been made 
on the state-assignment problem and other encoding prob- 
lems using two-level logic [13]. In short, this is a well- 
developed science. 

In contrast, multilevel minimization is less structured, 
more difficult, and relatively new. A worthwhile long- 
term goal is to bring understanding of this subject up to 
the level of science currently established for two-level 
minimization. Multilevel minimization as a science suf- 
fers from the same things that make it attractive for im- 
plementing logic, namely, it is very flexible. Hence, the 
problems are not so well defined. In contrast, for two- 
level minimization, we often have in mind a PLA imple- 
mentation and, therefore, the minimization problem (i.e.,  
minimize the number of product terms) can be abstracted 
and made largely independent of the technology of the 
implementation. 

Multilevel synthesis has the advantage over PLA syn- 
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thesis in that it is good for representing and implementing 
any type of logic. Typically, logic has been divided into 
two groups, control and data-flow logic, with control logic 
perceived as suitable for PLA implementation while data- 
flow usually requires multilevel logic (sometimes called 
random logic). This sometimes forces an unnatural de- 
composition, with the control logic made by PLA gener- 
ators and the data-flow hand designed or obtained from 
parameterized libraries. Multilevel logic is suitable for all 
types of logic, and automatic and optimal multilevel logic 
synthesis forces no such dichotomy on the user. In many 
applications it is more suitable in fact to mix the two types 
of logic, for example, for more optimal logic (i.e., by 
capturing mutual don’t care situations), because of layout 
considerations, or for easier specification at the functional 
level. 

Historically, the literature on multilevel minimization 
consists mainly of results on factoring (i.e.,  decompos- 
ing) a single Boolean function [22], [9], [4]. Emphasis in 
the present paper is on optimizing a given (i.e., already 
decomposed) structure. Since multilevel logic is more dif- 
ficult to optimize, most of the designs involving multi- 
level logic have been carried out by hand, using a “bag 
of tricks.” Recently, several approaches to automatic 
multilevel logic optimization have been proposed and have 
found application in a variety of technologies [12], [6], 
[17], [14], [21]. In all these approaches, emphasis has 
been placed on efficient decomposition and factorization 
techniques which create a certain multilevel logic struc- 
ture, which in this paper we call a Boolean network. Cre- 
ation of this structure establishes the overall architecture 
of the logic to be implemented, and roughly establishes 
the final point to be reached on the area-delay tradeoff 
curve; it has been shown in [2] that this process alone 
seldom comes close to realizing the full benefits of min- 
imization. However, two major tasks still need to be ac- 
complished before the full potential of a given decompo- 
sition may be reached: a) making the Boolean network 
minimal with respect to its own intrinsic structure (i.e., 
finding an optimal point on the area/delay tradeoff curve) 
and b) making it testable. Fortunately these objectives are 
not mutually exclusive, and in fact are profoundly related 
and can be simultaneously realized. 

The connection between logic minimization and test 
generation is well known [27], [3 I] ,  [26], but has not been 
systematically investigated. Even modem books on mul- 
tilevel circuit design [15] and on test generation and de- 
sign for testability [16] contain no mention of this rela- 
tionship. The connection rests on the simple observation 
that the absence of a test is associated with redundancy in 
the Boolean network. In 2-level logic the sources of re- 
dundancy are well understood and efficient algorithms are 
available for making a 2-level representation of an incom- 
pletely specified logic function prime and irredundant. 
However, the equivalent concepts for multilevel represen- 
tations have not been fully developed, and only the D- 
algorithm and its variants [16], [24], [3] have been used 
to identify and remove redundancy. These algorithms 

often incur great computational expense. An efficient al- 
gorithm is badly needed since none of the factorization 
and decomposition techniques yet proposed is guaranteed 
to produce irredundant logic. Such an algorithm is the ob- 
jective of our research, and would have great potential 
impact because of the testability requirement. 

We propose in this paper a don’t care algorithm for 
making a Boolean network prime, irredundant, and R- 
minimal (this last property is explained below). Further, 
among different possible prime and irredundant Boolean 
network representations of a given logic function, the pro- 
posed approach utilizes two techniques to choose a su- 
perior one. These techniques are: 1) utilization of the EX- 
PAND and IRREDUNDANT-COVER heuristics of the 
ESPRESSO-I1 2-level logic minimizer, and 2) develop- 
ment of ESPRESSO’S REDUCE algorithm (which is a 
limited form of the powerful but expensive decomposition 
technique known as Boolean division [6]) to make the 
Boolean network R-minimal. Further, we shall show that 
primality can be regarded as a special type of irredun- 
dancy, and that prime and irredundant Boolean networks 
are 100-percent testable for the usual single stuck faults, 
as well as for other types of “internal” stuck faults. Thus 
we believe that the networks produced by our procedures 
are the first to be synthesized with guaranteed 100-percent 
testability, as well as minimality comparable to that avail- 
able with state-of-the-art 2-level minimizers. For exam- 
ple, the work of [26], although based on the D-algorithm, 
did not claim complete testability, and was designed for 
the 2-level case. Even if that approach were extended to 
the multilevel case, it would not be able to promote a gen- 
eral Boolean network to prime, irredundant, and R-mini- 
mal status. 

Briefly stated, R-minimality means that no one of the 
individual 2-level functions in the Boolean network can 
be reexpressed in terms of one or more of the others to 
map the given prime and irredundant Boolean network into 
another one with less logic cost. This important point is 
illustrated in Fig. 1, which shows 4 equivalent Boolean 
networks. The network of Fig. ](a) has 3 nodes (gates, 
functions), and is neither prime nor irredundant. Node F3 
does not have tests for the following input stuck-at faults: 
xI, and x 2  stuck-at-1 and y 2  stuck-at 0 (at the inputs of 
F3).  The equivalent Boolean network of Fig. l(b) is prime, 
irredundant, and 100-percent testable and requires 9 liter- 
als and 5 product terms. It is not R-minimal. The equiv- 
alent network of Fig. l(c) is similarly prime, irredundant, 
and testable but, by virtue of a call to REDUCE, is R- 
minimal, and requires only 2 nodes, 5 literals and 3 prod- 
uct terms. This example, as well as the concept of R-min- 
imality, will be examined more closely in Section I11 be- 
low. 

We further show that the problem of transforming a 
given Boolean network into prime, irredundant, and R- 
minimal form can be reduced to that of solving the same 
problem on a sequence of 2-level, single-output represen- 
tations of the incompletely specified logic functions real- 
ized at each node of the Boolean network. This is achieved 
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DXI = DX2 = 0 D X , = x ,  D X 2 = r 2  
F,’=r,r2 + y ,  
F ~ ’ = x I Q x z  F ~ ” ’ = x , + x I  
F < = X , X z  Prime. Irrcdundanl. 100% Tcruhlc 
Prmc. I r rcdunbnt  and 100% Tcslablc. and R~hl in imal  (lowcr cos1 h a t  q<)  

F ,”’ = j 2  

Fig. 1. Progressively optimized Boolean networks. 

by determining a representation of the don’t care set for 
each of these incompletely specified functions. 

Our approach is rigorous in the sense that we prove that 
at the end of the proposed procedure, the Boolean net- 
work produced is definitely prime, irredundant, and prob- 
ably R-minimal. This network is not only 100-percent 
testable, but the stuck fault test vectors “fall out” as a 
straightforward by-product of the aforementioned min- 
imization of the component 2-level functions. 

The sequel begins in Section I1 with a discussion of 
basic definitions and background which focuses mainly on 
the Boolean network concept. In Section I11 we introduce 
the topic of multilevel logic minimization and discuss an 
example in detail. Section I11 gives a characterization of 
the don’t care sets, shows how to construct them, and 
proves that this construction is correct. Section IV dis- 
cusses the proposed procedure, which we call ESPRES- 
SO-MLD (ML is for MultiLevel). In Section V we dis- 
cuss some experimental results, and in Section VI we 
present our testability results and discuss, in detail, the 
connection between multilevel logic minimization and 
testability. In Section VII, we present conclusions and 
discuss the prospects for future research. 

11. BACKGROUND AND BASIC DEFINITIONS 
The primary object in our approach to multilevel logic 

optimization is a Boolean network, defined formally be- 
low, which is a technology-independent multilevel struc- 
ture for representing an incompletely specijied logic func- 
tion [ 5 ] .  The Boolean network may be regarded as an 

abstraction of an interconnected set of logic gates, as 
might be specified by a netlist of standard cells. Consid- 
ered in isolation, each gate in this network realizes a com- 
pletely specified logic function, but in the context of the 
network, it realizes an incompletely specified subfunc- 
tion. Each interconnection represents a signal net associ- 
ated with the output of one of the gates. Before formally 
defining a Boolean network, we briefly introduce the con- 
cepts of a) completely and incompletely specified Boolean 
functions and b) their representations. 

An incompletely specijied Boolean function ( f, d,  r )  is 
a set of 3 completely specijiedfunctions f :  B‘ -+ B (the on 
set), d :  B‘ -+ B (the don’t care set), and r :  B‘ + B (the 
off set). The minterms off, d ,  and r completely partition 
the vertices of the Boolean t-cube B‘. Here f may be 
thought of as a function, f( U ) ,  of a t-dimensional vector 
U = ( u l ,  v2 ,  * , U,). A simple incompletely specified 
logic function is illustrated in Fig. 2. In this example U 

= ( u I ,  v 2 ,  u 3 ) ,  t = 3 ,  a n d f ( v )  = 1 for U E (000, 101, 
010, l l l } ,  e lsef(v)  = O ; d ( v )  = 1 f o r v E  { 100, l lO},  
else 0; and r ( u )  = 1 for U E (001,  011 } ,  else 0. An 
incompletely specific logic function reduces to a com- 
pletely specified function when d = 0, i.e., there is no 
don’t care set. 

Note that a completely specified function f ( U )  may be 
independent of certain of the U , ,  and this fact is usually 
reflected in the selection of a representation F o f f (  U ) .  

The variables explicitly represented in F are called the 
support of F.  One representation o f f i s  the sum of prod- 
ucts form, e.g., 

F = ~ 1 Z 3  + 5 1 ~ 3  + E 2  + ~2 

which is also called the disjunctive normal form. Note 
that here the support of F is { u l ,  u2, u3 }, and that a vari- 
able which a function does not depend on, like o2 in the 
above example, may appear explicitly in the support of 
the function. Other representations are possible and sig- 
nificant, e.g., conjunctive form or factored form [22]. 
However, in this paper we use disjunctive form since we 
rely heavily on 2-level, sum-of-products-based logic min- 
imization procedures such as ESPRESSO-I1 as subpro- 
cedures in our approach to multilevel logic minimization. 

Product terms like v,V3 and z / I ~ 3  will be called cubes 
in the sequel. Each cube consists of a set of literals, and 
each literal appears in one of the two forms U ,  or 3,. If 
‘ ‘ U , ”  appears it stands for the predicate “ul  = 1,” and if 
U ,  appears it stands for the predicate “ U ,  = 0.” Thus the 
cube u I V ~  stands for the conjunction of predicates ul = 1 
and v3 = 0. A cube with fewer literals has, of course, 
more vertices on the Boolean t-cube. In this sense we can 
view the cube vIV3 as the intersection of the subcubes 
(half spaces of the Boolean t-cube) u1 = 1 and u3 = 0 
(cf. Fig. 2, in which the dimension of the Boolean t-cube 
is t = 3).  

- 

Dejinition 1 (Boolean Networks) 
As illustrated in Fig. 3 ,  a Boolean network, 7, is a pair 

( F , P O ) , w h e r e F =  { F , , j =  1 , 2 ,  e - -  , m } i s a s e t o f  
m given representations of the on setsf, of incompletely 
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Since 7 is completely determined by the pair ( F ,  P O ) ,  
we write q = ( F ,  PO) .  However, 7 has further structure, 
determined by the support sets SUPP (F,)  of the represen- 
tations, 4 .  These sets determine the structure of a di- 
rected graph, G = (N, E), with nodes 

N =  { 1 , 2 ,  , m , m  + 1, , t }  
~ r n  I 

t = I U S U P P ( F , ) /  > m. 
;= 1 

With each node i E N, we associate a logic variable U , .  

With the first m nodes of N we associate the representation 
F, and its corresponding variable y,, so that U ,  = y,, i = 

1 ,  2, * * , m. (This duplication of notation is quite useful 
in the sequel). However, no F, is associated with the last 
n = t - m logic variables in the vector U .  Instead, these 
nodes are identified with primary inputs of 7 ,  and are as- 
sociated with duplicate logic variables PI = { x l ,  x2, 
* - 

* , n. Note that 
the vector U can be viewed as the catenation v = ( y, x) .  

For each node j E N, we define the fan-in set (for short 
fan-in) FZ,, as follows. I f j  I m (intermediate variables), 
FZ, = { i 1 U ,  E SUPP (F,) } , but i f j  > m (primary inputs) 
FZ, = 0. Thus the primary input nodes are terminal nodes 
of the directed graph G. The edge set E of G contains 
directed edge (i, j ) if node i is in the fan-in of node j, 
i.e., i E FZ,. Then we may define the fan-out, FO,, of node 
j to be the set of all nodes i E N for which there is an edge 
( j ,  i ) E E.  Similarly, we define the transitive fan-out, 
TFO,, to be the set of all nodes i E N  such that there exists 
a (directed) path f r o m j  to i in G, and the transitivefan- 
in, TFZ,, to be the set of all nodes i E N for which there 
exists a path from i to j in G. By convention, j E TFO,, 

It is important to note that although 4 depends explic- 
itly only on the variables vk E S U P P ( F , ) ,  we may for- 
mally view each F, as a function of the entire vector U = 
( y, x) (recognizing, of course, that& may be functionally 
independent of many of the vk ). Thus we may write 

F=XIX3+x,x3 0 = O N = l  

, x,}. Thus U , + ,  = x, i = 1 ,  2, r1  =oFF=o R = X , x ,  
L J  

=DON’TCARE =Oor 1 D=XlX3 

Fig 2 .  Incompletely specified Boolean function. 

Pnmary ouiputs Po = (1,2,31 

lntcrmcdmcs I V  = (1.2.3.4.5 6 )  

but j TFZ,. 0 

A (?) /j Rimarylnpuls PI= ~7.8,9,10,11,12,131 

m = 6 = 1 I V I  
n = 7 = I P I I  

FI B m + n  --f B 
y I  =FICy,x) l<j<rn 

vI =y, l<j<m 
v,+, = X I  l<J<n 

Fig. 3 A multilevel Boolean network 

specified functions (&, d,, r , ) , j  = 1 ,  2, , m. With 
each F, is associated a “local output” logic variable y,, 
in the set ZV = { yI ,  y 2 ,  * , y,}, which we call the 
intermediate variable set. The specified primary output 
set, PO E { 1 ,  2, . . * ,  m } ,  identifies the subset { y, I i E 
P O }  G ZV of the outputs of the F, as observable primary 
outputs of the Boolean network. It is convenient to refer 
to this subset as the primary output vector z ,  defined so 
t h a t z k = y p o ( k ) , k =  1 , 2 ,  ’ * .  , p , P =  [ P O I .  

= yj = = 4 ( y ,  .) 
= F , ( y ( x ) , x ) ,  j =  1 , 2 ,  * . .  , m (2.1) 

as the basic constitutive relations of 7 .  Note that as indi- 
cated in the last identity, if (2.1) is satisfied f o r j  = 1 ,  2, 
. . .  , m,  then the solution vector v ( x )  = ( y ( x ) ,  x )  is the 
vector of values appearing at the nodes of the Boolean 
network in response to the primary input vector x. In par- 
ticular, z(x)  represents the values at the primary outputs 
of 7 in response to x, i.e., the same values that would 
have been obtained by logic simulation of the vector x. 
Thus given that (2.1) is satisfied, z(x) represents the IO 
(input/output) map of 7 .  

Thus a Boolean network 7 is a representation of a set 
of incompletely specified functions, ( f ( i ) , d ( i ) , r ( i ) ), 
one for each primary output z ,  (x ) .  Thus z ,  ( x )  can be 
regarded as the “IO map” from PI to PO, of the Boolean 
network 7 .  A representation, OX,, of the completely spec- 
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ified “don’t care” function d (  i ) must come from the sys- 
tem designer. We refer to OX, as the external don’t care 
set, which arises from two phenomena. First, for a par- 
ticular design the designer may decree that a particular 
primary input vector x E B“ will never occur. The vector 
x constitutes a don’t care minterm, and such minterms are 
don’t care for all primary outputs. The set of all such min- 
terms is labeled DXP. Second, the designer may state that 
for any of the outputs z,, i E PO, the value of zi will not 
be used for a set of primary input vectors (minterms) in 
the set DXO,. Thus for each primary output the total ex- 
ternal don’t care set can be written 

D X ~  = DXP + D X O ~ ,  i = I ,  2, . . - , p = I PO I .  
(2 .2)  

Equation (2.2) gives a representation of the completely 
specified functions d ( i ) ,  i = 1, 2 ,  * , p (don’t care 
sets) associated with the primary outputs of a Boolean net- 
work. A principal objective of the sequel is to identify 
representations of the analogous don’t care sets for each 
of the incompletely specified functions associated with the 
intermediate variables of a given Boolean network (and 
their corresponding internal nodes). 

A key concept in logic optimization is that of Boolean 
equivalence. In the multilevel context, we wish to estab- 
lish when a given Boolean network, 7, can be replaced by 
another one, q ’ ,  with an equivalent IO map, z ’ ( x )  = 
z(x). That is, the relation between primary inputs and 
primary outputs is preserved. Thus 7’ represents the same 
set of incompletely specified functions ( f ( i  ), d (  i ), 
r(i)), v i  E PO. 

Dejinition 2 (Equivalence) 
Boolean networks 7 = ( F ,  P O )  and 7’ = ( F ’ ,  PO‘ ) 

are said to be equivalent (written 17 = 7’ ) if there exists 
a permutation q of { 1, 2, * - , p }  such that for each 
primary output z : ( x )  in PO‘, z : ( x )  = z q ( , ) ( x )  for all x 

The permutation, q ,  in Definition 2 is needed to identify 
the proper correspondence between the primary outputs 
of the two Boolean networks, which may be very different 
structurally. For simplicity, we assume, without loss of 
generality, that q is the identity permutation. 

We have, in separate research, demonstrated that a more 
general definition of equivalence can be stated, but this 
requires more information about the external environment 
than just the external single-output don’t care set DX, for 
i E PO. For example, the external environment may have 
outputs i a n d j  connected only to the inputs of an exclusive 
or gate, in which case the environment would be unable 
to distinguish between outputs y, = 1, y, = 0, and y, = 
0, y, = 1. We will treat this more general definition of 
the concept of don’t cares in a later paper. For now, we 
observe that this generalization will enable us to handle 
Boolean networks with nodes having multiple-output 
Boolean functions rather than just single-output Boolean 
functions. 

Note that Definition 2 requires only that the primary 

$ DXq(1,. 0 

outputs of two Boolean networks match for each care in- 
put vector. In particular, i t  is not necessary to have iden- 
tity or even correspondence between the intermediate vari- 
ables of the two networks. For example, a 4-level net- 
work could be equivalent to a 2-level network. The 2- 
level network specified by the following equations is 
equivalent to those of Fig. 1: 

FI = ~ 1 . ~ 2  + 51x2 (2.3a) 

F2 = ~ 1 x 2  + 51x2. (2.3b) 

The task of minimizing a Boolean network 17 consists 
of iteratively transforming 7 into an equivalent network 
7’ where 7’ is smaller than 7 in some sense. Two prop- 
erties of minimality, similar to those for the classical 2- 
level case, are especially relevant to the multilevel case 
(since Boolean networks having these properties are 
shown below to be 100-percent testable for stuck faults). 

Dejinition 3 (Prime and Irredundant Boolean Net- 
works) 

Given a Boolean network 7 = ( F ,  P O ) ,  a cube c of the 
2-level representation of F, is prime if no literal of c can 
be removed without causing the resulting network 17’ to 
be not equivalent to 7. In more formal terms, 7’ = ( F ’ ,  
P O )  is a Boolean network for which FJ’ = F,, V j  # i and 
F,’ = (F, - { c } )  U c’, where c’ is c with one of its 
literals removed. Similarly, a cube c of F, is irredundant 
if c cannot be removed from the representation of F, with- 
out causing the resulting network 7’ to be not equivalent 
to 7. A Boolean network 7 = ( F ,  P O )  is said to be prime 
if all the cubes in each of the representations F, of 7 are 
prime, and irredundant if all of these cubes are 
irredundant . 0 

Note that these two concepts are associated with local 
minima of a cost function which is nondecreasing in the 
total number of cubes and literals required to represent the 
incompletely specified logic functions, realized by the 
given Boolean network. 

We complete this section by defining the cofactor op- 
eration on both representations of functions and on Bool- 
ean networks. 

Dejinition 4 (Cofactor Operation) 
The cofactor of a sum-of-products representation, F = 

{ c,}, of a Boolean function with respect to a literal v, is 
defined to be 

( W C ,  = U  ( C l ) , , .  

Here if literal vJ is contained in c,, (c,),, is just c, with 
literal U ,  deleted, else if literal E, appears in c,, (c , ) , ,  = 
0. If neither vj or EJ appears in  c,, then ( c , ) ( ~  = c,. 

The cofactor of a Boolean network 17 = ( F ,  P O )  with 
respect to a literal vJ is a Boolean network, q,., = (F,,, 
P O ) ,  where FZ,] = { (Fl)C)} is the set of cofactors of the 
representations { F, } of the original Boolean network. We 
denote the vector of logic variables in this cofactored net- 
work to be ( U ) , , ,  with components ( v ~ ) , ~ ,  ( v 2 ) , , ,  . . - ,  
(V,)*I]. 

1 
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Similar definitions apply when the cofactor is with re- 
o 

This definition is crucial to computation of the represen- 
tation, D,, of the don’t care sets, d,, of the incompletely 
specified functions ( A ,  d,, r , )  which implicitly define the 
structure of the Boolean network. Note in particular that 
the edges of the Boolean network v,, are defined by the 
support of the (F,),,,, from which the variable vJ is now 
totally missing. Thus each node i in the fan-out of nodej  
in 11 is disconnected from node j in 7 (’,. 

111. MULTILEVEL LOGIC MINIMIZATION 
Given a Boolean network 7, it is of obvious interest to 

obtain an equivalent prime and irredundant network 7’. 
One possible procedure to obtain this simplification is to 
examine each cube as well as each literal in first encounter 
order, and for each such cube or literal to construct a sim- 
plified network v’, identical to 7 except for the removal 
of the selected cube or literal. Then Definition 2 may be 
embodied in a computer program such as [18] to check if 
11 = 7’. If so, the cube or literal is redundant, and can be 
removed from 7. If no cube or literal can be so removed, 
then the resulting Boolean network is prime and irredun- 
dant (Definition 3). This elementary minimization pro- 
cedure is the one used to obtain the Boolean network of 
Fig. l(b) from that of Fig. l(a). This procedure is inti- 
mately related to the way in which the basic D-algorithm 
(and its variants) [16] is used in test generation algo- 
rithms. However, such elementary procedures are not ef- 
ficient, and do not lead to high-quality minimization re- 
sults (compare Fig. l(b) and (c)). 

We present here a more efficient procedure which ap- 
pears to give high-quality multilevel minimization re- 
sults. The procedure is based on 1) computing, for each 
intermediate nodej  in 7, a representation DJ of the don’t 
care set dJ of the incompletely specified function ( A ,  d,, 
r J )  associated with n o d e j , j  = 1, 2, * * e ,  m; and 2) min- 
imizing the representation F, of with respect to DJ by 
calling an efficient 2-level minimizer (we use the ES- 
PRESSO-IIC program [5]  for this purpose) to render 5 
prime, irredundant, and approximately R-minimal. Note 
that the properties of primality and irredundancy arise 
from both the representation F, and the Boolean network, 
7, in which it is embedded. This is because, considered 
in isolation, the FJ are representations of completely spec- 
ified functions, but embedded in the network, they are 
representations of incompletely specified functions, i.e., 
they have a don’t care set. Thus a network of individually 
prime and irredundant functions, such as that shown in 
Fig. l(a), may be neither prime nor irredundant. 

To discover such redundancies, we identify the don’t 
care sets generated by the structure of a Boolean network. 
We illustrate this by identifying a representation, D 3 ,  of 
the don’t care set d3 of node 3 of the Boolean network of 
Fig. l(a). For reasons discussed later in this section, we 
can show that the 5-cube set 

spect to the literal P J .  

0 3  = J ~ ( x I X ~  + 21x2) + ~ ~ ( x I x Z  + XIX2) + 21x2 
is a valid representation of d,, assuming OXi = 0, i E 

PO = { 1, 2 3 ,  i.e., that the Boolean network 7 has no 
external don’t care set. Since FIX2 E D ,  it is clear that 
cube FIX2 of F3 is redundant and can be deleted. Further, 
since y2xIx2 E D3 ,  and y 2 x l x 2  + j Z x I x 2  = x I x 2 ,  literal 
L2 may be dropped from cube x I x 2 j 2  in F3.  After these 
two typical minimization steps we have derived the prime 
and irredundant network 7’ (Fig. l(b)) from 7 and have 
in fact shown that 7‘ = 7. 

The problem we faced in our research was how to com- 
pute a representation DJ in the general case. To show how 
this is done, we define two additional don’t care sets DZV 
(the intermediate variable don’t care set, common to all 
nodes j = 1, 2, . , m )  and DT (the transitive fan-out 
don’t care set, which is specific to n o d e j ) .  These are to 
be appended to the appropriate external don’t care set to 
form D J ,  as discussed below. We begin by defining DZV. 

Dejinition 5 
The “overall” intermediate variable don ’t care set, 

DZV, is defined by 
m 

DZV = DZV, (3. l a )  
J = 1  

where 

DZV, = y J q  + L J F ,  = yJ 0 F,. (3 . lb)  

Note by DeMorgan’s law, we have 
m m 

m = rI ( y J  = F , )  = n ( j J q  + y ,F , ) .  0 

(3. I C )  
It is thus clear that for any vertex in v E B‘ (represented 
by the overall vector U of 7) which satisfies (2.1) f o r j  = 
1,2 ; . .  , m ,  it follows that v E m. Conversely, if any 
of the equations yJ = F, ( U )  is not satisfied, we have U E 
DZV. These observations will be used repeatedly in the 
sequel. Note that in the above example, the first 4 terms 
in D ,  represent the contribution of DZV,. 

We note that each member of the Clo and Coo “forcing” 
sets defined in [32] corresponds to two literal implicants 
of DZV. Thus their recurrence relation provides, in linear 
time, a proper subset of DZV. 

The origins of the transitive fan-out don’t care set rep- 
resentation DT, associated with node j are subtler, so a 
detailed discussion of these don’t care terms is deferred 
until later in this section. However, in simple cases such 
as that exemplified in Fig. 1, the transitive fan-out don’t 
care set has a straightforward construction. Suppose that 
V i  E FO,, 

i E  PO and FO, = 0. (3.2a) 

J = 1  J =  I 

Then 

DT, = n Ell (3.2b) 
IGFO, 

where 
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Note that the condition (3.2a) applies in the case of 
function F3 of the Boolean network of Fig. l(a) for which 
( F I ) 4 3  = X I X 2  + 1 = 1 and ( F l ) y 3  = FIX2. Thus E13 = 
( 1 )  ( X I X 2 )  = X I X 2  and DT3 = E13 = T I T 2 ,  which can be 
seen to be the last term in the representation D3 given 
above. 

A physical interpretation of DT, can be given as fol- 
lows. Consider a primary input vector, x ,  and a corre- 
sponding solution vector U ( x )  = ( y ( x ) ,  x ) ,  for which all 
the primary outputs of 17 are insensitive to the values yJ 
takes on under this set of inputs. Note in the example that 
if x ,  = 0, x2 = 0 is applied to 11, the primary outputs are 
FI = 1 and F2 = 0, regardless of the value of y 3 .  Thus 
DT, can be seen to specify a set of values for the vector x 
such that the value of each of the primary outputs is in- 
sensitive to the value of y , ,  and, by extension, to the rep- 
resentation F J .  As we shall show in Section VI, DT, is 
simply the union of primary input vectors which do not 
test for either yJ stuck-at-1 or y,  stuck-at-0. Each such pri- 
mary input vector represents a cube (not necessarily just 
a vertex) in the overall space B‘, which is don’t care for 
all the primary outputs since none of them are affected by 
F,. The representation DT, of the transitive fan-out don’t 
care set is the union of all such primary input cubes. 

We have now given sufficient background to make a 
precise definition of DT, meaningful. 

Dejinition 6 (Transitive Fan-out Don ’t Care Set) 
We denote, for each primary output i E PO f l  TFO,, 

the “transitive fan-out’’ don ’t care set associated with 
function j by 

DTIJ  = (’ E B” 1 ( U f ) u J  (.) = ( x ) }  (3.3) 

where ( U , ) ,  and ( u , ) ~ ~  are the logic variables associated 
with the corresponding functions (F,)uJ and (F,); , ,  i.e., in 
the cofactored Boolean networks, and PO n TFO, iden- 
tifies the subset of primary outputs contained in the tran- 

0 
This definition plays a crucial role in the following defi- 

nition and theorem, and is formed primarily to facilitate 
theorem proving. In the algorithm of Fig. 4 ,  we actually 
employ only the special case of (3.2), which is equivalent 
to (3.3) when the condition (3.2a) is satisfied. Note that 
because of Definition 4,  DT,, = 0, V i  E PO. The mem- 
bers of the qJ “blocking sets” defined in [32] may be ob- 
served to correspond to implicants of DTtJ. Again, a 
proper subset of the implicants of DT,, is obtained, in lin- 
ear time, by the procedure of [32]. 

sitive fan-out of F, . 

Dejinition 7 
A representation of the don’t care set, D J ,  imposed on 

0, = DI, + (DX, + D T J )  (3.4a) 

nodej  by the Boolean network is 

,ePon TFO, 

where 

Corollary 1 below gives us reason to call this the “com- 

~ 

plete” don’t care set. Note DIj G DZVderives solely from 
0 

It is of interest to observe the possible interrelationships 
that exist between the transitive fan out and external don’t 
care terms in (3.4). To this end, we present two exam- 
ples. 

the transitive fan-in of Fj.  

Example 1 
Suppose, for the network of Fig. l(c), we specify the 

external don’t care sets DX, = x 1  and DX, = x2 .  Then 
the don’t care representation of (3.4) becomes, for node 
2, 

D2 = D12 + (DX,  + DT,,)  (DX, + DT2,) 

= DXI DX, 

in which D12 = 0, since F; has only primary inputs, and 
DT12 = DT22 = 0, since y 2  and y l  are both primary out- 
puts (note j E TFO, by convention). Thus D2 = x I x 2 ,  
which may be used to minimize Fg further, to 

F;” = X I  + ~ 2 .  

Although further minimization of Fg was made possible 
by introducing the above external don’t care terms, F;‘ 
remains prime, irredundant, and R-minimal, and so F,”‘ 
= F;‘. However, it should be noted that the don’t care set 
for F;‘ is ltered by the minimization of Fg to F;” . In fact, 
prior to this minimization, we have 

0;‘ = Y , ( X ~ ,  X? + X l X 2 )  + j l ( ~ I X 2  + X I X ~ )  + X I  

~ 
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Procedure ESPRESSO-MLD (FPO .DX) 
r 
Input Bmlean Networkq=(FPO), ci.. Defmtion I. 
well BS h e  set DX of external don’t care res. 
{DXIPX2;..DXP). 
Outpul Minunired Network l)’=(F’PO). 
A visitation index. VIS ,  IO employed. such hat 
VlSk4l (not visited). 1 (visited not changed). - 1  (changed) 
IfV/S,=l.’jc(l.2 ....ml , l ) ’ s p i m e  andinedundant. 

/ 
Begin 
F I F  
VI& to. k =1.2. ... m 
For(k=l,2. m ) D l t t C v , ~ k + j i  Ft ) 
J +{I I VIS,=Oand F 0 , d O  and 

While(JtP)) 
FOt =0.t E FO,] 

Begin 

j +SELECTl(J) 

DIA,cSELECT2(DI J )  

I f o ~ P 0 )  T h e n D O , t 0  

VIS, t 1 

Else 
DO, c 1 
For ( I  EFO,) 

Begin 
DT,,+((Fs )y,=(F, )&) 
DO, +DO, n(DT,, +DX, ) 
End For 

DA, eDIA,  +DO, 
(F, .VIS, )+ESPRESSO-IIC(F, RA,) 

F ’, t F ,  
(F‘.F)tSIMPLIFY(F’.F) 

If (FO, 4 ) F t F L A T T E N  CI ,F) 
If ( ~ d  PO) F t F  - F, 
J t ( j  IVIS,=Oand F0,cPO and 
F O t = 0 . t  E FO,] 
End While 

Return (F’,VIS) 
End ESPRESSO_MLD 

End Else 

Dl,+Y,F,+V, 

INuallLc q’. 
Iniualire vsimtion index. 
Compute cornponenu o l l V  DC ret 

Minunimble ret (no remnvngent ian-out). 

Whle there are funcuons 

non-mmmned whch fan 
out only IO Prim- outpulr. 

selwt one and mark 85 v s m d  

Select Intermediate don’t cares 
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out DC set 10 mulology. 

Loop over fanout ol F, 

Equ,valcnce of wfaclon 

Update output DC %Cl. 

for Function F, . 

Acyclic Dc sets ior F, . 
MinirniuF, w r 1 DA, rnd rebrl 

VIS, UI - 1  ifchanged. 
Updatc and simpltiy F‘ and F. 
Update DI, 
Flatten F, into FO, . 
Delete 11 not p m a r y  output. 

Updatc minimiiable set 

Return minmized Boolean Network. 
Ii(VIS,=I.~)~’aPnmeandIrredundant 

Fig. 4 .  Procedure ESPRESSO-MLD. 
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whereas after this minimization, 

0;“ = y 2 ( X I X 2 )  + L2(x1 + x 2 )  + xI f 0;‘ 

which proves that the don’t care set of function Fk is not 
necessarily invariant with respect to the minimization of 
F j ,  j # k .  0 

Example 2 
Consider some Boolean network (not that of Fig. 1) in 

which F, = y j x l  and Fk = y j X l ,  FOj = { i ,  k} C PO, and 
FOi = FOk = 9. Then the special case assumptions of 
(3.2) apply to the computation of DTu and DTkj, i.e., 

DT.. = X. DT = x 
IJ I ,  kj I. 

Thus from (3.4) we have 

Dj 7 DZj + (OX; + DT,j) (Dxk + DTkj) 

= DIj + DXjDxk + Dx;DTkj + DxkDT,j + DT,) 

= DZj + DXjDXk + DXiDTkj + DXkDT,j. 

Note that in this case, although 

DTu and DT,, may, individually, still contribute to D j ,  
0 

We now give the theorem and corollary that show that 
(3.4) gives a complete and correct representation of the 
don’t care set. 

assuming Ox;  DTk, # 9 or DxkDTk, # 0. 

Theorem 1 
Let r ] ,  r]’ be two Boolean networks where r]  is identi- 

cally r]’ except for FJ , which has been altered to F,’ in such 
a way that TFZ, (7 ‘ )  C TFZ, ( r ] ) .  Then r]  = r]’ if and only 
if for all w E B”’”, either 

i) FJ ( w )  = FJ’ ( w )  or 
ii) w E 0,. 

Proof (Ifpart): Suppose r]  # 7’. Then by Definition 
2 there exists x E B“ and some output i E PO, such that x 
$OXl  and U ,  ( x )  # ( x ) .  Define w E B”’“ so that fork 
E TFZ,, wk = vk ( x )  = vL ( x ) ,  and w, = x (i.e.,  the pri- 
mary input subvector of w is the primary input vector x ) .  
The other elements wl of the vector w are chosen arbitrar- 
ily. Thus w $ OXl (because x = w, $ OX,), and w $ DZ, 
(cf. discussion of (2.1)). Since U ,  ( x )  # v: ( x ) ,  then cer- 
tainly U ,  ( x )  # vJ’ ( x ) ,  since F, and F,’ are the only func- 
tions which differ in r]  and 7’. Thus since F, (w) = 
F, ( v ( x ) )  = U ,  ( x )  and similarly for F,’ ( w ) ,  then F, ( w )  
# FJ’ ( w ) .  There are now two cases: U ,  ( x )  = 1, U,’ ( x )  
= 0 and vice versa. For the case U, ( x )  = 1, we have 

( u , ) ~ ~  ( x ) ;  hence x $ DT,,. The case U ,  ( x )  = 0 yields the 
same conclusion. Thus w $ DT,,, so w $ D,,  and we have 
produced w E B n f m  which contradicts i) and ii), which 
proves the if part. 

(Only Ifpart):  Suppose there exists w E B”+”  such 
that F, ( w )  # F, ’ (w)  and w $ 0,. Then w $ DZ,, which 
implies that for x = w,, wk = vk ( x )  = U; ( x ) ,  k E TFZ,. 

( v , > , ( x )  = v , ( x ) ,  (v,>z,(x> = u:(x>, so ( U , ) & )  f 

This follows from the fact that the two networks r]  and r]’ 

are the same in TFZ,, and hence for the same x ,  w $ DZ, 
implies that w satisfies the same defining relations as vk 
and vi, vk E TFZ,. Thus F , ( w )  = v , ( x )  and F,’(w) = 
U; ( x ) .  Also w $ 0, implies that there exists some i E PO, 
such that x $ OX, and x $ DT,,. Since FJ ( w )  # F,’ ( w ) ,  
then U,’ ( x )  # U, ( x ) .  Suppose U, ( x )  = 1 ,  then U ,  ( x )  = 
( D , ) ~ ,  ( x )  and v: ( x )  = ( vI)s ( x )  and because x $ DTl,, 
then U ,  ( x )  # ( x ) .  Therefore, since x $ OX,, then 77 # 

o 
It is important to realize the intent of presenting this 

theorem, which is to establish a representation for the 
don’t care set d, of the incompletely specified function 
associated with node j of r ] .  Once this is established, we 
shall have reduced the problem of minimizing F, in a mul- 
tilevel environment to a conventional 2-level minimiza- 
tion problem. To this end we offer the following corol- 
lary. 

7’. The case U ,  ( x )  = 0 is similar. 

Corollary 1 
Dj is a representation of the don’t care set dj of the 

incompletely specified function ( 4 ,  d j ,  r j ) .  
Proofi Dj  represents the set of vertices U ( x )  E B” +” 

such that the IO map z ( x )  of r]  is insensitive to the specific 
representation given for Fj .  But this implies that Dj is a 

Having finally determined a representation Dj of the 
implied don’t care set for node j of Boolean network r ] ,  

we are now ready to present two key theorems in the de- 
velopment of our algorithm for multilevel minimization. 

representation of dj .  0 

Theorem 2(a) 
Cube c E Fj in Boolean network r]  is irredundant if and 

only if 

c Q (Fj - {c)) U Dj. (3.5) 
Proof. (Ifpart): Suppose c 4 (F, - { c }  ) U 0,. 

Then, because Corollary 1 has established 0, as a repre- 
sentation of the don’t care set d,,  there exists v ( x )  E c 
such that u (x) E A ,  the care on set of the incompletely 
specified function associated with node j .  That is, v ( x )  
is a relatively essential vertex [5], contained in c,  so c is 
irredundant . 

(Only If part): Suppose c is irredundant (Definition 
3). Then c contains a relatively essential vertex v ( x )  
( F J  - {‘}I OJ’  0 

Theorem 2(b) 
Cube c of function F, of r]  is prime in variable v1 if and 

appears as a literal of c,  only if either a) neither vl nor 
or b) 

c’ $ F, U 0, (3.6) 
where c’ is the cube obtained by deleting literal uI (q) 
from cube c. 

0 

These two theorems result from the fact that 0, is a 
“complete” representation of the don’t care component 

Proofi Similar to that of Theorem 2(a). 
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d, of the incompletely specified function ( A ,  d,,, r,) as- 
sociated with nodej  of the Boolean network. This fact is 
the basis for the proposed approach to multilevel logic 
minimization, and it will be shown in Section 4 below that 
a prime and irredundant Boolean network can be obtained 
by applying a 2-level logic minimizer to each of the rep- 
resentations F, in sequence. This full sequence is then it- 
erated until, on one complete pass through it, no repre- 
sentation changes from what it has been on the previous 
pass. 

Equations (3.5) and (3.6) show how to make a Boolean 
network prime and irredundant. But as discussed in Sec- 
tion I, to make Fj R-minimal we also need to apply the 
following REDUCE operation. As we shall see below, 
this operation takes on added significance in the multi- 
level case, and in fact, accounts for an entirely new aspect 
of logic minimization. 

Definition 8 (REDUCE Operation) 
Cube c’ C c E F, is the reduction of c if a) 17 = v’, 

where 9’ is defined by replacing F, with FJ’ = c r  U ( F j  
- e ) ,  and b) for all e” C c’, 17 # r ” ,  where F;’ = crr  U 
(F; - c ) .  0 

Proposition I 
The reduction, e r ,  of cube c is unique. 

Proof: Note e’ contains all relatively essential min- 
terms of the representation F, of the single-output func- 
tion&. If c’ were not unique then there would be another 
reduction e’’ # c which would also contain these min- 
terms for which 17 = 17”. Hence e’ and c” can both be 
replaced by cube c’ fl c”,  which also contains all these 
minterms. Since e’ # c”, then either e’ f l  c’’ C e’ or c’ 
n e‘‘ c e r ‘ ,  contradicting the hypothesis that both e‘ and 
e’’ were reductions of e. U 

Since the reduction of cube c is unique, the overall RE- 
DUCE operation for c is composed of a sequence of 
“atomic” REDUCE operations, carried out in any order. 
Each of these atomic operations determines whether 
equivalence at the Boolean network level is maintained if 
c is replaced by c*, where c* is obtained from c by adding 
literal vk, and where Vk is not originally present in e. If 
the answer to this question is positive, then c can be re- 
placed by e*. The process repeats until we have attempted 
the addition of the positive and negative phase of every 
literal not originally present in e. Note that if both ck and 
2, can be individually added while maintaining equiva- 
lence, then c is redundant and can be deleted from F j .  

It is tempting to conjecture that as in the case for pri- 
mality and irredundancy, the don’t care set D, is sufficient 
to determine the reduction of cube c E F,. Unfortunately 
this is not quite the case, although the following propo- 
sition can be proved about a single atomic REDUCE op- 
eration. 

Theorem 2(c) (REDUCE Don’t Care Set) 
The minimal and sufficient don’t care set for the atomic 

REDUCE operation of adding literal U ,  to cube c E F, is 
DR,,, = DI; + DI, + fl (DXi U D7’,) (3.7) 

i E PO n TFO, 

where DI, and DI, are defined by (3.4b). 

Proof: The proof of Theorem 1 can be applied, mu- 
tatis mutandis, noting that adding literal z.’k to cube c po- 

0 
Note that unlike D,, DR,, k includes intermediate vari- 

able don’t cares from the transitive fan-in of both F, and 
F,. Even though DRJk is sufficient for the single atomic 
REDUCE operation associated with literal V k ,  a larger 
don’t care may be required by the next atomic operation. 
This is because the successful addition of literal vk adds 
an edge to the graph ( N ,  E )  of the Boolean network 7, 
and, therefore, may alter TFZ,. Thus if the entire RE- 
DUCE operation is to be performed with a single don’t 
care set, and if applicability to arbitrary Boolean networks 
is desired, then the entirety of the overall don’t care set 
DIV(cf. Definition 5 )  must be employed. This conclusion 
is mitigated, however, by the following remarks. 

tentially augments the transitive fan-in of F,. 

Remarks 

Note that e’ is a minimal (smallest) cube containing 
all the relatively essential vertices of c [ 5 ] .  Hence 
e’ has more literals than c, hence e’ is reexpressed 
in a larger support than c had. The remarkable fact 
is that c r  can, in principle, now depend on any vari- 
able in the transitive fan-out of the transitive fan-in 
of Fj .  As shown for F I  in the Example of Fig. 1, 
this can lead to significant simplifications in the F,. 
The REDUCE operation appears to be one of the 
most significant parts of multilevel minimization. 
Although the overall intermediate variable don’t care 
set DIV is necessary to obtain the true reduction of 
e ,  in practice we use an approximation DA,, where 

DAj = DIA, + (OXi U D T j ) )  (3.8a) 
i e P O ( l  TFO, 

(3.8b) 

is obtained from DIV by deleting the intermediate 
variable don’t care contributions of the transitive 
fan-out of F,. If this deletion were not done, cyclic 
dependencies might (will) occur, i.e., some cube c 
in FJ can be reduced until it contains literal U, itself, 
and, on a subsequent EXPAND step, c might grow 
to c = v J ,  leading ultimately to the correct, but triv- 
ial, conclusion that U, = F,. We shall call the re- 
duction of cube c with respect to DA, the acyclic 
reduction of e. 
Note that the operations of primality and cube re- 
dundancy testing (cf. Theorems 2(a) and 2(b)) do 
not alter the transitive fan-in of F,. 
Note that (3.8) implies that 0, C DA,, so that DA, 
is sufficient for establishing the primality and irre- 
dundancy of cube c as well as for finding its acyclic 
reduction. 0 

As pointed out in [5 ,  sec. 4.71, reduction is an impor- 
tant mechanism for minimizing the representation F, = 
{ c i } .  In fact, by reducing some prime cube ck E Fj to its 
reduction c; (Definition 8), it is possible that after reex- 

7 I 
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panding c; to a different prime c: # ck, a second, for- 
merly irredundant prime cube, c[, may now become re- 
dundant, 1 # k .  This remark gives us, at last, sufficient 
background to define R-minimality . 

Dejinition 9 
A prime and irredundant Boolean network 7 is R-min- 

imal if there exists no cube ck E FJ of 7 whose acyclic 
reduction c; (Definition 8) can be reexpanded (i.e., raised 
back to primality) into cube c: such that for k # 1,  

{ck,  cl} (Fj - {ck,  C I } )  U c: U Dj. (3 .9)  
That is, the introduction of the reduced and reexpanded 
cube causes both the originally prime and irredundant 

0 
Note that the example Boolean network of Fig. l(c) is 

R-minimal, because none of the cubes of either F, or F2 
can be reduced. 

It is expensive in practice to absolutely guarantee R- 
minimality, but it is certainly possible in principle. ES- 
PRESSO-IIC executes a routine for reduction and reex- 
pansion called LAST-GASP which guarantees only an 
approximate form of R-minimality. However, it has been 
observed in all but a very few cases to date that the actual 
results of LAST-GASP were, in fact, R-minimal. The 
REDUCE operation and its variants (this was called “RE- 
SHAPE” in MINI [20]) enable logic minimizers to 
“climb out” of the local minima usually associated with 
the current prime and irredundant representation. This is, 
in many cases, the key to the high-quality results obtain- 
able by heuristic minimizers. 

cubes ck and cl to become redundant. 

IV. THE ESPRESSO-MLD PROCEDURE FOR 
MULTILEVEL LOGIC MINIMIZATION 

Theorems 2 establish don’t care methods for applying 
the EXPAND, IRREDUNDANT-COVER, and RE- 
DUCE operations to the cubes of the function represen- 
tations FJ of 7. We can now present an algorithm which 
calls the 2-level logic minimizer ESPRESSO-IIC to carry 
out these operations on each FJ in turn. On exit from ES- 
PRESSO-IIC, FJ is prime and irredundant. However, ES- 
PRESSO-IIC has the property that F, is left unchanged if 
the first pass through the REDUCE, EXPAND, and IR- 
REDUNDANT-COVER sequence fails to decrease a 
given cost function measuring the number of terms and 
literals of the result. Any other valid 2-level minimizer 
which has this property will also produce a prime and ir- 
redundant Boolean network. However, as discussed 
above, ESPRESSO-IIC guarantees a weak form of R- 
minimality as well. The algorithm uses the representation 
of the don’t care set DA,, defined by (3.8) for function FJ 
of Boolean network 7, to render all the cubes of FJ prime 
and irredundant, V j  E ZV, according to Definition 3 and 
Theorems 2(a) and 2(b). 

This algorithm is presented in Fig. 4 as Procedure ES- 
PRESSO-MLD. ESPRESSO-MLD calls ESPRES- 
SO-IIC to minimize the functions FJ in a certain order. In 
most cases, it first minimizes the primary output func- 

tions; since conditions (3.2a) are usually satisfied for pri- 
mary outputs, they are in the first J constructed in line 4. 
Clearly for any j E PO, DT,, = 0, and hence DT, = 0. 
Then the algorithm selects for the next function (cf. lines 
4 and 17 in Fig. 4) some unminimized function which has 
only nonreconvergent fan-out to primary outputs, i.e., the 
next function F, satisfies FO, E PO and FO, = 0, V i  E 
FO,. After minimizing this function, it is stored away for 
future reference in the minimized function set F,’ (line 12), 
and then “flattened,” i.e., substituted, into its fan-out 
(line 13). If it is not a primary output it is then deleted 
from 7. Because of this deletion, and because 9 is as- 
sumed to be combinational, such a next function always 
exists (but is not unique). Another such function is se- 
lected next. This is repeated until all functions have been 
minimized. 

Note that ESPRESSO-MLD employs the device of car- 
rying two separate versions, 7 and v r ,  of the minimized 
Boolean network. Here 7’ is the version of the original 
network 7, in which each function is replaced by its min- 
imized version, i.e., the version which is prime, irredun- 
dant, and, with high probability, R-minimal. This is the 
version returned (line 18) by ESPRESSO-MLD. The sec- 
ond version starts out the same as the original Boolean 
network, but is modified on each pass through the while 
loop (lines 5-17) by flattening the most recently mini- 
mized function into its fan-out, and then deleting it unless 
it is a primary output function. As discussed at the end of 
this section, this device permits us to use the construction 
of (3.2) in computing the transitive fan-out don’t care sets 
DT,,, i E PO. 

Note further that a subprocedure, SIMPLIFY, is called 
(line 13) after replacing FJ and F,’ by the minimized ver- 
sion of F, in the respective Boolean networks q and 7’. 
SIMPLIFY checks for either of the conditions a) FJ U DJ 
= 1, or b) FJ E 0,. In the former case, ESPRESSO-IIC 
will return a representation consisting of a single cube with 
no literals, and in the latter case, one consisting of an 
empty set of cubes. In case a) the care off set of the in- 
completely specified function (& ,  d,, r,) is empty, i.e., 
r, = 0. It follows that 7 ~ qt,, , so SIMPLIFY substitutes 
U ,  = 1 into the functions in the fan-out of FJ . Case b), for 
which we have& = 0, is similar, except U ,  = 0 is sub- 
stituted. In either case the simplification is propagated re- 
cursively toward the primary outputs and primary inputs. 
In propagating toward the primary outputs, functions in 
the fan-out of FJ are tested in turn for simplification by 
SIMPLIFY. In propagating toward the primary inputs, we 
note that after simplifying, FJ no longer depends on any 
of its inputs. Thus edges in 7 associated with these inputs 
may be deleted from the graph associated with 7. SIM- 
PLIFY thus checks to see if FJ was the last fan-out of any 
function F, such that j E FO,. If so, F, is deleted from 7 
and y r .  Note that if as a result of such simplification, some 
function Fk has no remaining fan-out, i.e., FOk = 0, 
then it may be seen from Definition 6 that DT,, = 1, V i 
E PO. Consequently, in this case, when j is later equal to 
k ,  the for loop (lines 8 and 9), which computes DOk = 
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I I I E p ~ n T ~ o k  (OX, + DT,,), will initialize DOk to I ,  and 
DOk will remain at that value unless OX, # 0 for some i .  
Such functions thus will fall into category a) above. This 
process continues recursively until the two networks sta- 
bilize. 

Even though F, is prime and irredundant on exit from 
ESPRESSO-IIC, a function Fk previously minimized by 
ESPRESSO-IIC may no longer be prime or irredundant. 
This is because the don’t care set dk is not invariant with 
respect to the minimization of F,. It is quite easy to con- 

care set D G  of the unflattened but minimized network 7’ 
returned by ESPRESSO-MLD. 

Lemma Z 
For each primary output i E PO, let DT,, be the transi- 

tive fan-out don’t care set associated with the minimized 
and flattened Boolean network 7 computed by ESPRES- 
SO-MLD, and let 07;; be that associated with the mini- 
mized but not flattened network 7’ returned by ESPRES- 
SO-MLD. Then 

struct examples which demonstrate this fact. Thus in or- DT,, 3 DT, ,  V i  E PO. (4.2) 
der to verify primality and irredundancy of the returned 
network q’, procedure ESPRESSO-MLD uses a visitation 
index VZS, to mark which functions were actually alerted 
by the call to ESPRESSO-IIC. As stated above, Fj is left 
unchanged unless ESPRESSO-IIC can obtain a finite de- 
crease in the cost of Fj .  If on exit (line 18), VZS, = l ,  V j  
E ( 1 , 2 ,  * * .  , m } ,  then it is true that no cube of any 
function representation was altered by the calls to ES- 
PRESSO-IIC, which proves, as shown below, that the 
given Boolean network is prime, irredundant, and, with 
high probability, R-minimal. Conversely, if on exit VZS, 
= - 1 for any j ,  then, although we are sure that Fj is 
prime and irredundant, we can no longer be sure that an- 

Proofi By construction, 7’ is the minimized but not 
flattened Boolean network with primary inputs x and IO 
map ~ ’ ( x ) .  Similarly, vh, is the cofactor of this network 
with respect to the variable, U ,  , of the function to be min- 
imized, which has the same primary inputs, x, but has IO 
map zh, (x). Note that zh, (x) may be regarded as a Bool- 
ean network with one “extra” primary input, namely U , ,  
which has been set permanently to 1. By construction vu, 
is just a flattened version of vh, which has the same pri- 
mary inputs, x, but has IO map z,, ( x ) .  But since vu, can 
be obtained from qh, by flattening, it follows that these 
two Boolean networks have identical IO maps, i.e., 

other function Fi is still prime and irredundant, where the 
representation FL was returned by a previous call to ES- 
PRESSO-IIC. Thus the whole procedure ESPRES- 
SO-MLD should be called again. Since we are guaran- 

z&) = Zh,(X> (4.3a) 
and, similarly, 

Zt, (4 = zt, (x). (4.3b) 
teed that the overall cost function has a finite deciease if 
any function is altered, we know that the sequence of calls 
to ESPRESSO-MLD must ultimately converge, and, on 
the last call, return an unchanged Boolean network. This 
latter network is prime and irredundant and very likely R- 
minimal. 

It is of interest to discuss how the structure of the flat- 
tened Boolean network 77 is exploited in computing the 
transitive fan-out portion of the “acyclic” don’t care set 
DA, prior to each call to ESPRESSO-IIC. By construc- 
tion, 17 is just 7’ with all intermediate variables in the set 
TFO, - PO flattened (line 15) and deleted (line 16), and 
those in the set TFO, n PO flattened but not deleted. The 
key observation is that flattening an intermediate variable 
does not alter the IO map of a Boolean network. Hence y 
and 7’ have identical IO maps, i.e., z ( x )  = z ’ ( x ) .  Be- 
cause of the flattening of intermediate variables in the 
transitive fan-out of F,, we are able to use the construc- 
tion of (3.2) in computing DT,, for each primary output i 
E PO in Boolean network 7. Note that by construction of 
7, FO, G PO and FO, = 0, V i  E FO,. Thus the com- 
putation DT,, is restricted to the case where F, has only a 
direct dependence on U , ,  V i  E PO f l  FO,. That is, for 
functions that fan-out only to primary outputs which have 
no fan out, DT,, is equivalent to E,j,  where (cf. lines 8 and 
9) 

E!, = (FO) ,  (q, + R,, m,. (4.1) 

Finally, by the following lemma we are able to show that 
this don’t care set is identical to the transitive fan out don’t 

Since DT,, and DT, are specified by Definition 6 in terms 
of the IO maps z,, (XI, zt, (x), z;, (x), and zh, ( x ) ,  it fol- 

0 
Now reconsider procedure ESPRESSO-MLD, which 

calls ESPRESSO-IIC only for functions F, which satisfy 
FO, E PO and FOk = 0, V i  E FO,. Thus the transitive 
fan-out don’t care set of function F, of Boolean network 
77 can be computed according to the construction of (3.2) 
(line 8) for each primary output in TFO,. By Lemma 1, 
this is identical to in the Boolean network 7’ which 
we are minimizing. Thus DTl, can be added to the external 
don’t care set for each of the aforementioned primary out- 
puts and intersected together (line 9 of the inner for loop) 
to form the rightmost don’t care term in (3.4). This in- 
terim result is stored in the variable DO, and is added to 
the appropriate intermediate variable don’t care sets (cf. 
(3.4) and the remark following (3.8)), to form DA, (line 
10). This construction of the relevant don’t care sets per- 
mits us to state the following key theorem, which, in es- 
sence, proves the correctness of ESPRESSO-MLD. 

lows that DT,, = DT,, so (4.2) is proved. 

Theorem 3 
Suppose that when ESPRESSO-MLD terminates, all rn 

functions F, have had 2-level minimization applied to 
them, without any changes to any of the F,. Then the re- 
turned Boolean network, v’, is prime and irredundant. 

Proof: The procedure uses the acyclic superset, DA, 
of 0, for minimizing each of the F,, where D, is a repre- 
sentation of the don’t care set d, of the incompletely spec- 
ified function (& ,  d,, r , ) .  Thus after each pass, by Theo- 

1 -  
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rem 2, Lemma 1, and Corollary 1, the current F, is prime 
and irredundant. Now if all m functions have failed to 
change on one complete pass through ESPRESSO-MLD, 
each has been shown to prime and irredundant given the 
final state of q’. Thus by Definition 3 ,  q’ is prime and 
irredundant . 0 

V. EXPERIMENTAL RESULTS 
Tables I and 11 illustrate the results of running ES- 

PRESSO-MLD on some multilevel examples generated 
using Weak Division [ 11. These computational results 
were obtained using an approximate implementation of 
ESPRESSO-MLD. The approximation made was the fol- 
lowing. In practice DZA, can be quite large, so only a sub- 
set of the complete DZA, was used in obtaining the results 
of Table I. The subset used was the don’t care terms as- 
sociated with the set of all intermediate variables which 
are in the transitive fan-out of the transitive fan-in of F,, 
but not in the transitive fan-out of F,. Thus the REDUCE 
operation of ESPRESSO-IIC is limited to the introduc- 
tion of either primary input variables or intermediate 
variables which are in this set. This approximation is re- 
turned (line 5 )  by the subprocedure call to SELECT2, and 
is also an “acyclic” approximation for the REDUCE op- 
eration in ESPRESSO-IIC. This acyclicity constraint pre- 
vents, as discussed in the above Remark, trivial reduc- 
tions of F, by the REDUCE-EXPAND-IRREDUN- 
DANT-COVER sequence. However, note that this re- 
quires EXPAND and IRREDUNDANT-COVER to op- 
erate with a$xed intermediate variable portion of the don’t 
care set, despite the fact that the transitive fan-in of F, is 
being altered by REDUCE. Note that this means the ap- 
proximately implemented version of ESPRESSO-MLD 
does not guarantee primality , although ancillary experi- 
ments have indicated that the computationally minimized 
networks very probably are prime. Further, the experi- 
mental results appear to have high minimization quality, 
an observation based on attempts at further minimization, 
which used alternative computational techniques. 

In Table I “initial literals” refers to the number of lit- 
erals in the original multilevel network. The next two col- 
umns refer to the number of literals saved when using just 
the intermediate don’t cares and when using both the in- 
termediate and output don’t care sets. For example when 
plab was minimized using just the approximation by 
SELECT2 of DZA,, the resulting network had 9 fewer lit- 
erals, but when both DZA, and DT, were used (line 10) the 
resulting network had 20 fewer literals than the initial net- 
work. This illustrates the significance of the transitive fan- 
out don’t care set, since in all the examples of Table I we 
assumed OX, = 0, V i  E PO. No table entry indicates 
that no function F, of the given network could be reduced 
in cost by the implemented minimization procedure. 

Runtimes in Table I are in CPU seconds on a Pyramid 
90X, which is about twice as fast as a VAX 111780. The 
CPU time requirements ranged from minutes on the me- 
dium size jobs to hours on the larger ones. Use of the 
“output” don’t care set DOJ (cf. lines 9 and 10 of ES- 

TABLE I 
ESPRESSO-MLD MULTILEVEL MINIM17ATION RESULTS 

Literals Saved Runtime 
Initial 

Name Literals DIM, DIM, U DO, DIM, DIM, U DO, 

mark 
f O  
f l  
f2 
f3 
f4 
f5 
gerf 
dec 1 
fadd2 

insdex 
plac 
8fun 
exam2 
rd53 
adder 
dec2 
plab 

clpl 

24 

8 1 
1 
1 
4 28 

73 1 
75 2 
75 4 
17 I 
52 1 
29 3 
19 2 
79 5 

191 7 
83 3 
73 3 
62 14 
48 4 

149 3 
119 9 
58 14 

:: 
2 
2 
5 
1 
I 
3 

5 
28 

3 
3 

24 
4 
4 

20 
20 

1 
1 
1 
9 

28 
87 
44 
I 

21 
2 
5 

40 
1746 

70 
45 
12 
4 

204 1 
434 

8 

57 
130 
118 

3 
34 

3 

57 
3733 

152 
73 
26 
87 

7852 
1850 

77 

PRESSO-MLD) typically incurs a factor of 2-4 increase 
in CPU time. 

Table I1 contains the results of experiments run on the 
subset of the Table I examples for which the “SOCRA- 
TES” expert system was used to further optimize the out- 
put of the implemented version of ESPRESSO-MLD [ 11. 
The purpose of this set of experiments was to see if 
the technology-independent gains made by ESPRES- 
SO-MLD were of value when its output was postpro- 
cessed by a technology-specific optimized mapping into a 
standard cell library. We used the SOCRATES expert 
system for this purpose [ 11. In the headers of Table I ,  AA 
corresponds to running Weak Division in area-specific 
mode and then running SOCRATES in the area-specific 
mode [ l ] .  Similarly, DD corresponds to running Weak 
Division in delay-specific mode and then running SOC- 
RATES in delay-specific mode. The last 4 columns show 
the effect of inserting ESPRESSO-MLD into the synthe- 
sis loop. AA* corresponds to running ESPRESSO-MLD 
on the output of Weak Division running in area-specific 
mode and then running SOCRATES in the area-specific 
mode, and DD* corresponds to running ESPRES- 
SO-MLD after running Weak Division in delay-specific 
mode and then running SOCRATES in delay-specific 
mode. 

It can be observed that when technology-independent 
multilevel minimization was used as a preprocessor to 
SOCRATES, the AA* area numbers were better than the 
AA results in 8 of the 12 cases. In 3 of the other cases, 
better area delay tradeoffs were exhibited. In the 6 0 0 ”  
examples the delay was reduced (relative to D D )  in all 
but one case (exam). These numbers indicate that tech- 
nology-independent multilevel minimization is often a 
valuable step to take in the synthesis and optimization 
process, even when the final result is postprocessed by a 
technology-specific, optimizing expert system. 

1 
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TABLE 11 
WEAK-DIVISION-ESPRESSO-MLD RESULTS 

AA AA DD DD AA* AA* DD* DD* 
Area Delay Area Delay Area Delay Area Delay 

fadd 39 12 47 9 32 9 
adde 56 12 57 18 59 14 
dec 1 73 12 84 6 69 10 
24 76 13 117 16 58 16 61 14 
rd53 89 22 90 1 1  82 15 
15 97 14 124 1 1  95 14 109 8 
exam 98 13 127 9 94 1 1  116 10 
f4 103 13 118 10 103 9 124 8 
8fun 107 14 141 13 110 13 128 10 
plab 158 18 192 14 176 15 
dec2 203 22 243 16 20 1 20 
plac 249 22 337 16 256 26 336 15 

In addition to assuring primality and irredundancy the 
don’t care set may be used to alter the adjacency relations 
of the Boolean network, as shown in the example of Fig. 
l(b). It is of interest to observe that when ESPRES- 
SO-MLD is run on this example, the starting represen- 
tation (bottom left) is prime and irredundant. Thus the 
first EXPAND and IRREDUNDANT-COVER opera- 
tions in ESPRESSO-IIC will have no effect. We have ob- 
served that this also occurred in each of the examples of 
Table I ,  each of which was output from the “weak divi- 
sion” process of algebraic decomposition [8]. We con- 
jecture that this will always be the case for multilevel ex- 
amples produced by Weak Division. However, in this 
example, after the initial REDUCE operation is per- 
formed, the prime, irredundant, and, with high probabil- 
ity, R-minimal result will be obtained in the second or 
third EXPAND step. This again occurred on all the ex- 
amples of Table I for which minimization was successful. 
We observe, in fact, that REDUCE is performing a major 
part of the role of the minimization process referred to as 
Boolean substitution in [8]. 

VI. TEST GENERATION AS LOGIC MINIMIZATION (OR 
VICE VERSA) 

We now state some basic results on testability, with the 
intent of 

1) establishing, in greater detail, the intimate relation- 
ship between logic minimization and test generation; 

2) demonstrating that after multilevel logic minimiza- 
tion, a prime and irredundant Boolean network is ob- 
tained for which there is no need whatsoever for either 
test generation or testability analysis. 

A. Test Generation as a By-product of Logic 
Minimization 

Our derivation of the complete don’t care set (cf. Theo- 
rem 1) reduces the testing question for function F, of a 
multilevel Boolean network 17 to, in effect, the 2-level 
case. In fact, we shall show that any stuck fault test x* is 
simply the primary input part of a solution vector u * ( x * )  

E E, C B” ’“, where 

D, = D’, n ( i e P 0  c fl TFO, m,~;). (6.1) 

First note that because U* ( x * )  E m,, the local inputs to 
FJ will have the same (cf. (2.1)) values they will have 
under test, i .e.,  when x* is applied to theprimary inputs. 
Further, because U* E E,, there will exist at least one 
primary output node, i E P O  rl TFO,, such that U* E E, 
fl DTIJ. Because U* E El, we are assured that x* rep- 
resents an external care condition for primary output i. 
Finally, note that because U* E EIJ, we may conclude 
that not only does the test produce a difference U, ( x )  f 
U,’ ( x )  between the good (7) and fault (7’ ) machines, but 
that this change is propagated to output i as well (i.e.,  
U ,  ( x * )  # U,’ ( x * ) ) .  It may be observed that the condition 
v*(x*)  E E, plays the role of the “implication” phase 
of the D-algorithm [25], and U* ( x *  ) E T T ,  plays the role 
of the “propagation” phase. 

We begin our treatment of the interrelationship between 
testing and logic minimization by showing that the tran- 
sitive fan-out don’t care set of Definition 6 can be directly 
related to the set of output stuck fault tests. This relation- 
ship is made precise by the following theorem. 

Theorem 4 
Assuming that there are no external don’t care condi- 

tions, don’t care set 

DT,= DTJ 

is the set of primary input vectors which do not test the 
Boolean network 7 for either of the output stuck faults y, 
stuck-at-1 or yJ stuck-at-0. 

Proof: It was shown in [19] that a test x* exists for 
the output fault yJ stuck-at-1(0) if and only if 7 f 
7 v , c ~ , ) .  Let T1, (TO,) be the set of all such tests. Hence, 
by Definition 2, 

I E p o  n TFO, 

some i E PO n TFO,}. 

1 
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Since U, ( x )  = l ( 0 )  implies that U ,  ( x )  = ( u , ) ~ ~ ,  ( ( U , ) ; ,  
( x ) ) ,  V i  E PO, it then follows that for each such test, x ,  
there exists some i E PO fl TFO, which has the property 

( x )  # ( u , ) ~ ,  ( x ) .  It follows from the Definition 6 
0 

This theorem shows that if no test exists for either yJ 
stuck-at-1 or y, stuck-at-0, then DTJ is tautologous, i.e., 
DT, = 1. It is well known that in this case F, can be 
deleted from the Boolean network (such deletions actually 
occur frequently in practical multilevel logic minimiza- 
tion). On the other hand, DT, = Q would imply that all 
primary input vectors would be tests for either y, stuck- 
at-1 or y, stuck-at-0. Since this is unlikely to occur in 
practice, we conclude that the typical case is DTJ # 63, 
hence DT, can be expected to be helpful in minimizing 
F,. However, note, as shown by Example 2 of Section 
111, that DT, can be empty, meaning that all primary input 
vectors test for y ,  stuck-at-1, yet some of the DT,, can still 
contribute to D,,  due to the interrelationship with the OX,. 

One interpretation of the typical case DT, + 1, DT, 
f 63, is that F, may be partially redundant, in the sense 
that some of its otherwise “care” on set minterms may 
be covered by DT,. This type of partial redundancy must 
be exploited in the minimization of F, if it is to be made 
prime and/or irredundant. 

Having established how the computation of the don’t 
care set provides a direct and constructive link between 
logic minimization and test generation, we now turn our 
attention to the testability of a prime and irredundant 
Boolean network. The usual measure of testability for a 
Boolean network q is how many of its individual input or 
output stuck faults are testable. One of the most signifi- 
cant aspects of the relation between logic minimization 
and testing is that making q prime and irredundant implies 
much more than merely making it 100-percent testable for 
the usual input and output single stuck faults. This dis- 
tinction is further emphasized when the nodes of the Bool- 
ean network are represented by complex gates (e.g., 
CMOS pluricells, domino logic, etc.) rather than simple 
primitives like NAND’S and NOR’S.  To show this, we need 
to define a stuck fault model which is more fine grained 
than conventional input or output stuck faults. 

that DT, = (Tl, + TO,). 

De$nition 10 
An internal stuck fault is a fault in which literal vk (or  

vk) of cube c of representation F’ of Boolean network q is 
stuck at either its existing value vk (or i&) or its opposite 

- 

value Vk (or  vk). 0 

These faults are called internal, since they correspond 
directly to transistor level faults in which the transistor 
representing the specified literal in the implemented logic 
is stuck on or off. Their definition enables us to prove our 
main testability result. 

Theorem 5 
A Boolean network is prime and irredundant if and only 

if it is 100-percent testable for internal stuck faults. 

Proof (Ifpart): Suppose Boolean network q is prime 
and irredundant, and suppose cube c of function F,, is 
being raised to prime. Suppose c contains literal vk ( i&) 
and a logic minimizer is checking to see if c* G F, U D, , 
where c* is just c with literal vk (3k) replaced by Vk ( u k ) .  
A negative answer implies that there exists a vertex x* E 
B” such that u * ( x * )  E c*RJ, where R, = (F ,  U 0,). In 
fact, the minimizer must discover such a vertex U* ( x * )  E 
Bm + *  before it can declare variable k of cube c of function 
F, to be prime. Given U* (x*) ,  we simply take the primary 
input part x* = V*(X*)~, to obtain a test for an input 
fault. The fault tested is the internal stuck fault “vari- 
able vk of cube c stuck at b,” where b = 1 if v k  E c,  and 
b = 0 if 3, E c. Thus when x* is applied to q, the value 
v: (x*)  = 7; will appear as an input to FJ in the good 
_ -  machine, for which F, is off, i.e., uJ = 0, since U* E 

F, D,. But with uk stuck at b, cube c in F, will be turned 
on for input U* ( x ) ,  so that z; = 1 in the “fault machine’’ 
( a  Boolean network which we call q’ ). Because U* is a 
minterm of the don’t care complement E,, (cf. (6. l)), we 
have v* DTk,, for some i E PO n TFO, , which by Theo- 
rem 1 implies that primary output U ,  ( x * )  will have a dif- 
ferent value in the good and fault machines, i.e., U ,  ( x * )  
# U: ( x * ) ,  so that q # 7’. 

This x is a test for input variable uk of cube c of FJ 
“stuck at 6” faults, where uk appe_ars as b in c. To show 
that tests are implied for “stuck at b” internal faults, con- 
sider the action of ESPRESSO-IIC (in line 11 of ES- 
PRESSO-MLD) in testing if cube c of function F, is ir- 
redundant. It is clear that if cube c has been declared 
irredundant, then c c ( F ,  - { c } )  U 0,. If this is the 
case, then there exists a test vector x* and a corresponding 
relatively essential vertex v*(x*)  E c such that U* ( x * )  E 
(F, - { c > )  U DJ. Such a u * ( x * )  must be found by ES- 
PRESSO-IIC before it can declare cube c irredundant. 
The corresponding x* is a test for vk stuck at b, where vk 
is any literal which appears as b in cube c .  The test is for 
uk stuck at b, because for ck = b, v*(x*) is such that 
u z ( x * )  = b so that cube c is on for the good m-achine 
and thus u J ” ( x * )  = 1. However, if vk is stuck at b,  then 
c is off and U* ( x ” )  is such that all the other cubes of F, 
are off, so U ,  = 0 for the fault machine. Note here that 
the fault assertion “vk stuck-at-6” has limited scope. That 
i s ,  the assertion applies only to cube c,  and not to other 
cubes of F,. Hence all these other cubes, which are of in 
the good machine, remain of in the fault machine. The 
argument then concludes as it did for the stuck-at-b case, 
which proves the if part. Note that x* tests any or all of 
the variables in cube c stuck at their “opposite” value, 
which constitutes a multiple rather than single stuck fault. 
Of course, any of the single stuck faults are also tested. 

(Only Ifpart): Assume q is 100-percent testable for 
internal stuck faults. That is, for each cube c and literal 
v k  E c (we assume without loss of generality that vk ap- 
pears positively in c ) ,  there exists a test x for variable uk 
stuck at 1. Since x is a test, cube c and literal vk will be 
“off” in the good machine, i.e., v k ( x )  = 0, and v ( x )  

c, which implies vl ( x )  = 0 in the good machine. But 
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with uk stuck at 1, cube c will be “on” in the fault ma- 
chine. Thus ul ( x )  = l ,  and, because x is a test, 7 # 7’. 
But uj ( x )  # U,! ( x )  implies c* $2 F, U D j ,  where c* is 
just c with literal Vk  replaced by &. This implies cube c 
is prime in variable uk. The proof that cube c is irredun- 
dant follows similarly from the assumed existence of a 
test for variable vk stuck at 0 in cube c. This proves the 

It remains to demonstrate that a prime and irredundant 
network is testable for all the conventional input and out- 
put stuck faults. To see that input stuck faults are all test- 
able, note that in almost every case an internal stuck fault 
is also an input stuck fault. The essence of the argument 
is that since we have internal stuck faults for all variables 
of all cubes if the Boolean network is prime and irredun- 
dant, and since all the inputs of Fj  are contained in one or 
more of these cubes, the internal stuck fault tests cover 
all input stuck faults. This is made precise by the follow- 
ing result. 

only if part. 0 

Corollary 3 
The internal stuck fault tests of a prime and irredundant 

representation F, also test all input stuck faults. 
Proofl First assume that the representation F, is bin- 

ate in variable vk, i .e.,  that it contains (prime) cubes c’ 
and C O  with literal vk appearing positively and negatively, 
respectively. Now the argument of the proof of Theorem 
5 shows that the test that showed c’ is prime in literal Vk 

gives a test, x* ,  for input uk stuck-at-1. For this test, the 
good machine, 7, has U, ( x * )  = FJ ( y*, x * )  = 0 ,  but with 
vk stuck-at-1, cube c‘ turns on, so U; ( x )  = 1 in the fault 
machine. The same argument applied to cube CO yields a 
test for the input fault uh stuck-at-0. 

Next assume that F, is unate [5] in uk, i.e., that F, con- 
tains either positive or negative (in variable vk) cubes like 
c’ or C O ,  but not both. Suppose, without loss of generality, 
that there exists cube c’ E F, which contains literal vk, and 
is irredundant. Then, as in the proof of Theorem 5 ,  there 
exists a test x* for which c’ (and F,) are turned on, but 
all other cubes in F, are turned off. Now if input uk to F, 
is stuck-at-0, then c’ is turned off. Because F, is unate in 
uk no other cubes in FJ are turned on by the vk stuck-at-0 
fault, so we have U ,  = 1 in the fault machine and U; = 0 
in the fault machine. 

Note that in this case, the argument involving the pri- 
mality of cube c’ still provides a test for vh stuck-at- 1. 

Now in either of the above two cases we have u (x*  ) E 
D,, else u ( x * )  would not contradict the nonprimality of 
c’ (or  C O )  in the binate case or the redundancy of c’ in the 
unate case. Hence the differences between U ,  (x* )  and 
U ’  ( x * )  propagate to some primary output (because v(x*) 
:ElJ for some i ) .  Thus we have input stuck fault tests 
for both z ik  stuck-at-1 and VI stuck-at-0, and since this is 
true for any k E FI,, F, is 100-percent testable for input 

0 stuck faults if F, is prime and irredundant. 

nal and input stuck faults. But there are also multiple stuck 
faults which are guaranteed testable for a prime and irre- 
dundant Boolean network. To see this, observe that the 
internal stuck fault test, x*, for the primality of variable 
vk in cube c’ E FJ also tests for the primality of vk in all 
cubes c’ such that u ( x * )  E c’. So x* is a test for the in- 
ternal faults vk stuck-at-1 in all of the cubes c’, and is also 
a test for the multiple internal stuck faults for which uk is 
stuck-at-1 in any subset of the cube set { c ’  }. 

Similarly, the tests derived from the redundancy test are 
also, typically, tests for multiple stuck faults. To see this, 
note that the input vector, x*, which contradicts the re- 
dundancy of cube c’ E F,, gives a stuck fault test for any 
literal ( uI or V I ) .  In fact, any multiple internal stuck fault, 
comprised of any combination of the literals of cube c’ 
stuck at their opposite values, will also be tested by x*.  
These latter multiple internal stuck fault tests are also 
multiple input stuck fault tests for any subset of the set of 
variables which have literals in any cube c’ such that F, 
is unate in these variables. 

The principle at work in all these stuck fault test argu- 
ments appears to be the following. Suppose there exists 
vertex v ( x * )  E FJ DJ (the care off set of F,) which is dis- 
tance one in variable Vk from a vertex D(x*)  E F, U D,. 
Then x* tests for Vk stuck-at-I. Conversely, if u ( x * )  E 
F, D, (the care on set), and is distance one in variable vk 
from D ( x * )  E FJ U D,, then x* tests for vk stuck-at-0. It 
is precisely because the tests for primality and irredun- 
dancy tests are inherently obligated to isolate such vertex 
pairs that prime and irredundant networks are 100-percent 
testable for all input and internal single stuck faults. On 
this view, the process of automatic test generation is one 
in which one identifies care on set or care off set vertices 
which are located in the distance one “shells” surround- 
ing the off and on sets, respectively. In books, e.g. [16], 
which take the traditional “simulation” (as opposed to 
don’t care) viewpoint, this concept is expressed in terms 
of the so-called Boolean differences. 

To see that output stuck faults are also included in this 
set of tests, note that F, U D, = 1 implies that FJDJ = 
0, i .e.,  FJ has no “care” offset. In this case it is clear 
that no test exists for U, = yJ stuck at 1. But in this case 
every literal variable uk of every cube c of F, can be de- 
leted in the minimized version of F,. This argument leads 
us to the interesting conclusion that if there exists any 
literal vk (or  ik) of any cube c E F, which is prime, then 
the test which has been shown to exist for the input fault 
“variable uk of cube c E FJ stuck at b” (where literal U, 

occurs as b in cube c )  is also a test for the output fault 
output ‘ ‘ U ,  = y,  stuck at 1.” 

A similar argument applies to the case where F, 5 D,, 
which implies that F, E, = 0, i .e.,  F, has no care on set. 
This argument leads to the conclusion that any input z lk  

stuck at b test (for cube c E F,) is also a test for the fault 
output U, = yJ stuck at 0.” Thus, in terms of the don’t 

care sets, we can express the basis for the traditional 

“ 

At this point we have established that a prime and ir- 
redundant network is 100-percent testable for both inter- 

“checkpoint” theorem, (cf. [ I O ,  theorem 2.31). 
We conclude that if 7 is prime and irredundant, it is 
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testable for all output stuck faults as well, i .e . ,  77 is 100- 
percent testable for input and output stuck faults. 

Tests are also implicitly generated for an entirely dif- 
ferent class of faults, the so called “extra device” faults. 
In the AND plane of a PLA, for example, an extra device 
fault could perhaps occur because of a discontinuity in an 
isolation mask, and thus polysilicon is erroneously laid 
over diffusion. This adds, in effect, an extra literal to some 
cube of the AND plane. We claim that this type of fault is 
also completely tested for by the operation of ESPRES- 
SO-IIC when called at line 11 of Fig. 4. These tests are 
implicitly generated by the REDUCE operation. Applied 
to cube c ,  this operation attempts to add to c all literals 
not originally present in c. If a literal cannot be added to 
c without intersecting the care off set, ESPRESSO-IIC 
will generate a test, as discussed previously, for the cor- 
responding extra-device fault. Of course, if such a literal 
can be added to c,  the corresponding extra-device “fault” 
is not testable. However, this type of extra-device fault 
will cause no error in the IO behavior of the function. 

The principal conclusion to be drawn from the above 
discussion is that prime and irredundant Boolean net- 
works are far more than merely 100-percent testable for 
conventional input and output single stuck faults. In ad- 
dition, they are testable for all the internal single stuck 
faults as well as for many multiple internal and input stuck 
faults as well as extra-device faults. 

Remark 
The tests for the stuck faults of Theorem 5 and its cor- 

ollary are, in principle, supplied as a by-product of the 
2-level minimization step (line 11 in ESPRESSO-MLD). 
In fact if, as in the proof of the above theorem, cube c* 
is being intersected with the representation RJ = 
(F ,  U 0,) of the care off set, then if U* E c*RJ, then U;, 

= x* is in internal stuck fault test. Providing the tests as 
a by-product of the minimization is simply a matter of 
outputting or otherwise recording such vectors x* as they 
are encountered in the minimization. 0 

Thus the relationship between testing and logic min- 
imization is quite profound. In fact, it follows that once 
all internal stuck fault tests have been identified and any 
discovered logical redundancies removed, the Boolean 
network is prime and irredundant. In brief, Boolean net- 
works are prime and irredundant if and only if they are 
100-percent testable (i.e., for conventional input or out- 
put faults and internal single stuck faults). Many multiple 
stack faults will usually be testable, and the tests for all 
of these various stack fault tests and supplies as a by- 
product of the minimization. No separate test generation 
phase is necessary. 

As a final comment, we observe that one cannot de- 
crease the testability of any single function, F J ,  of a given 
Boolean network by making that function prime and ir- 
redundant. In fact, every single (input and internal) stuck 
fault which was testable prior to calling EXPAND and 
IRREDUNDANT-COVER to make FJ prime and irre- 
dundant is still testable afterwards. Further, if FJ was not 

previously prime and irredundant, there will now exist 
tests for input and/or internal stuck faults which were not 
previously testable. For example, the prime and irredun- 
dant Boolean network of Fig. l(b) has three testable input 
faults which were not testable in the given network of Fig. 
1 ( 4 .  

B. Logic Minimization as a By-product of Test 
Generation 

It is clear that all Boolean networks satisfying Defini- 
tion 1 may be and-or decomposed into a “refined” Bool- 
ean network in which each node is either an OR gate or an 
AND gate. We assert that if a test generation tool is used 
to generate tests for all input and output single stuck 
faults, then the resulting Boolean network is prime and 
irredundant. This presupposes, of course, that if any “un- 
testable” faults are discovered, the offending node or edge 
is deleted and the effect of this simplification is propa- 
gated to the rest of the network. In this way, logic min- 
imization can be viewed as a by-product of test genera- 
tion. However, such a procedure would not take advantage 
of the EXPAND IRREDUNDANT-COVER REDUCE 
cycle, which is responsible for ESPRESSO-MLD’s abil- 
ity to quickly reduce a given Boolean network into a 
prime, irredundant and R-minimal form. It is in compar- 
ison to this hypothetical procedure that we call ESPRES- 
SO-MLD “efficient.” 

VII. CONCLUSIONS 
We have presented an approach to multilevel minimi- 

zation based on don’t care sets implied by embedding 
completely specified functions in a Boolean network. The 
presentation has including the following: 

Definitions of prime and irredundant networks have 
been given, which are straightforward extensions of 
those for the 2-level case, and which are based on 
the notion of equivalence of two Boolean networks. 
We have presented an algorithm, ESPRES- 
SO-MLD, for multilevel minimization which trans- 
forms Boolean networks into prime, irredundant, 
and, with high probability, R-minimal form. 
We have proven the physically plausible statement 
that prime and irredundant networks are 100-percent 
testable for conventional single stuck faults, and that 
the converse is also true if the internal stuck faults 
of Definition 10, which include multiple faults, are 
also testable. 
We have further shown how the stuck fault tests de- 
rive straightforwardly from the minimization pro- 
cess. 
We have defined the transitive fan-out don’t care sets 
both in terms of network equivalence and in terms 
of the set of output stuck fault test vectors. 
We have provided a proven construction of the rep- 
resentation (3.4) of the don’t care set dj  of the in- 
completely specified function ( &, d j ,  r j ) .  We have 
observed that the representation D j  is not invariant 
with respect to the minimization of another func- 
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tion, say Fk (cf. discussion of Example 2, Section 
111). 

It is a well-known fact that actual failure modes of fab- 
ricated chips do not always correspond to the fault model 
of single stuck faults. Nevertheless, it is also a fact that 
complete testability of the single stuck faults usually leads 
to a high percentage of working chips. We conjecture that 
the “extra” testability associated with prime and irredun- 
dant networks is at least partially responsible for this fact. 
The conjecture is based on the hypothesis that designers 
‘‘naturally” attempt to design prime and irredundant net- 
works, without consciously seeking to do so. As dis- 
cussed above, if this occurs, many “extra” faults are 
tested. 

Some readers may object to referring the transitive fan- 
out don’t care set all the way back to the primary inputs, 
thus creating something of a misnomer. Note that DTIJ 
could have been premultiplied by DZ,, in Definition 6,  and 
then DTJ really would have depended solely on the tran- 
sitive fan-out of F,. We believe that if Definition 6 were 
so altered, the remainder of the theory of Section I11 would 
remain valid (although we have not carried this exercise 
through rigorously). It is not clear whether or not 
(E, DT,J) has a more compact representatioh than DT,,, 
since although the intersection with E, decreases the 
number of minterms, this operation also “fractures” the 
representation into smaller cubes. We prefer the form 
given for Definition 6,  because of the direct connection 
to testability established by Theorem 4. 

We have also given an exposition of the role of the ES- 
PRESSO “REDUCE” operation in “reshaping” prime 
and irredundant Boolean networks into more efficient rep- 
resentations and in achieving the important property of 
R-minimality. It has been observed that this part of the 
minimization process is critical in breaking out of the lo- 
cal minima associated with merely prime and irredundant 
representations. ESPRESSO-MLD achieves high min- 
imization quality by calling ESPRESSO-IIC, which loops 
through the EXPAND-IRREDUNDANT-COVER-RE- 
DUCE sequence. We have noted that while prime and 
irredundant status is achieved in one pass in the 2-level 
case, an iteration is required in the multilevel case, be- 
cause of the interdependence of the individual 2-level 
functions embedded in the Boolean network. 

Computational results obtained using an approximate 
“C” implementation of ESPRESSO-MLD were pre- 
sented. We believe that the minimized Boolean networks 
7’ obtained for the test problems are prime and irredun- 
dant even though an approximated don’t care set was used. 

We note that further research into multilevel minimi- 
zation as a test generation method might be worthwhile, 
especially in cases where 100-percent coverage is desired. 
The basic D-algorithm [25] and its variants [16] typically 
operate on Boolean Networks for which each function F, 
is a primitive gate (NAND, NOR, XOR, etc.). In contrast, 
ESPRESSO-MLD operates on a general Boolean Net- 
work, where each of the FJ represents an arbitrary 2-level 

function. Thus ESPRESSO-MLD is applicable to alter- 
native technologies such as domino logic, NMOS, and 
CMOS pluricells. Another contrast is that although some 
modem D-algorithm variant, e.g., FAN [16], might, be- 
cause of its restricted applicability, be much faster in find- 
ing a single stuck fault, ESPRESSO-MLD might be faster 
in finding all such faults. This is because ESPRES- 
SO-MLD can use 0, , once it is constructed, to repeatedly 
find all the internal and input stuck faults for the inputs 
(and output) of FJ.  ESPRESSO-MLD does, in this sense, 
offer an interesting alternative to any D-algorithm variant 
in finding all stuck fault tests, especially in Boolean net- 
works from such technologies as domino logic or complex 
CMOS, where individual nodes have “large” Boolean 
functions. 

Of course we must keep in mind that the mini- 
mization .process described in this paper applies to a tech- 
nology independent level of representation. This is no 
problem for complex CMOS cells, but when standard cells 
are required, care must be taken to use a technology map- 
per (such a mapper is described in [2]) which preserves 
the properties of primality and irredundancy and, hence, 
100-percent testability. It seems reasonable to conclude, 
therefore, that a Boolean network with one single func- 
tion, F,, which is not prime and irredundant should be 
minimized if we can afford the computational expense, 
else we will be putting “fat” into silicon. Future work 
must be done to characterize the domain of applicability 
of the reported minimization procedure. There certainly 
exist some practical Boolean networks which can be han- 
dled, and some which cannot. 
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