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Abstract1

The detection and the understanding of non-conforming behavior (violations) can be beneficial for2
a sound safety diagnosis as well as for developing safety countermeasures. Traffic violations occur3
when road users including pedestrians seek an increased mobility, by disregarding existing traffic4
laws and regulations. This behavior can come at the expense of accepting additional collision risk.5
The objective of this paper is to demonstrate the automated identification of pedestrian crossing6
violations using computer vision techniques. Two types of violations are considered. The first is7
spatial violations where pedestrians decide to cross in non-designated crossing regions. The sec-8
ond is temporal violation when pedestrians cross an intersection during an improper signal phase.9
The methodology relies primarily on the discrimination of road-users trajectories and separating10
pedestrians with non-conforming behavior. The methodology is demonstrated on two distinct ur-11
ban intersections in Downtown Vancouver, Canada and Kuwait City, Kuwait. The results show12
satisfactory accuracy of detecting both spatial and temporal violations with about 90% correct vi-13
olation detection rate in both case studies.14

15
keywords. Computer Vision, Violations Detection, Road-Users Classification, Trajectories Analy-16
sis17
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Zaki et.al 1

1 INTRODUCTION1
Walking is a reliable activity that connects the different modes of travel and interfaces with external2
activity areas. In modern urban planning, the function and mode-assignment of streets are being3
redefined to accommodate the pedestrian as a key road user (1). However, non-motorized modes of4
travel such as walking, may expose the road-user to severe consequences, when involved in traffic5
collisions. A study compromising 38 cities in developing countries, has shown that pedestrian6
fatalities is the highest among all modes; accounting for 41% to 75% of all fatalities (2). The7
problem of pedestrian vulnerability is also present in developed countries. Approximately 22%8
of fatal road collisions in Canada and 30% of fatal road collisions in British Columbia involve9
vulnerable road users; respectively 13% and 15% of which are pedestrians (3). Maintaining a safe10
pedestrian walking environment is vital for a sustainable transportation system and represents a11
challenge for promoting sustainable travel modes.12

Traffic violations occur when road users including pedestrians seek an increased mobil-13
ity, by disregarding existing traffic laws and regulations. This behavior can come at the expense14
of accepting additional collision risk. The detection and the understanding of non-conforming15
behaviors (violations) can therefore be beneficial for a sound safety diagnosis as well as for devel-16
oping safety countermeasures. This practical benefit of observing violations as surrogates to traffic17
conflicts, and consequently road collisions, is especially realized when observational periods are18
limited. In situations where it is likely that road collisions are attributable to violation actions,19
traffic violations can provide a reliable and timely surrogate road safety measure. Several stud-20
ies argued on conceptual and empirical grounds that traffic violations are valid indicators of road21
safety ((4) (5) (6)).22

Unfortunately, one of the main challenges in conducting detailed pedestrian road safety23
analysis is the lack of reliable data (7). Examples of desired data include pedestrian volume and24
measures of exposure to collision risk (8). Yet, current field based methods for collecting pedes-25
trian data is labor-intensive, suffer from reliability issues, time consuming and costly. Reliability26
issues stem from the fact that pedestrians move in a less organized fashion than vehicles, at higher27
densities, and in more complex and constrained spaces than vehicular traffic. Video sensors have28
become popular for recording different events for offline analysis, solving much of the above-29
mentioned issues. However, the manual inspection of the video data suffers from some of the30
shortcomings of the field based methods, more precisely the subjectivity and timing issues. Com-31
puter vision provides an automated based interpretation of the different scenery. It has been an32
active research area that found applications in different disciplines including transportation engi-33
neering. It is advocated that the automated observation and analysis of road user violations may34
help improve our understanding of pedestrian safety issues. Moreover, such automation can enable35
the processing of extended observational periods while consuming limited time and staff resources.36

This paper presents a methodology for the automated detection of pedestrian spatial and37
temporal violations at urban intersections. Spatial violations occur when pedestrians decide to38
cross in non-designated crossing regions. Temporal violations occur when pedestrians cross an39
intersection during an improper light phase. The methodology relies on: First, the discrimination40
of pedestrian trajectories and segregating the ones with non-conforming behavior. Second, the41
identification of pedestrian locations during different light phases by analyzing their coordinates.42
The analysis is performed on video segments of two urban intersections in Downtown Vancouver,43
Canada and the city of Kuwait, Kuwait to illustrate the methodology. In addition to its importance44
to safety analysis, this line of research can be beneficial to other applications including data col-45
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lection to support pedestrian behavioral studies as well as calibration and validation of pedestrian1
simulation models.2

2 RELATED WORK3
Pedestrian crossing behavior is important for the design of urban intersections and signalized cross-4
ings, in addition to its role as a safety surrogate indicator of the intersection. For example, the re-5
sults in (9) suggested a relation between pedestrian crossing conformance and traffic conflicts. e.g.,6
non-conforming pedestrian is more likely to be trapped in the middle of the street. That leads to7
an increase in collision exposure. The main factors that affect pedestrian behavior at intersections8
were studied in (10). Several parameters, such as waiting time, crossing time, and arrival rate were9
suggested as key variables for describing pedestrian characteristics and improving crossing design10
and signal timing plan (10). In (11), models were developed to study the relationship between the11
pedestrian waiting time at the curbside and the number of crossing attempts. The study revealed12
that the expected waiting time influenced the number of crossing attempts of the pedestrian. In line13
with this work, a system was developed as an observatory system dedicated to pedestrian mobility14
at signalized intersections (12). The system focuses on the assessment of time sharing between15
pedestrians and road trafc. Data collection in the above studies did not employ computer vision16
techniques and relied on field observations for data collection and analysis.17

The literature covering transportation applications of computer vision techniques is steadily18
growing. A useful recent overview of work developed in the realm of computer vision on pedes-19
trian detection, classification and tracking can be found in (13)and (14). Malinovskiy et.al. (15)20
present a computer-vision based approach for collecting pedestrian arrival rate and headway in-21
formation. Road-users including pedestrians are identified via background extraction and are sub-22
sequently tracked. A waiting zone is selected at the beginning of the analysis and is used for23
pedestrian tracking initialization as well as a starting point for recording the arrival rate as well24
as the headway. The shortcoming for the waiting zone is the assumption that a pedestrian start-25
ing from one region will reach the other region. This technique may be challenged duo to the26
non-compliance behavior of certain road users.27

Beyond basic pedestrian behavior characterization, discriminative methods for pedestrian28
classifications were proposed using movements’ characteristics (16) and motion spatial patterns29
(17). While this is suitable for identifying pedestrians and is found practical for exposure measures30
like pedestrian counting, it is not clear how it can be used to identify more complex movement31
patterns like road-crossing. Template motion patterns extracted from video scenes in unsupervised32
manner have been applied extensively for road-users classification and (18) as well for predicting33
conflicts between road-users (17). In Ismail et.al. (17), as a prerequisite step to analyze pedestrian-34
vehicle conflicts, the authors combined LCSS based classification and speed threshold in order to35
discriminate between motorized road users and pedestrians.36

Interactions between motorized road-users and pedestrians have been analyzed in (19) and37
(20). In (20), an analysis was conducted of pedestrian-vehicle conflicts and pedestrian violations38
occurring at the intersection before and after the introduction of a pedestrian scrambling phase. The39
introduction of the scramble signal phase resulted in a statistically significant reduction in conflicts40
between pedestrians and vehicles. The conflicts analysis results were validated using automated41
computer vision detection system in (19).42
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3 METHODOLOGY1
3.1 Detecting Road-Users Using Computer Vision2
An outline of the video analysis procedure is shown in Figure 1. At first, video data is encoded3
to a pre-defined format. Subsequently, feature tracking is conducted where important points are4
tracked on moving objects. The subsequent step is to select a point that moves at similar speed and5
satisfy other motion constraints to the same coherent object. This step is called feature grouping.6
The subsequent step is to distinguish between read-users types and finally classify pedestrians as7
violating and non-violating pedestrians.8

The road user detection and tracking module relies on a feature-based tracking method9
described in (21). Feature-based tracking is preferred because it can handle partial occlusion. The10
tracking of features is done through Kanade-Lucas-Tomasi feature tracker. Stationary features and11
features with unrealistic motion are filtered out, and new features are generated to track objects12
entering the field of view. Since a moving object can have multiple features, the next step is to13
group the features, i.e., decide what set of features belongs to the same object, using cues like14
spatial proximity and common motion. A graph connecting features is constructed over time. A15
detailed description of the tracking algorithm is presented in (21).16

An important component in the methodology is the camera calibration (22). A Homog-17
raphy matrix is generated to provide a transformation used to convert the image coordinates to18
physical coordinates on a world map. This step is important because a mandatory perquisite of19
the analysis is to have speed measured in real world coordinates rather than pixel based coor-20
dinate. The main objective of camera calibration is to find a set of parameters that constitute a21
mapping from world coordinates to image plane coordinates, so that world coordinates can be22
recovered from video image. The parameters can be categorized as extrinsic or intrinsic. The23
extrinsic parameters specify the translation and rotation of the camera coordinates relative to the24
world coordinates. The intrinsic parameters describe the perspective projection of the road scene25
onto the image plane. Estimation of the parameter values is usually set as a minimization problem26
of the difference between selected projected geometric features (e.g., points, lines) onto world or27
image plane spaces and the actual measurements of these entities in projection space. A detailed28
description of the adopted camera calibration algorithm is described in (22).29

3.2 Detecting Violations30
Figure 2 illustrates the general procedure for the violation detection methodology. Road users are31
classified into vehicles and pedestrians. Once an acceptable correct road-users classification level32
is achieved, only pedestrian tracks are kept for further analysis. Pedestrians are classified as ei-33
ther spatially violating or non-violating. This is done by comparing the pedestrian tracks against34
a given set of predetermined tracks representing standard pedestrian movements. Simultaneously,35
pedestrian are classified as either temporally violating or non-violating. This is achieved by au-36
tomatically capturing the temporal and spatial information of each pedestrian and comparing this37
information against the provided traffic signal cycles and specified screen lines.38

Road Users Classification Based on Prototypes Matching39
Classification of road-users based on trajectory prototypes is performed in two consecutive steps.40
First, a set of trajectories representing a specific reference type of interest is selected. Second, a41
comparison procedure to classify road-users based on their similarity to those prototypes is then42
applied. Similarly, violation detection starts with identifying set of movement prototypes that43
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represent what are considered as normal movement prototypes. Subsequently, a comparison is1
conducted between a given track and normal movement prototypes. For example, any significant2
disagreement between both sequences of positions is interpreted as evidence that the given track3
represents the movement of a road user performing a traffic violation. In this paper, the longest4
common sub-sequence algorithm (LCSS) is adopted for both road-users classification and violation5
detection. More specifically, the comparison relies on an LCSS similarity measure between the6
movement prototypes and the trajectories to make decision about the classification.7

LCSS Algorithm8
Let τ be a finite set of road user tracks {Ti|i ∈ 1, 2, . . . , N(τ)}, with N(.) is a measure on a finite9
set that returns the number of the set elements. Let each road user track Ti be composed of a set of10
coordinate tuples such that Ti = {tik|k ∈ 1, 2, . . . , N(Ti)} and each coordinate tuple tik be defined11
as tik = (xik, yik). Two points tik and tjl to be matched if max{|xik − xjl|, |yik − yjl|} < ε, where12
ε is some spatial proximity bound called hereafter matching distance. The LCSS of two road user13
tracks Ti and Tj , LCSSε(Ti, Tj) of respective lengths m and n, is defined recursively as follows:14

• 0 if m = 0 or n = 0,15

• 1 + LCSSε(Head(Ti), Head(Tj)), if the points tin and tjm match,16

• max{LCSSε(Head(Ti), Tj), LCSSε(Ti, Head(Tj))}, otherwise.17

where Head(Ti) = {tik|k ∈ 1, 2, . . . , N(Ti)− 1} and the definition is identical for all tracks other18
than i.19

In the process of violation detection, the function LCSSε(Ti, Tj) defines the LCSS between20
a road user track Ti and a previously learned movement prototype Tj . Matching decision can be21
complicated due to non-ideal tracking of road-users. For instance, the case LCSSε(Ti, Tj) < Tj22
likely involves a partial road user track. On the other hand, the case LCSSε(Ti, Tj) < Ti could23
occur if Tj is a partial road user track that was included in the set of prototypes. This case can24
also occur if Ti is in fact a violation track that contains sub-sequences that are not matched to any25
prototype. In order to explicate the two cases, a different normalization strategy is used for vio-26
lation detection. The non-metric LCSS similarity measure DLCSS (more precisely a dissimilarity27
measure) used in violation detection is defined as follows:28

DLCSS(Ti, Tj) = 1− LCSSε(Ti, Tj)

N(Ti)
(1)

Therefore, the LCSS is normalized by the length of the sub-sequence of the tracked object.29
LCSS-based violation detection is conducted on all road user tracks Ti ∈ τ by matching against30
the set of normal prototypes Tj ∈ τnormal. The latter set can be created by incrementally learning31
prototypes for a period of time and then manually removing prototypes that represent road user32
violations. For a given similarity threshold σ ∈ [0, 1], a road user track Ti is identified as a33
violation track if the following condition is met:34

min{DLCSS(Ti, Tj)|j = 1, 2, . . . , N(τnormal)} > σ (2)
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If the condition in Equation 2 is not met, then a road user track Ti is considered to represent1
a normal road user movement. Furthermore, in order to take into account the similarity in move-2
ment directions between two matched prototypes, an additional condition on the directional cosine3
of road user movements is augmented to Equation 2. A minimum threshold α is imposed on the4
directional cosine of a pair of positions that belong to the same common sub-sequence.5

A key challenge in the adaptation of the LCSS algorithm is the choice of the set of matching6
parameters track ε, σ, α that maximizes the number of correct violation detections and minimizes7
the number of missed violation detections. Relevant to this challenge is the study of the sensitivity8
of results to the selection of the matching parameters. In the case studies presented in this paper,9
sensitivity to matching parameters is investigated by detecting violations using a sample of all10
feasible selections of the matching parameters.11

Prototype Tracks12
Compared with vehicle movements, pedestrian movements is more complex. Vehicles usually13
move in predefined pathways and limited number of turning movements. On the other hand, pedes-14
trians move freely and do not have environment constrains on turn movements, reverse directions15
and sudden stops. More important, is the difficulty to predict a pedestrian trip as the pedestrian16
during the trip might combine multiple sub-trips that involve stops of indeterminate length.17

The LCSS algorithm compares the tracks against a set of templates (prototypes) of ex-18
pected road-user behavior at the given intersection. The computer vision system described earlier19
has a built-in procedure to extract a set of common tracks of road-users. However, more often the20
set of generated prototypes do not provide adequate representative of the road-user tracks. This is21
primary depending on the footage length used in the prototype generation as well as the distinct22
tracks found in the footage. An iterative procedure may be implemented to ensure a certain behav-23
ior coverage. An alternative procedure, would be synthesize prototypes to cover certain behavior24
that deemed hard to extract from the footage. An algorithm is developed to generate prototypes25
representing pedestrian behavior crossing at the designated crossing area. Currently linear tracks26
with additive positional noise mimic pedestrian ambulation are generated based on starting and27
ending world coordinate points. Deflection points can be used to represent pedestrians changing28
directions or making turns. The speed of the prototype is extracted from the average pedestrian29
speed at the intersection.30

Spatial Violation Procedure31
Spatial violation detection based on LCSS matching is summarized as follows. The algorithm re-32
quires as inputs the list of road user tracks, minimum possible speed for vehicles as well as set of33
vehicles movement prototypes. The algorithm returns as output two complimentary sets for tracks34
associated with violating and non-violating pedestrians. The algorithm consists of three main pro-35
cedures. The first part of the algorithm classifies the road-users as vehicles and pedestrians and36
store them into the appropriate list. The classification is based on the movement prototypes and the37
provided speed threshold. The next stage is to create a list of prototypes for non-violating pedes-38
trians. Those prototypes can be synthetically obtained or automatically generated form sample39
pedestrian tracks. Those prototypes are subsequently used for pedestrian violation classification.40

While it would have been reasonable to have the classification procedure identifies specific41
movement patterns for particular road-users (pedestrians in this case) in one step, several chal-42
lenges hindered this process. First, the movement prototype generation necessitates the manual43
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intervention in order to exclude prototypes representing movements not deemed normal in the cur-1
rent study. Pedestrian movement variations are less regular when compared with vehicles which2
are confined to travels in limited regions defined by the lanes in the road segments. Second, the3
lack of adequate normal pedestrian prototypes in some locations made it difficult to have a rep-4
resentative set to compare against. To overcome this shortfall, prototypes were synthesized as5
described earlier. A validation procedure against ground truth (manual) classification was done to6
provide an insight about the usefulness of the algorithm by analyzing the false positive and false7
negative rates of the results as demonstrated in the case studies section.8

Temporal Violation Algorithm9
The basic idea of the algorithm for detecting temporal violation is to detect pedestrian tracks10
traversing an intersection segment during an improper signal phase. The Algorithm requires pri-11
marily as inputs the list of pedestrians tracks, as well as the signal timing information. The output12
consists of two non-disjoints lists that include the tracks associated with pedestrians violators and13
non-violators, respectively. The first step of the procedure is to specify the boundaries of the inter-14
section segment. The violation detection is then implemented in two consecutive steps. First, the15
tracks of the pedestrians crossing the region of interest, at any given time, are identified. This is16
simply achieved by intersecting the tracks coordinates with those of the intersection segment. The17
next step is to identify the time period within which the pedestrian tracks existed in this segment.18
This period is then compared against the corresponding signal timing phase. If the time period19
intersects with a phase when the pedestrian is prohibited to cross, then the pedestrian is labeled as20
violator, otherwise it is labeled as non-violator.21

4 CASE STUDIES22
This section describes the analysis of video sequences collected from two distinct open busy inter-23
sections with different characteristics and different pedestrian crossing patterns. The first intersec-24
tion is in Downtown Vancouver and is characterized by a large pedestrian sample size. The second25
intersection is in the city of Kuwait and is characterized by a sparse pedestrian volume.26

4.1 Downtown Vancouver27
Site Characteristics28
Videos were selected from a library collected for pedestrian movement analysis at a traffic in-29
tersection on Robson Street. This intersection is a major commercial and business corridor in30
Vancouver Downtown area with active walking environment. The intersection is a four-legged31
signal-controlled intersection. The two-way streets are line separated. Each leg has one traffic32
lane and one parking/reserved lane. A 2-phase signal control the traffic flow at the intersection. A33
total of 31 minutes video footage was selected and the timing of the video survey was intended to34
be concurrent with a nearby major event (fireworks) in order to capture higher pedestrian volumes35
and to provide walking speed information. This case study is concerned only with spatial violation.36
Signals cycle timing was unavailable and it was not possible to estimate it from the video footage.37

The camera calibration data used in this study was composed of a set of 7 points selected38
from salient features in the monitored traffic scene that appear in the video image, as well as two39
parallel lines, one 90 degree angles as shown in Figure 3(a) and 3(c). The world coordinates of the40
calibration points were collected from an orthographic image of the location obtained from Google41
Maps. The intrinsic parameter considered in this study is the camera focal length. The accuracy is42
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(a) Geometric Features on Image Space (b) Sample grid on Image Space

(c) Projected Geometric Features on World
Space

(d) Projected Sample Grid on Orthographic
World Space

FIGURE 3 Camera Calibration Illustration

demonstrated by the sample grid and its projection in Figures 3(b) and 3(d) respectively.1

Data Analysis2
Pedestrians in the scene are tracked and classified according to the violation methodology devel-3
oped in Section 3. Due to the high definition properties of this video, the majority of the pedestrians4
in the scene were tracked. Out of 593 total pedestrians, only 4 were missed. Figures 4(a) and 4(b)5
shows all the normal and spatial violation tracks analyzed in this case study.6

Movement prototypes were learned for a total of 250 prototypes. Those prototypes are used7
to identify and classify objects as normal pedestrians. All prototypes representing vehicle move-8
ments are removed. Figure 4(c) displays a super-imposition of all normal pedestrian prototypes9
used in LCSS-based classification. The richness of the pedestrian behavior in this scene made the10
synthesis of prototype an unnecessary step. For validation purposes pedestrians in the scene were11
manually identified and classified to be used as ground truth. Ground truth data revealed that of12
the total pedestrians in the scene, 30 were considered violators.13

To identify the best parameters values for the violation classification, various combinations14
of LCSS matching parameters are used. The range for matching distance ε is 2-10m with increment15
1m. The range for maximum similarity threshold σ is 0.05-0.85 with increment 0.1. The value of16
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(a) Spatial Violating Pedestrian Track (b) Normal Pedestrian Track

(c) Pedestrian Prototypes

FIGURE 4 Pedestrian Tracks
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the directional cosine threshold α is fixed at 0.95. Figure 5(a) displays the performance LCSS-1
based violation detection when ε and σ varies in the specified intervals while α is kept constant at2
0.95. In general, for a given short matching distance ε and low α, the incidence of false detection3
of normal tracks as violation tracks is negatively related to the value of the similarity threshold σ.4
The same effect on the incidence of false detection, albeit at less sensitivity, is observed for larger5
values of ε. On the other hand, reducing the value of σ under the previous conditions is found to6
increase missed detection of violation tracks. Similar but more pronounced effect is observed for7
the selection of ε. The performance of the violation detection using the LCSS matching is shown in8
Figure 5(b) representing the receiver operating characteristics (ROC) curve for the LCSS different9
parameters choice. At 16% false detection rate (non-violating pedestrian as violating), a 90% of10
correct detection rate of true violator can be achieved.11

The main factor affecting the false detection rate is the pedestrians moving very close to12
the crosswalk. Those pedestrians were labeled in the ground truth annotation as non-violating13
pedestrians. The nature of crossing marking in the east-west (up-down in the Figure 4(b)), makes14
it difficult to have a conclusive ground truth labeling for this kind of crossing scenario. Those15
“corner cases” were included in the analysis data set in order to have a more thorough performance16
evaluation of the classification. This reason, combined with a parameter sweeping with larger step17
size, attributed to the relative degradation of the performance.18

4.2 Kuwait City Durwaza Intersection19
Site Characteristics20
The Darwaza intersection is a four-legged signal-controlled intersection in Downtown Kuwait City.21
The two-way streets are separated by elevated median. Each leg has a three traffic lanes and a22
reserved median-separated lane for right turn. A 4-phase signal scheme is used for the intersection.23

The calibration data used in this study was composed of a set of 8 points selected from24
salient features in the monitored traffic scene that appear in the video snapshot, as well as one25
set of parallel lines and five 90 degree angles as shown in Figure 6(a). The world coordinates of26
the calibration points were collected from an orthographic image of the location obtained from27
Google Maps. (See Figure 6(c)). The intrinsic parameter considered in this study is the camera28
focal length. The calibration accuracy using the procedure in (22) was satisfactory. The cam-29
era calibration problem faced in this case study was relatively simple due to the abundance of30
lane marking features that appear in the orthographic image of the traffic scene. The accuracy is31
demonstrated by the sample grid and its projection in Figures 6(b) and 6(d) respectively.32

Data analysis33
Pedestrians in the scene are tracked and classified according to the violation methodology devel-34
oped in Section 3. Despite a low resolution quality, a large percentage (around 80%) of the pedes-35
trians in the scene were detected and tracked during their trip in the region of interest (shaded36
region in Figure 7). Of the 251 total pedestrians in the scene, 79 pedestrians passed through this37
region. Out of 79 pedestrians , 16 were not detected. Proper tuning for feature grouping ensured38
that poor isolated features were single out and each pedestrian is attributed at least one object. On39
the other hand, sparsity and scattering of pedestrians in the scene as well as fine tuning narrowed40
the effect of over-grouping. Over segmentation was not an issue in the scene. Yet, multiple ob-41
jects were associated with each pedestrian track. A total of 108 tracks were associated with the 6342
pedestrians. This large number is mainly due to the occlusions by the traffic light as well as light-43
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(a) LCSS Parameters Sweeping using a range of values for matching distance ε in meters and similarity threshold σ

(b) Receiver Operating Characteristics Curve

FIGURE 5 Classification Performance Analysis

TRB 2012 Annual Meeting Paper revised from original submittal.



Zaki et.al 12

 1

 2  3

 4

 5

 6
 7

 8

(a) Geometric Features on Image Space (b) Sample grid on Image Space

  1

  2

  3

  4  5

  6

  7

  8

Inferred Camera Position

(c) Projected Geometric Features on World Space (d) Projected Sample Grid on Orthographic World
Space
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FIGURE 7 Region of Interest

ing pole installed in the elevated median. Overcoming the occlusion was with limited success and1
introduced over-grouping elsewhere in the scene, which was not desirable for the current analysis.2

Figures 8(a) and 8(b) show all the pedestrian tracks (normal and spatial violation tracks,3
respectively) analyzed in this case study. Unlike spatial violations, it is not informative to display4
all temporal violating tracks. Some of the pedestrians in both Figures are considered temporally5
violating. An illustrative pedestrian which is both spatially and temporally violating is illustrated6
in Figure 9(a). The pedestrian in this case started the intersection crossing journey outside the7
designated cross-walk area and as it shows from the background vehicles are moving towards this8
pedestrian (Traffic Signal was green for those vehicles). Figure 9(b) shows the interaction of the9
pedestrian track with the road-segment boundary.10

In the 4-hours components a total of 13953 objects were tracked, including over-11
segmentation and multiple tracks per objects. Movement prototypes for road-users are learned12
for a period of 5000 frames selected at random from the video sequence. A total of 189 prototypes13
are recorded. Those prototypes are used to identify and classify objects as vehicles. No trajectory14
prototypes were generated for pedestrians. This is due to the sparsity of the pedestrians present in15
the scene. Figure 8(c) displays a super-imposition of all vehicle prototypes. Figure 8(d) shows the16
pedestrian synthetic prototypes used in LCSS-based classification. For validation purposes pedes-17
trians in the scene were manually identified and classified to be used as ground truth. The 10818
tracks associated with the pedestrians included false negative results (16 pedestrian tracks identi-19
fied as vehicles) as well as multiple tracks per pedestrians as noted earlier in this section. Vehicles20
labeled (False positives) as Pedestrians were 478 and those were discarded from the analysis. The21
vast majority of the false positives were due to vehicles entering the scene with speed relatively low22
and preparing to stop. Ground truth data revealed that the spatially Violating pedestrians were 21,23
while the temporally violating pedestrians were 24. Out of those temporally violating, 9 where also24
spatially violating which shows that a large portion of those temporally violating has a tendency to25
cross in non-designated area. This is likely due to the tendency of the pedestrian to minimize the26
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(a) Spatial Violating Pedestrian Track (b) Normal Pedestrian Track

(c) Vehicle Movements Prototypes (d) Pedestrian Movements Prototype

FIGURE 8 Road-Users Trajectories
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(a) Pedestrian Track

(b) Track inside the Region of Interest

FIGURE 9 A Pedestrian in Spatial and Temporal Violation
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travel distance. The automated temporal violation methodology detected all the violation correctly1
with no false detection of non-violator. It is plausible to note that the temporal violation accuracy2
depends on the precision of the camera calibration as well as the provided signal timing.3

To identify the best parameters values for the violation classification, various combinations4
of LCSS matching parameters are used. The range for matching distance ε is 2-10m with increment5
0.5m. The range for maximum similarity threshold σ is 0.1-0.9 with increment 0.05. The range6
for the directional cosine threshold α is 0.7-0.95 with increment 0.05. Figure 10(a) displays the7
performance LCSS-based violation detection when ε and σ varies in the specified intervals while8
α is kept constant at 0.9. There is little sensitivity of detection performance to α. Similar to the9
sensitivity analysis for the previous case study, the false detection of normal tracks as violations is10
negatively related to the value of the similarity threshold σ. On the other hand, reducing the value11
of σ is found to increase missed detection of violation tracks. The performance of the violation12
detection using the LCSS matching is shown in Figure 10(b) representing the receiver operating13
characteristics (ROC) curve for the LCSS different parameters choice. At 14% false detection14
rate (non-violating pedestrian as violating), a 90% of correct detection rate of true violator can15
be achieved. It is worth noting that the matching algorithm performance relies, in addition to the16
LCSS parameters, on the quality of the prototypes.17

It is worth noting that the accuracy of the analysis is dependent on the quality of the pro-18
totypes rather than the number of prototypes. In general, the quality of prototypes covering the19
normal behavior is subject to the camera angle, the nature of the intersection, and the geometric20
properties. While, it seems reasonable to assume that the quality increases with the chosen num-21
ber of prototypes, unfortunately, there is no available mechanism to find the optimum number of22
prototypes. Any increase above the optimum number will only add to the computation time. In23
the current case studies, the running time of the algorithm was not considered relatively high to24
affect its practicality. Due to the over-segmentation issue, the number of pedestrian objects is 143.25
Classification was performed with 76 synthetic prototypes. The over-segmentation problem, while26
an important issue in pedestrian analysis, has no impact on the quality of analysis, as the purpose27
is to identify whether part of a pedestrian trip involved some sort of violations or not.28

5 CONCLUSION AND FUTURE DIRECTIONS29
The identification of traffic violations as a surrogate safety measure can be an indispensable for30
a sound safety diagnosis and the initiation of countermeasures solutions. Pedestrians are more31
vulnerable than other classes of road users and pedestrian violations were shown to have the most32
significant contributor to pedestrian related crashes (3). While the majority of techniques devel-33
oped for automatically collecting traffic data focus on vehicular traffic, recent advances in the34
automated detection of pedestrians expanded the range applications in traffic safety. In this study,35
an automated system for identifying pedestrian violations using video analysis was developed and36
tested. A system previously developed for vehicle detection and tracking was significantly modi-37
fied to adapt for particularities of pedestrian movement and to discriminate pedestrian and motor-38
ized traffic as well as different pedestrian behaviors. The reliance on the LCSS matching provides a39
solid foundation for automated violation detection. Moreover, the practical appeal of LCSS based40
automated violation detection can be improved if normal prototypes are synthesized from prior41
knowledge of normal traffic movement. The system was tested on real video data collected at42
Downtown area of Vancouver, British Columbia, as well as an intersection Kuwait City. The re-43
sults show satisfactory accuracy of detecting both spatial and temporal violations with about 90%44
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(a) LCSS Parameters Sweeping using a range of values for matching distance ε in meters and similarity threshold σ

(b) Receiver Operating Characteristics Curve

FIGURE 10 Classification Performance Analysis
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correct violation detection rate in both case studies1
In the computer vision research, detecting moving pedestrians is usually based on matching2

the pedestrian against some predefined shapes or patterns of movements. The common applica-3
tions of these methods are to differentiate between pedestrians and other road-users like vehicles.4
Applications like abnormal behaviors detection (e.g., violations) are beyond the capabilities of5
these methods. The classification presented in this paper is considered a complimentary method6
that addresses the shortcomings in identifying the conformance of the moving pedestrians. The7
advantage of the method lies in its generality for deployment at different intersection settings; i.e.,8
signalized 4-legged, roundabout, scrambling settings.9

Extending on this work would involve investigating the relation between violations and10
other traffic factors like wait-time and design characteristics of the intersection. Other directions11
would involve studying the effect of violations on safety. This can be possible by defining severity12
profiles as safety measure and by developing relationships between violations and other safety13
conflict indicators. Finally, more experimental results at different intersections are desirable to14
have a robust estimation of the practicality of the approach. This includes cyclists’ violations15
detection.16
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