Procedimento do U.S.HCM/6thEd (2016)

- procedimentos similares aos do HCM/2010 (tb 97 e 2000) para rodovias e vias expressas ! apenas a versão em unidades imperiais; novos métodos simplificados/de planejamento efeitos dos veículos pesados com fator equivalente ou modelo de tráfego misto (inovação) novo procedimento de análise com tráfego misto deve tornar-se a forma preferida ...
- procedimento caracteriza os trechos de via de uso geral pela velocidade de fluxo livre (V_{FL});

 (em lugar da velocidade de projeto da via, usada até o HCM/85) e
 introduz a análise específica do efeito das faixas de uso geral ou especial (*managed lanes*)
 e do efeito de trechos em obra (além de uma análise de confiabilidade global)
 ambos calibrados para vias expressas (em outros casos podem ser usados com cautela)
- unificou os conceitos distintos de velocidade de fluxo livre (já similares no HCM/2010):

 autos, desimpedidos ou não, medida direta para q<1000veq/h (livre<500veq/h)

 (amostra mínima de 100 veículos em condições representativas do segmento)
- recomendação: usar velocidade de fluxo livre medida ! (em ambos os casos)
- \Longrightarrow estimativa indireta da velocidade de fluxo livre, em condições ideais ($\sim \widetilde{V}_{FL0}$):

 - não há critério recomendado para vias expressas
- eliminou critérios discutíveis do HCM/2010 (não interpolar parâmetros ou curva da via pela velocidade de fluxo livre, fornecer fatores equivalente por faixas de rampa)!

 portanto, volta a recomendação mais adequada de interpolar (da forma usual ...)
- não há critério recomendado para fiscalização ostensiva (policial ou eletrônica) suposição "natural": limitar a velocidade de tráfego (ou a própria V_{FL}) suposição implícita: fiscalização usual (policial, mas usual ... incógnita e eventual ...)
- procedimento de análise para uso das rodovias (acostamento) por bicicletas (do HCM/2010)
 - mesmo procedimento recomendado para rodovias de pista simples ...
 - tendência de adotar uma visão multimodal (e promover sustentabilidade)
 - critério de qualidade de serviço (não nível de serviço) avaliado pelo usuário

Figura 12-1. Tipos de Vias Expressas

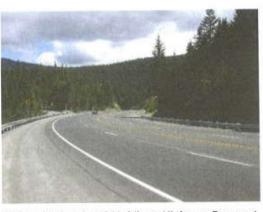
Source: © 2014 Google

(a) Eight-Lane Urban Freeway Segment

Source: © 2014 Google

(b) Six-Lane Rural Freeway Segment

Figura 12-2. Tipos de Vias Comuns de Múltiplas Faixas


(a) Divided Suburban Multilane Highway Segment

(b) Undivided Suburban Multilane Highway Segment

(c) Suburban Multilane Highway Segment with Two-Way Left-Turn Lane

(d) Undivided Rural Multilane Highway Segment

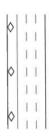
Figura 12-9. Tipos de Faixas de Uso Especial

Acesso Contínuo: separação por sinalização demarcada por linhas seccionadas ou linhas contínuas simples (não compulsória, na recomendação do U.S.MUTCD).

Divisão em Nível (Buffer) 1fx:

separação de uma faixa especial intercalando sinalização demarcada por zebrado ou linhas contínuas duplas (compulsória na proibição de transposição) e linhas seccionadas ou simples

Divisão em Nível (Buffer) 2+fxs:


separação de 2 ou mais faixas especiais intercalando sinalização demarcada por zebrado ou linhas contínuas duplas (compulsória na proibição de transposição) e linhas seccionadas ou simples.

Divisão por Barreira 1fx:

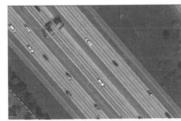
separação de uma faixa especial intercalando barreiras físicas (barreiras de proteção ou dispositivos de segregação) e linhas seccionadas ou simples.

Divisão por Barreira 2+fxs:

separação de 2 ou mais faixas especiais intercalando barreiras físicas (barreiras de proteção ou dispositivos de segregação) e linhas seccionadas ou simples.

©2014 Google. I-5, Seattle, Washington.

Source: ©2014 Google. I-394, Minneapolis, Minnesota.



Source: ©2014 Google. I-110, Los Angeles, California.

I-5, Orange County, California.

Source: ©2014 Google. I-5, Seattle, Washington.

Procedimento Geral (para Vias Expressas e Vias Comuns de Múltiplas Faixas):

Capacidade básica: função da velocidade de fluxo livre da via

$$\widetilde{C}_{_{\rm f}}=\widetilde{c}_{_{\rm f}}.N$$
 , onde N= nº de faixas do sentido e $\,\widetilde{c}_{_{\rm f}}=f\Big(\widetilde{V}_{_{\rm FL}}\Big).$

$\widetilde{ m V}_{ m FL}$	75mi/h (120km/h)	70mi/h (112km/h)	65mi/h (104km/h)	60mi/h (96km/h)	55mi/h (88km/h)	50mi/h (80km/h)	45mi/h (72km/h)
$\widetilde{c}_{_f}$ expressa (veq/h/fx)	2400	2400	2350	2300	2250	-	-
$\widetilde{c}_{\mathrm{f}}$ comum (veq/h/fx)	-	2300	2300	2200	2100	2000	1900

para vias expressas
$$\widetilde{c}_f = 2200 + \gamma_{aM}.(FFS-50) = 2200 + \gamma_{aK}.(\widetilde{V}_{FL}-80)$$
 e $\hat{\widetilde{c}}_f = \widetilde{c}_f.CAF$ p/autos, com $55 \le F\widetilde{F}S \le 75$ mph, $88 \le \widetilde{V}_{FL} \le 120$ km/h, $\widetilde{c}_f \le 2400$ veq/h/fx; $\gamma_{aM} = 10$ ou $\gamma_{aK} = 6,25$. para vias comuns $\widetilde{c}_f = 1900 + \gamma_{cM}.(FFS-45) = 1900 + \gamma_{cK}.(\widetilde{V}_{FL}-72)$ e $\hat{\widetilde{c}}_f = \widetilde{c}_f$ p/autos, s/ajuste com $45 \le F\widetilde{F}S \le 70$ mph, $72 \le \widetilde{V}_{FL} \le 112$ km/h, $\widetilde{c}_f \le 2300$ veq/h/fx, $\gamma_{cM} = 20$ ou $\gamma_{cK} = 12,5$.

⇒ Velocidade de Fluxo Livre: sempre que possível medida em campo (autos, desimpedidos)

estimativa para vias expressas: $\widetilde{V}_{FL} = \widetilde{\hat{V}}_{FL0} - \widetilde{\Delta}_{Lf} - \widetilde{\Delta}_{OL} - \widetilde{\Delta}_{DR}$ (para autos) e $\widetilde{\hat{V}}_{FL} = \widetilde{V}_{FL}$.SAF correções devidas à $\widetilde{\Delta}_{Lf}$ =largura de faixa (f_{LW} , **ver Tabela 12-20**),

 $\widetilde{\Delta}_{\mathrm{OL}}$ =(des)obstrução lateral (f_{RLC} , ver Tabela 12-21), e

 $\widetilde{\Delta}_{\mathrm{DR}}$ =densidade de ramais (entrada ou saída)

com $\widetilde{\Delta}_{DR} = 3,22.\text{TRD}^{0,84}\,\text{mi/h}\,\,(f_{RD})$ ou $\widetilde{\Delta}_{DR} = 7,65.\text{DRK}^{0,84}\,\text{km/h}$ onde a densidade TRD é obtida com 3 mi antes e 3mi depois (DRK, por km, é obtida com 4,8km antes e 4,8km depois) incluindo incorporações e divergências (antes: interconexões com entrada) ...

(tb eliminou o fator de correção pelo número de faixas do HCM1997,2000)

Estimativa para vias comuns: $\widetilde{V}_{FL} = \widetilde{\hat{V}}_{FL_0} - \widetilde{\Delta}_{Lf} - \widetilde{\Delta}_{OL} - \widetilde{\Delta}_{SC} - \widetilde{\Delta}_{DA}$ (para autos), sem ajustes

correções devidas à $\widetilde{\Delta}_{If}$ = largura de faixa (f_{IW} , ver Tabela 12-20),

 $\widetilde{\Delta}_{\text{OL}}$ =(des)obstrução lateral total (f_{TLC} , ver Tabela 12-22)

 $\widetilde{\Delta}_{SC}$ =divisão (central) de pistas (f_{M} , ver Tabela 12-23) e

 $\widetilde{\Delta}_{\mathrm{DA}}$ =ambiente/acessos ($\mathrm{f_{A}}$, ver Tabela 12-24

acessos: rural 8/mi (5/km); suburbano 16/mi (10/km) baixa, 25/mi (16/km) alta densidade.

onde: $\hat{\hat{V}}_{FL_0}$ = velocidade fluxo livre (básica, ideal) para autos (FFS;)

vias expressas: recomenda 75,4mi/h (120,6 km/h) para vias rurais e urbanas (HCM1997,2000 recomendavam 110km/h para vias expressas urbanas)

vias comuns: recomenda velocidade de projeto (ou indireta baseada em \widetilde{V}_L limite) (HCM1997, 2000 recomendavam 100km/h)

TABELA 12-20. Correção pela Largura da Faixa em Vias Expressas e Comuns de Múltiplas Faixas - HCM/6thEd (2016)

LARGURA DA FAIXA	REDUÇÃO NA VELOCIDADE FLUXO LIVRE
≥12ft (>=3.6m)	0,0mi/h (0km/h)
≥11 a 12ft (>=3,3 a 3,6m)	1,9mi/h (3,0km/h)
≥10 a 11ft (>=3,0 a 3,3m)	6.6mi/h (10,6km/h)

TABELA 12-21. Correção pela Desobstrução Lateral em Vias Expressas - HCM/6thEd (2016)

DESOBSTRUÇÃO LATERAL	REDUÇÃO NA	VELOCIDADE DE	LIVRE (km/h)				
ACOSTAMENTO DIREITO*	NÚMERO DE FAIXAS						
	2/sentido	3/sentido	4/sentido	≥5/sentido			
≥ 6ft (≥1.80m)	0.0mi/h (0.0km/h)	0.0mi/h (0.0km/h)	0.0mi/h (0.0km/h)	0.0mi/h (0.0km/h)			
5ft (1,50m)	0,6mi/h (1,0km/h)	0,4mi/h (0,7km/h)	0,2mi/h (0,3km/h)	0,1mi/h (0,2km/h)			
4ft (1,20m)	1,2mi/h (1,9km/h)	0,8mi/h (1,3km/h)	0,4mi/h (0,7km/h)	0,2mi/h (0,3km/h)			
3ft (0,90m)	1,8mi/h (2,9km/h)	1,2mi/h (1,9km/h)	0,6mi/h (1,0km/h)	0,3mi/h (0,5km/h)			
2ft (0,60m)	2,4mi/h (3,9km/h)	1,6mi/h (2,6km/h)	0,8mi/h (1,3km/h)	0,4mi/h (0,7km/h)			
1ft (0,30m)	3,0mi/h (4,8km/h)	2,0mi/h (3,2km/h)	1,0mi/h (1,6km/h)	0,5mi/h (0,8km/h)			
Oft (0,0M)	3,6mi/h (5,8km/h)	2,4mi/h (3,9km/h)	1,2mi/h (1,9km/h)	0,6mi/h (1,0km/h)			

^{*} Distância da obstrução lateral ao limite da faixa de rolamento no acostamento da direita apenas (se maior que 6ft/1,80 m, usar 6ft/1,80m). Efeito de obstruções contínuas (defensas, barreiras, ...) ou periódicas (postes de sinalização ou iluminação regularmente espaçados) no lado direito exigem julgamento específico do analista. Efeitos de obstruções no lado esquerdo a menos de 2ft/0,60m (pouco usuais) podem ser relevantes e também exigem julgamento específico do analista (além de 2ft/0,60m não são usualmente consideradas obstruções).

TABELA 12-22. Correção pela Desobstrução Lateral em Vias Comuns de Múltiplas Faixas - HCM/6thEd (2016)

4 FAIXAS	(2 por sentido)	6 FAIXAS (3 por sentido)			
DESOBSTRUÇÃO LATERAL TOTAL*	REDUÇÃO NA VELOCIDADE FLUXO LIVRE	DESOBSTRUÇÃO LATERAL TOTAL*	REDUÇÃO NA VELOCIDADE FLUXO LIVRE		
12ft (3.6m)	0.0mi/h (0.0km/h)	12ft (3.6m)	0.0mi/h (0.0km/h)		
10ft (3,0m)	0,4mi/h (0,6km/h)	10ft (3,0m)	0,4mi/h (0,6km/h)		
8ft (2,4m)	0,9mi/h (1,5km/h)	8ft (2,4m)	0,9mi/h (1,5km/h)		
6ft (1,8m)	1,3mi/h (2,1km/h)	6ft (1,8m)	1,3mi/h (2,1km/h)		
4ft (1,2m)	1,8mi/h (3,0km/h)	4ft (1,2m)	1,7mi/h (2,7km/h)		
2ft (0,6m)	3,6mi/h (5,8km/h)	2ft (0,6m)	2,8mi/h (4,5km/h)		
Oft (0,0m)	5,4mi/h (8,7km/h)	0ft (0,0m)	3,9mi/h (6,3km/h)		

^{*} Obstrução lateral total é uma soma das desobstruções laterais no canteiro (se maior que 1,8 m, usar 1,8 m) e acostamento (se maior que 1,8 m, usar 1,8 m; sem canteiro central, usar 1,80m à esquerda). Portanto, para fim de análise, a desobstrução lateral total não pode exceder 3,6 m. Guia de altura usual não constitui obstrução lateral. Obstruções usuais à esquerda (barreiras), se a menos de 2ft (),60m) exigem julgamento específico.

TABELA 12-23. Correção pela Divisão de Pistas em Vias Comuns de Múltiplas Faixas - HCM/6thEd (2016)

DIVISÃO DE PISTAS	REDUÇÃO NA VELOCIDADE FLUXO LIVRE
Rodovias não divididas	1,6mi/h (2,6km/h)
Rodovias divididas (incluindo TWLTLs)	0,0mi/h (0,0km/h)

TWLTLs: Faixa de acomodação de conversão à esquerda nos dois sentidos (não utilizada pelo tráfego direto) no centro da via.

TABELA 12-24. Correção pela Densidade de Pontos de Acessos em Vias Comuns de Múltiplas Faixas - HCM/6thEd (2016)

DENSIDADE DE PONTOS DE ACESSO	REDUÇÃO NA VELOCIDADE FLUXO LIVRE
0/mi (0/km)	0,0mi/h (0,0km/h)
10/mi (6/km)	2,5mi/h (4,0km/h)
20/mi (12/km)	5,0mi/h (8,0km/h)
30/mi (18/km)	7,5mi/h (12,0km/h)
≥ 40/mi (≥24/km)	10,0mi/h (16,0km/h)

Obs.: rural 8/mi (5/km); suburbano 16/mi (10/km) baixa, 25/mi (16/km) alta densidade.

➡ Velocidade de operação: função do fluxo faixa na via

Tradicional: velocidade média, obtida na curva de operação da via (ou sua forma algébrica)

$$\text{forma algébrica: } \hat{V} = \begin{cases} \hat{V}_{\text{FL}} \text{ , se } \hat{q}_{\text{f}} \leq \hat{q}_{\text{BP}}, \text{ou se } \hat{q}_{\text{f}} \leq \hat{c}_{\text{f}} \\ \\ \hat{V}_{\text{FL}} - \left(\hat{V}_{\text{FL}} - \hat{V}_{\text{C}}\right) \left(\frac{\hat{q}_{\text{f}} - \hat{q}_{\text{BP}}}{\hat{c}_{\text{f}} - \hat{q}_{\text{BP}}}\right)^{\text{a}} \end{cases} \text{ (ajustados ou não)}$$

$$\text{em fluxo equivalente, com } \hat{c}_{_{f}} = \widehat{\widetilde{c}}_{_{f}} = \widetilde{c}_{_{f}}.CAF_{_{ao}}\,,\,\, \hat{V}_{_{FL}} = \widetilde{\hat{V}}_{_{FL}}.SAF_{_{ao}}\,\,\text{e}\,\,\,\hat{V}_{_{C}} = \widehat{\widehat{c}}_{_{f}}/\widehat{\widehat{K}}_{_{C}}\,\,,$$

 $\hat{V}=f(\hat{q}_f)$ e $\hat{K}=\frac{\hat{q}}{\hat{V}}$ em condições básicas, <u>reais</u> (eventualmente ajustadas) !

$$\begin{array}{l} \mbox{vias expressas: } \hat{q}_{BP} = \left(\!1000 + \gamma_{bM}.\!\left(\!75 - F\hat{F}S\right)\!\right)\!CAF^2 = \left(\!1000 + \gamma_{bK}.\!\left(\!120 - \hat{V}_{FL}\right)\!\right)\!CAF^2 \,, \\ \mbox{onde } \gamma_{bM} = 40(pc/h/ln)/(mi/h) \mbox{ ou } \gamma_{bK} = 25(veq/h/fx)/(km/h) \,, \ a = 2,00 \,; \\ \end{array}$$

vias comuns: \hat{q}_{BP} = 1400veq/h/fx , ~a=1,31; em ambas $\widetilde{\hat{K}}_{C}$ = 45veq/mi/fx = 28veq/km/fx

$$\hat{q}_{\rm f} = \widetilde{\hat{q}}_{\rm f} = \frac{VH}{N.FHP \cdot f_{\rm VP}} \qquad \text{em veq/h.fx (fluxo=demanda equivalente por faixa),}$$

FHP = fator de hora-pico (usual 0,85 a 0,95)

 f_{vp} = composição de tráfego: veículos pesados (inclui combinados e recreacionais)

$$f_{\rm VP} = \frac{1}{P_{\rm A}.e_{\rm A} + P_{\rm VP}.e_{\rm VP}} = \frac{1}{1 + P_{\rm VP}.(e_{\rm VP} - 1)} \; (\,e_{\rm A} = 1 \; \, {\rm para \; autos, \; sempre})$$

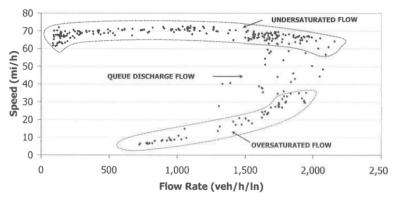
e_{VP}: fator equivalente para caminhões e ônibus, classificados em

SU: 100lb/hp (até 2-3 eixos e recreacionais); TT: 150lb/hp (+2-3 eixos e combinados) interpolar em p_{TT} (melhor: e_{30} =-TT ou -carga; e_{70} =+TT ou +carga; e_{50} =intermediário)

(ver Tabela 12-26,27,28; Alternativa: modelo para tráfego misto)

f_P= tipo de população eliminado: antes 1,0 (usuários habituais) a 0,85 (evidência de campo)

novo procedimento recomenda definir fatores de ajuste de capacidade e velocidade:


$$CAF_{ao} = CAF_{pop}$$
 e $SAF_{ao} = SAF_{pop}$ função do tipo de usuário (ver Tabela 26-9)

(ver adiante ajustes adicionais para trechos em obras ...)

ênfase na conveniência de calibrar os fatores de ajuste com dados locais, especialmente:

- quando há turbulência no tráfego causado por supressão de faixa, incorporação, separação ou entrelaçamento entre segmentos básicos adjacentes ...
- quando há restrições físicas especiais que provocam visibilidade restrita ou faixas estreitas ou obstruções laterais além das usualmente consideradas ... onde o pavimento é deficiente ou há fatores de distração ao lado da via ...
- em segmentos básico em túneis ou sobre pontes ...
 (pela primeira vez, é discutido um método de medição da capacidade; ver adiante).

Figura 12-3. Tipos de Fluxo em Segmentos Básicos de Vias Expressas – HCM/6thEd (2016)

- reconhece três regimes, incluindo a livre dissipação de filas (além de fluxo normal e fluxo forçado)
- reconhece a perda de capacidade com fila: recomenda $\alpha_{\rm s} \cong 7\%$ (redução usual: 5% a 15% da capacidade)
- não esboça curva para fluxo forçado (critério usual: relação linear até velocidade V_s entre 40 e 60km/h).

Figura 12-7. Curvas de Operação para Segmentos Básicos de Vias Expressas – HCM/6thEd (2016)

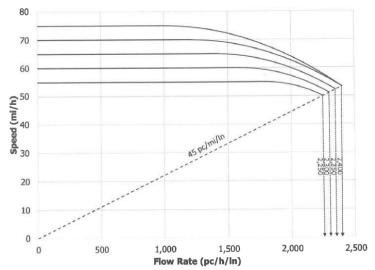
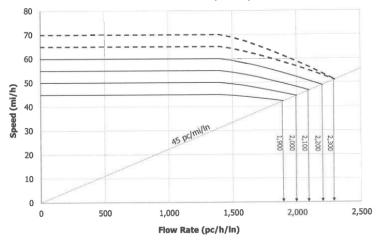



Figura 12-8. Curvas de Operação para Segmentos Básicos de Vias Comuns de Múltiplas Faixas – HCM/6thEd (2016)

Note: Dashed curves are extrapolated and not based on field data.

não há recomendação para curva de operação nos regimes saturados (ver Figura 12-3)

Nível de serviço: não há redução devida ao padrão geométrico da via ! (ver Figuras 12-16,17)

critérios iguais aos do HCM2000 e 2010 (menos exigentes que os do HCM/97):

A: $\widetilde{K} \le 11 \text{ veq/mi/fx } (7 \text{ veq/km.fx})$

B: $\widetilde{K} \le 18 \text{ veg/mi/fx (11 veg/km.fx)}$

C: $\widetilde{K} \le 26 \text{ veq/mi/fx (16 veq/km.fx)}$

D: $\widetilde{K} \le 35 \text{ veg/mi/fx } (22 \text{ veg/km.fx})$

E: $\widetilde{K} \le 45$ veq/mi/fx (28 veq/km.fx), limite da operação não saturada agora também adotado para vias comuns de múltiplas faixas !

F: operação instável (fluxo forçado)

Figura 12-16. Níveis de Serviço para Segmentos Básicos de Vias Expressas – HCM/6thEd (2016)

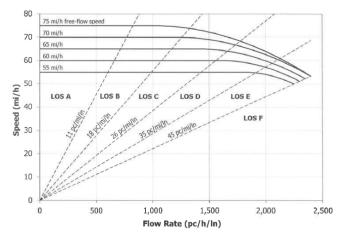
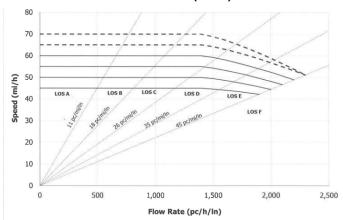
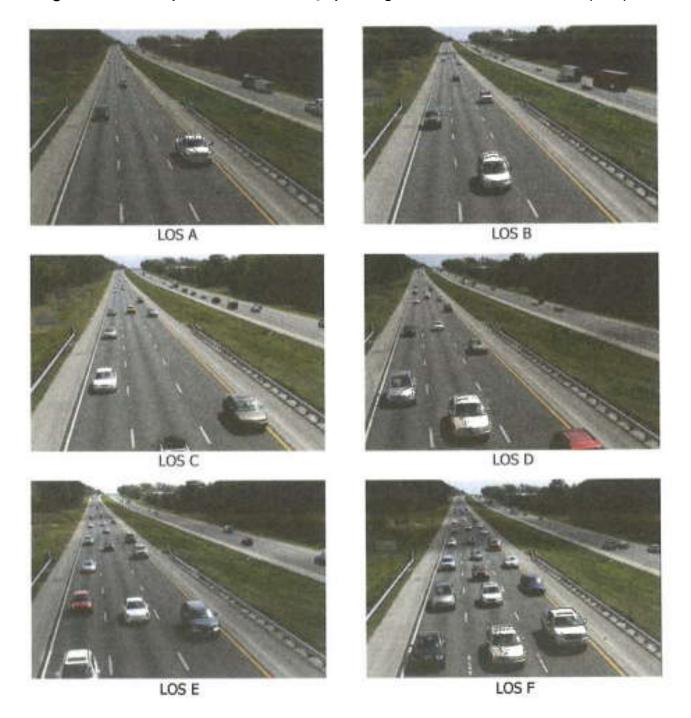



Figura 12-17. Níveis de Serviço para Segmentos Básicos de Vias Comuns de Múltiplas Faixas – HCM/6thEd (2016)



não considera restrições de geometria mas $\widetilde{K} = \frac{\widetilde{q}_T}{\widetilde{V}}$ é função de VFL !

não apresenta tabelas de volumes e fluxos de serviço (obter das curvas de operação) (os valores de velocidade e densidade dos gráficos são para condições básicas, com autos apenas; devem ser transformados para tráfego misto).

podem ser expressos em valores diários considerando a composição horária e em valores bidirecionais considerando a composição direcional

Figura 12-14. Exemplos de Nível de Serviço para Segmentos Básicos - HCM/6thEd (2016)

Ajustes Adicionais: atualmente recomendados (calibrados) apenas para vias expressas (em outros tipos de via o procedimento tem de ser usado com cautela e verificação ...)

. efeito de obras na pista: função da configuração viária e de obra:

$$\widetilde{c}_{\mathrm{fwz}} = \frac{\widetilde{q}_{\mathrm{fDwz}}}{1 - \alpha_{\mathrm{wz}}} \,, \ \, \alpha_{\mathrm{WZ}} \cong 13,4\% \, \text{ em obras (perda de capacidade com fila); e } \, \mathrm{CAF}_{\mathrm{wz}} = \frac{\widetilde{c}_{\mathrm{fwz}}}{\widetilde{c}_{\mathrm{f}}}$$

fluxo de tráfego na livre dissipação de filas (Free Queue Discharging)

$$\widetilde{q}_{\rm fDwz} = 2093 - 154.LCSI - 194.f_{\rm Br} - 179.f_{\rm AT} + 30.d_{\rm LAT} - 59.f_{\rm DN}$$

$$\widetilde{V}_{FLwz} = 15.9 + 53.4.f_{sr} + 0.53.VL_{wz} - 8.96.LCSI - 6.14.f_{Br} - 2.7.f_{DN} - \widetilde{\Delta}_{DRwz} \text{ ; e } SAF_{wz} = \frac{\widetilde{V}_{FLwz}}{\widetilde{V}_{FL}} = \frac{\widetilde{V}_{FLwz}}{\widetilde{V}_{FLwz}} = \frac{\widetilde{V}_{FLwz}}{\widetilde{V}$$

onde LCSI é o índice de severidade da redução de faixas (ver Tabela 10-15)

 $f_{\mbox{\tiny Br}}$ é o indicador de tipo de barreira (0=concreto, rígido; =cone, tambor, etc)

f_{AT} é o indicador de tipo de área (0=urbana; 1=rural)

 $d_{\text{\tiny LAT}}$ (m) é a distância lateral das obras às barreiras, até 1,80m ($f_{\text{\tiny LAT}}$: 0-12ft)

 f_{DN} é o indicador de período do dia (0=diurno; 1=noturno)

 VL_{wz} : limite de velocidade com obras em km/h (SL_{wz} em mi/h)

$$f_{Sr}$$
 é a razão do limite de velocidade sem/com obras ($f_{Sr} = \frac{VL}{VL_{wz}} = \frac{SL}{SL_{wz}}$)

com
$$\widetilde{\Delta}_{DRwz} = 8,7.TRD \, mi/h \, (f_{RDwz})$$
 ou $\widetilde{\Delta}_{DRwz} = 13,9.DRK \, km/h$ TDR densidade de ramais/mi (DRK : densidade de ramais/km) em 6mi (9,6km), 3mi (4,8km) em cada lado do ponto médio do trecho

reduções maiores que as previstas com o procedimento atual ocorrem em

- trechos com desobstrução lateral mínima (que limitam a condução dos veículos) ...
- trechos com significativa presença de veículos pesados em aclives acentuados ... (especialmente quando o trecho reduz-se a uma faixa, com seguimento forçado)\

ajustes adicionais para trechos não básicos (ver Figuras 25-7,8,10,11,12,13,14)

TABELA 10-15. Índice de Severidade do Bloqueio de Faixas em Obras na Via – HCM/6thEd (2016)

No.Faixas Total Por Sentido	No.Faixas Abertas Por Sentido	OR (Proporção de Faixas Aberta)	LCSI (Índice de Severidade do Bloqueio de Faixas)
3	3	1.00	0.33
2	2	1,00	0,50
4	3	0,75	0,44
3	2	0,67	0,75
4	2	0,50	1,00
2	1	0,50	2,00
3	1	0.33	3.00
4	1	0,25	4,00

 $^{^{\}star}\,LCSI\text{=}Lane\,\,Closure\,\,Severity\,\,Index\,\,LCSI\text{=}1/(OR.NO)\text{=}1/(NT/NO^2);\,\,OR\text{=}Open\,\,Ratio}\,\,(OR\text{=}NO/NT)$

. efeito de clima (CAF,SAF: **Tabela 11-20,21**) e incidentes (CAF: **Tabela 11-23**) novos dados: Zegeer et al. (2014)- SHRP 2-S2-L08-RW1 (TRB, USA); também dados de incidência e ajuste de demanda (DAF); melhor dados locais ...

TABELA 11-20. Ajustes de Capacidade Genéricos para Condições de Clima – HCM/6thEd (2016)

Condição de Clima	Definição do Evento Climático	Fator de Aiuste de Capacidade (CAF)				
		V _{FL} =55 mi/h	V _{FL} =60 mi/h	V _{FL} =65 mi/h	V _{FL} =70 mi/h	V _{FL} =75 mi/h
Chuva Média	>0.10-0.25in/h (>2.5-6mm/h)	0.94	0.93	0.92	0.91	0.90
Chuva Pesada	>0,25in/h (>6mm/h)	0,89	0,88	0.86	0,84	0.82
Neve Leve	>0.00-0.05in/h (>0-1.25mm/h)	0.97	0.96	0.96	0.95	0.95
Neve Leve a Média	>0,05-0,10in/h (>1,25-2,5mm/h)	0,95	0,94	0.92	0,90	0,88
Neve Média a Pesada	>0,10-0,50in/h (>2,5-12,5mm/h)	0.93	0,91	0,90	0,88	0,87
Neve Pesada	>0,5in/h (>12,5mm/h)	0.80	0,78	0,76	0,74	0,72
Frio Severo	< -4°F (< - 20°C)	0.93	0.92	0.92	0.91	0.90
Baixa Visibilidade	0.50-0.99mi (0.8-<1.6km)	0.90	0.90	0.90	0.90	0.90
Muito Baixa Visibilidade	0,25-0,49m (0,4-<0,8km)i	0.88	0,88	0.88	0.88	0.88
Mínima Visibilidade	<0,25mi (<0,4km)	0,90	0,90	0.90	0.90	0.90
Clima Não Severo	todas as demais condições	1.00	1.00	1.00	1.00	1.00

TABELA 11-21. Ajustes de Velocidade Genéricos para Condições de Clima – HCM/6thEd (2016)

Condição de Clima	Definição do Evento Climático		ı			
		V _{FL} =55 mi/h	V _{FL} =60 mi/h	V _{FL} =65 mi/h	V _{FL} =70 mi/h	V _{FL} =75 mi/h
Chuva Média	>0.10-0.25in/h (>2.5-6mm/h)	0.96	0.95	0.94	0.93	0.93
Chuva Pesada	>0,25in/h (>6mm/h)	0,94	0,93	0,93	0,92	0,91
Neve Leve	>0.00-0.05in/h (>0-1.25mm/h)	0.94	0.92	0.89	0.87	0.84
Neve Leve a Média	>0,05-0,10in/h (>1,25-2,5mm/h)	0,92	0,90	0,88	0,86	0,83
Neve Média a Pesada	>0,10-0,50in/h (>2,5-12,5mm/h)	0,90	0,88	0,86	0,84	0,82
Neve Pesada	>0,5in/h (>12,5mm/h)	0,88	0,86	0,85	0,83	0,81
Frio Severo	< -4°F (< - 20°C)	0.95	0.95	0.94	0.93	0.92
Baixa Visibilidade	0.50-0.99mi (0.8-<1.6km)	0.96	0.95	0.94	0.94	0.93
Muito Baixa Visibilidade	0,25-0,49m (0,4-<0,8km)i	0,95	0,94	0,93	0,92	0,91
Mínima Visibilidade	<0,25mi (<0,4km)	0,95	0,94	0,93	0,92	0,91
Clima Não Severo	todas as demais condições	1.00	1.00	1.00	1.00	1.00

TABELA 11-23. Ajustes de Capacidade Genéricos para Incidentes – HCM/6thEd (2016)

No.Faixas Por Sentido	Sem Incidente	Acostamento Bloqueado	1 Faixa Bloqueada	2 Faixas Bloqueadas	3 Faixas Bloqueadas	4 Faixas Bloqueadas	
2	1.00	0.81	0.70	-	-	-	
3	1,00	0,83	0,74	0,51	=	=	
4	1,00	0,85	0,77	0,50	0,52	-	
5	1,00	0,87	0,81	0,67	0,50	0,50	
6	1,00	0,89	0,85	0,75	0,52	0,52	
7	1,00	0,91	0,88	0,80	0,63	0,63	
8	1,00	0,93	0,89	0,84	0,66	0,66	

- Segmentos com Faixa de Uso Geral e Especial: análise por grupo de faixas (cada tipo)
 - faixas de uso especial: reservadas para uso especial (exemplo: alta ocupação, pedágio)
 - faixas de uso geral: liberadas para todos e usadas no acesso às faixas de uso especial.
 - os dados sobre as faixas de uso especial são atualmente restritos a menores fluxos ... (são normalmente projetadas para operar com níveis de fluxo menor)
 - dados específicos de capacidade são assumidos (em densidades menores que 45pc/mi/fx) (ver Tabela 12-11, 12-30; ver Figura 12-29)

em geral, dois efeitos específicos devem ainda ser considerados:

- o efeito de fricção decorrente de altas densidades de tráfego nas faixas de uso geral adjacentes e possibilidade de mudança para as faixas de uso especial ...
- o efeito de entrelaçamento cruzado (*cross-weave*) no trecho afetado pelo acesso às faixas de uso especial a partir de ramais de acesso das faixas de uso geral ...
- primeiro efeito ocorre em segmentos básicos (segundo em segmentos de entrelaçamento) apenas para a faixa de uso especial com acesso contínuo ou divisão em nível 1fx e se a densidade nas faixas de uso geral adjacentes supera 35pc/mi/fx (22veq/km/fx)

a curva de operação do grupo de faixa de uso especial (managed lanes) é ajustada para

$$\begin{split} \widetilde{V}_{ML} = & \begin{cases} \widetilde{V}_{1} \text{ , se } \widetilde{q}_{fML} \leq \widetilde{q}_{BPMLa} \\ \widetilde{V}_{IBP} - \Delta \widetilde{V}_{2} - I_{c}.\Delta \widetilde{V}_{3} \text{ , } \widetilde{q}_{BPMLa} < \widetilde{q}_{f} \leq \widetilde{c}_{fMLa} \end{cases} \end{split}$$
 onde
$$\widetilde{V}_{1} = \widetilde{V}_{FLa} - A_{1}.min \left\{ \widetilde{q}_{fML}; \widetilde{q}_{BPMLa} \right\} \text{ (porção linear da curva de operação)}$$

$$\widetilde{V}_{IBP} = \widetilde{V}_{FLa} - A_{1}.\widetilde{q}_{BPMLa} \text{ (V limite na porção linear da curva de operação)}$$

$$\widetilde{q}_{BPMLa} = \left(\widetilde{q}_{BP75} + \lambda_{BP}.(75 - \widetilde{V}_{FLa}) \right) CAF^{2} = \left(\widetilde{q}_{BP75} + \lambda_{BPK}.(120 - \widetilde{V}_{FLa}) \right) CAF^{2}$$

$$\widetilde{c}_{fMLa} = \left(\widetilde{c}_{f75} - \lambda_{c}.(75 - \widetilde{V}_{FLa}) \right) CAF = \left(\widetilde{c}_{f75} - \lambda_{cK}.(120 - \widetilde{V}_{FLa}) \right) CAF$$

$$\Delta \widetilde{V}_{2} = \left(\widetilde{V}_{IBP} - \widetilde{V}_{cnf} \right) \left(\frac{\widetilde{q}_{fML} - q_{BLMFa}}{\widetilde{c}_{fML} - q_{BLMFa}} \right)^{A^{2}}, \ \Delta \widetilde{V}_{3} = \left(\widetilde{V}_{cnf} - \widetilde{V}_{cf} \right) \left(\frac{\widetilde{q}_{fML} - q_{BLMFa}}{\widetilde{c}_{fML} - q_{BLMFa}} \right)^{A^{3}}$$

$$A_{2} = A_{2}^{55} + \lambda_{A2}.\left(\widetilde{V}_{FLa} - 55 \right) = A_{2}^{55} + \lambda_{A2K}.\left(\widetilde{V}_{FLa} - 88 \right) \text{ e } A_{3} = 2$$

$$\widetilde{V}_{cnf} = \frac{\widetilde{c}_{fML}}{\widetilde{K}_{cf}}, \ \widetilde{V}_{cf} = \frac{\widetilde{c}_{fML}}{\widetilde{K}_{c}} \text{ em mi/h ou } \widetilde{V}_{cnf} = \frac{\widetilde{c}_{fML}}{\widetilde{K}_{cK}}, \ \widetilde{V}_{cf} = \frac{\widetilde{c}_{fML}}{\widetilde{K}_{cK}^{f}} \text{ em km/h}$$

$$I_{c} = 1 \text{ se } \widetilde{K}_{fGP} > 35pc / mi / fx = 22veq / km / fx \text{ apenas para faixas especiais com acesso contínuo ou divisão em nível 1fx (senão $I_{c} = 0$)}
$$com \ \lambda_{BPK} = \frac{\lambda_{BP}}{1.6}. \ \lambda_{cK} = \frac{\lambda_{c}}{1.6}, \ \lambda_{A2K} = \frac{\lambda_{A2}}{1.6}, \ \widetilde{K}_{cK}^{nf} = \frac{\widetilde{K}_{cK}^{nf}}{1.6}, \ \widetilde{K}_{cK}^{f} = \frac{\widetilde{K}_{c}^{f}}{1.6} \text{ (ver Tabela 12-30)}$$$$

recomendações consideram somente faixas de uso especial em vias expressas ... após a análise inicial dos segmentos básicos das faixas de uso geral e especial ... aplicando o procedimento tradicional (e posteriormente a composição de tráfego)

FIGURA 12-29. Forma Geral da Curva de Operação para Faixas de Uso Especial (*Managed Lanes*) em Segmentos Básicos de Vias Expressas – HCM/6thEd (2016)

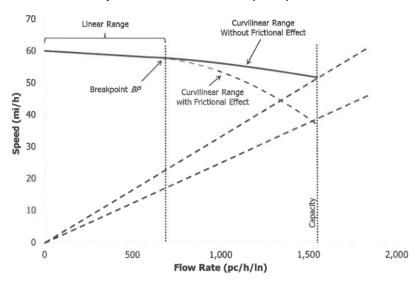


TABELA 12-11. Capacidades (Estimadas) para Faixas de Uso Especial (*Managed Lanes*) em Segmentos Básicos – HCM/6thEd (2016)

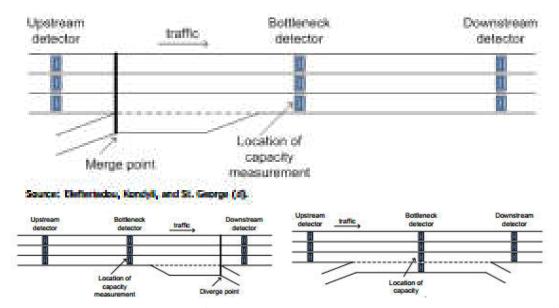

Velocidade de Fluxo Livre (do)	Capacidade por Faixa Estimada (veq/h/fx) para Faixas Básicas de Uso Especial (<i>Managed Lanes</i>)							
	Acesso Contínuo	Divisão em Nível 1fx	lível 1fx Divisão em Nível 2+fx Divisão por Barreira 1fx Divisão por Barrei					
75 mi/h (120 km/h)	1800veq/h/fxe	1700veq/h/fxe	1850veq/h/fxe	1750veq/h/fxe	2100veq/h/fxe			
70 mi/h (112 km/h)	1750veq/h/fxe	1650veq/h/fxe	1800veq/h/fxe	1700veq/h/fxe	2050veq/h/fxe			
65 mi/h (104 km/h)	1700veq/h/fxe	1600veq/h/fxe	1750veg/h/fxe	1650veq/h/fxe	2000veq/h/fxe			
60 mi/h (96 km/h)	1650veq/h/fxe	1550veq/h/fxe	1700veq/h/fxe	1600veq/h/fxe	1950veq/h/fxe			
55 mi/h (88 km/h)	1600veg/h/fxe	1500veg/h/fxe	1650veq/h/fxe	1550veq/h/fxe	1900veq/h/fxe			

TABELA 12-30. Parâmetros para Análise de Faixas de Uso Especial (*Managed Lanes*) em Segmentos Básicos – HCM/6thEd (2016)

Tipo de Segmento	$\widetilde{q}_{\mathrm{BP75}}$ (veq/h/fx)	λ_{BP} (/mph)	\widetilde{c}_{f75} (veq/h/fx)	λ_{c} (/mph)	$\begin{matrix} A_1 \\ \textit{(/mph)} \end{matrix}$	A_2^{55} (/mph)	λ_{A2} (/mph)	$\widetilde{K}_{c}^{\mathrm{nf}}$ (pc/mi/fx)	
Acesso Contínuo	500	0	1800	10	0	2,5	0	30	45
Divisão em Nível 1fx	600	0	1700	10	0,0033	1,4	0	30	42*
Divisão em Nível 2+fx	500	10	1850	10	0	1,5	0,02	45*	-
Divisão por Barreira 1fx	800	0	1750	10	0,004	1,4	0	35	-
Divisão por Barreira 2+fx	700	20	2100	10	0	1,3	0,02	45	-

^{*} Densidades medias observadas no estudo NCHRP 03-96, variando de 40,9 a 42,5pc/mi/fx (25,6 a 26,6veq/km/fx) para segmento tipo Divisão em Nível 1fx e de 40,1 a 50,5 pc/mi/fx (25,1 a 31,6veq/km/fx) para segmento tipo Divisão em Nível 2+fxs.

- Medição da Capacidade em Campo: primeira vez em que um procedimento é definido!
 - primeira versão que recomenda um método de medição de capacidade ! (ainda que na parte suplementar ...)
 - adota e modifica os métodos recentes baseados em conceito estocástico de capacidade:
 - . distingue claramente o conceito de capacidade do fluxo na dissipação de filas;
 - . distingue claramente a situação de livre dissipação de filas (sem restrição adiante)
 - . define colapso do tráfego ($traffic\ breakdown$) pela queda abrupta na velocidade de operação (média em 15min) para um valor mais de 25% abaixo de $V_{\rm FI}$
 - . define recuperação do tráfego (traffic recovery) pela volta às velocidades anteriores
 - . toma o fluxo máximo antes do colapso do tráfego como indicador da capacidade \dots
 - . toma o fluxo máximo após o colapso do tráfego como fluxo de escoamento da fila (sem restrição adiante, o fluxo de escoamento é o fluxo livre de dissipação da fila ...)
 - . aceita o fenômeno das duas capacidades: perda de 2a20% (valor default: 7%)
 - procedimento de medição mais adaptado ao uso de dados de detectores de tráfego:

- . linhas de detectores: 3 (um no gargalo potencial; distância menor que 0,5mi);
- . capacidade: fluxo máximo (15min) com probabilidade de colapso menor que $\lambda\%$
- . procedimento deve registrar fluxos de 15min e existência de colapso no tráfego; (usa medição da seção que corresponde ao gargalo potencial; usual: seção anterior)
- . na condição considerada, deve-se agrupar os dados em faixas de 100a200v/h/fx;
- . em cada faixa: contar no períodos sem colapso; no períodos seguido por colapso;
- . em cada faixa: probabilidade de colapso p_B=n_B/n_T (n_B são os seguidos por colapso)
- . recomenda ajustar os dados a uma distribuição de Weibull W[β,γ] e adotar $\lambda = 15\%$
- . com parametrização usual: $c_{\lambda} = \beta \cdot (-\ell n[1-\lambda])^{1/\gamma} = \beta (0.163)^{1/\gamma}, p/\lambda = 15\%$, $C_{ref} = \beta \dots$
- . alternativa não-paramétrica: c_{λ} em $F[c_k] = 1 \left(1 F[c_{k-1}]\right)\left(1 \frac{n_{Bk}}{n_{Tk}}\right)$ (Kaplan-Meyer)

(deve haver um número suficientemente grande de colapsos de tráfego nos dados).

Fator Equivalente para VP: tradicionais (semelhantes ao HCM/85,97 e 2000,2010)
mas voltando ao critério de capacidade e com modelo alternativo para tráfego misto
presença de veículos pesados: duas categorias de veículos ou relação peso/potência
. SU: unitários (até 2ou3 eixos, inclui recreacionais, ônibus); 100 lb/hp (60kg/kw)
. TT: articulados (reboque/semi-reboque, inclui mais de 2ou3eixos); 150 lb/hp (90kg/kw)
efeito (médio no greide?) decorrente da maior dimensão e da menor velocidade dos VP
⇒ função do greide (aclive ou declive), da porcentagem de VP e da composição SU/TT ...

Trechos específicos:

 \Rightarrow i entre 2% e 3% com L>0,5km

ou i>3% e L>0,25km (inconsistente no HCM/2010)

(para análise de trecho isolado ou sequência de trechos específicos)

novos equivalentes (efeito **médio?** na capacidade, e_A =1, sempre, padrão=auto), função de:

. rampa i (aclive, >0, ou declive, <0), da extensão L do trecho

(extensão deve incluir 25% da curva vertical no começo e final da rampa, ou 50% em cada trecho, no caso de uma sequência de rampas ascendentes)

. composição unitários(SU)/articulados(TT) e sua relação peso/potência típica (veículos recreacionais agora devem ser considerados na classe SU)

trechos simples: valores tabelados para rampa ascendente e descendente corresponderia ao topo da rampa (pode analisar ponto intermediário)

(ver Tabela 12-26,27,28)

para rampas moderadas e proporções normais de tráfego pesado ... (rampas fortes mais tráfego pesado: preferir **análise com modelo de tráfego misto**)

trechos compostos: não usa perda de velocidade ⇒ rampa equivalente (tradicional) (para sequência de rampas recomenda: **análise com modelo de tráfego misto !**) antes: aplicação em função dos valores relativos das rampas

HCM/2010: usar rampa média ponderada (Δ h/L) se extensão total L<4000ft (1,2km) e todos os segmentos i<4% (senão usar rampa equivalente, =perda de velocidade)

⇒ alternativa: é sempre possível fazer a análise com a perda de velocidade medida ! critério: obter rampa equivalente em aclive simples, =perda de velocidade !

Trechos genéricos: ⇒ trechos extensos com rampas curtas e pequenas

equivalente função do tipo de terreno: nivelado (mesma velocidade de leves e pesados) (e_A =1, sempre) ondulado (pesados com velocidade menor mas não de arrasto) montanhoso (pesados com velocidade de arrasto) não é analisado genericamente (ver Tabela 12-25)

TABELA 12-25. Fator Equivalente Genéricos Veículos Pesados (Caminhões e Ônibus) em Aclive Específico de Vias Expressas e de Múltiplas Faixas - HCM/6thEd

FATOR EQUIVALENTE PARA SEGMENTOS GENÉRICOS	TIPO DE TERRENO						
	Nivelado	Ondulado	Montanhoso				
e _C para veículos pesados	2,0	3,0	-				

TABELA 12-26,27,28. Fator Equivalente (Médio?) para Veículos Pesados (Caminhões e Ônibus) em Aclive Específico de Vias Expressas e de Múltiplas Faixas - HCM/6thEd (2016)

aclive de	Comprimento					$e_{\text{VP}}\left(e_{\text{HV}}\right)^*$				
rampa	%v.pesados HV	2	4	5	6	8	10	15	20	≥25
(%)	%combinados TT	70 / 50 / 30	70 / 50 / 30	70 / 50 / 30	70 / 50 / 30	70 / 50 / 30	70 / 50 / 30	70 / 50 / 30	70 / 50 / 30	70 / 50 / 30
-2	0,125mi (0,2km)	2,62 / 2,67 / 2,39	2,37 / 2,38 /2,18	2,30 / 2,31 / 2,12	2,24 / 2,25 /2,07	2.17 / 2,16 / 2,01	2,12 / 2,11 /1,96	2,04 / 2,02 /1,89	1,99 / 1,97 / 1,85	1,97 / 1,93 / 1,83
	0,375mi (0,6km)	2,62 / 2,67 / 2,39	2,37 / 2,38 /2,18	2,30 / 2,31 / 2,12	2,24 / 2,25 /2,07	2.17 / 2,16 / 2,01	2,12 / 2,11 /1,96	2,04 / 2,02 /1,89	1,99 / 1,97 / 1,85	1,97 / 1,93 / 1,83
	0,625mi (1,0km)	2,62 / 2,67 / 2,39	2,37 / 2,38 /2,18	2,30 / 2,31 / 2,12	2,24 / 2,25 /2,07	2.17 / 2,16 / 2,01	2,12 / 2,11 /1,96	2,04 / 2,02 /1,89	1,99 / 1,97 / 1,85	1,97 / 1,93 / 1,83
	0,875mi (1,4km)	2,62 / 2,67 / 2,39	2,37 / 2,38 /2,18	2,30 / 2,31 / 2,12	2,24 / 2,25 /2,07	2.17 / 2,16 / 2,01	2,12 / 2,11 /1,96	2,04 / 2,02 /1,89	1,99 / 1,97 / 1,85	1,97 / 1,93 / 1,83
	1,25mi (2,0km)	2,62 / 2,67 / 2,39	2,37 / 2,38 /2,18	2,30 / 2,31 / 2,12	2,24 / 2,25 /2,07	2.17 / 2,16 / 2,01	2,12 / 2,11 /1,96	2,04 / 2,02 /1,89	1,99 / 1,97 / 1,85	1,97 / 1,93 / 1,83
	1,50mi (2,4km)	2,62 / 2,67 / 2,39	2,37 / 2,38 /2,18	2,30 / 2,31 / 2,12	2,24 / 2,25 /2,07	2.17 / 2,16 / 2,01	2,12 / 2,11 /1,96	2,04 / 2,02 /1,89	1,99 / 1,97 / 1,85	1,97 / 1,93 / 1,83
0	0,125mi (0,2km)	2,62 / 2,67 / 2,39	2,37 / 2,38 /2,18	2,30 / 2,31 / 2,12	2,24 / 2,25 /2,07	2.17 / 2,16 / 2,01	2,12 / 2,11 /1,96	2,04 / 2,02 /1,89	1,99 / 1,97 / 1,85	1,97 / 1,93 / 1,83
	0,375mi (0,6km)	2,62 / 2,67 / 2,39	2,37 / 2,38 /2,18	2,30 / 2,31 / 2,12	2,24 / 2,25 /2,07	2.17 / 2,16 / 2,01	2,12 / 2,11 /1,96	2,04 / 2,02 /1,89	1,99 / 1,97 / 1,85	1,97 / 1,93 / 1,83
	0,625mi (1,0km)	2,62 / 2,67 / 2,39	2,37 / 2,38 /2,18	2,30 / 2,31 / 2,12	2,24 / 2,25 /2,07	2.17 / 2,16 / 2,01	2,12 / 2,11 /1,96	2,04 / 2,02 /1,89	1,99 / 1,97 / 1,85	1,97 / 1,93 / 1,83
	0,875mi (1,4km)	2,62 / 2,67 / 2,39	2,37 / 2,38 /2,18	2,30 / 2,31 / 2,12	2,24 / 2,25 /2,07	2.17 / 2,16 / 2,01	2,12 / 2,11 /1,96	2,04 / 2,02 /1,89	1,99 / 1,97 / 1,85	1,97 / 1,93 / 1,83
	1,25mi (2,0km)	2,62 / 2,67 / 2,39	2,37 / 2,38 /2,18	2,30 / 2,31 / 2,12	2,24 / 2,25 /2,07	2.17 / 2,16 / 2,01	2,12 / 2,11 /1,96	2,04 / 2,02 /1,89	1,99 / 1,97 / 1,85	1,97 / 1,93 / 1,83
	1,50mi (2,4km)	2,62 / 2,67 / 2,39	2,37 / 2,38 /2,18	2,30 / 2,31 / 2,12	2,24 / 2,25 /2,07	2.17 / 2,16 / 2,01	2,12 / 2,11 /1,96	2,04 / 2,02 /1,89	1,99 / 1,97 / 1,85	1,97 / 1,93 / 1,83
2	0,125mi (0,2km)	2,62 / 2,67 / 2,67	2,37 / 2,38 / 2,32	2,30 / 2,31 / 2,23	2,24 / 2,25 / 2,17	2,17 / 2,16 / 2,08	2,12 / 2,11 / 2,03	2,04 / 2,02 / 1,94	1,99 / 1,97 / 1,89	1,97 / 1,93 / 1,86
	0,375mi (0,6km)	3,76 / 3,76 / 3,63	2,96 / 2,95 / 2,82	2,78 / 2,77 / 2,64	2,65 / 2,64 / 2,52	2,48 / 2,47 / 2,35	2,38 / 2,36 / 2,25	2,22 / 2,20 / 2,10	2,14 / 2,11 / 2,02	2,09 / 2,06 / 1,97
	0,625mi (1,0km)	4,47 / 4,32 / 4,12	3,33 / 3,24 / 3,08	3,08 / 3,01/ 2,85	2,91 / 2,84 / 2,69	2,68 / 2,63 / 2,49	2,54 / 2,49 / 2,36	2,34 / 2,29 / 2,18	2,23 / 2,19 / 2,08	2,17 / 2,12 / 2,02
	0,875mi (1,4km)	4,80 / 4,57 / 4,37	3,50 / 3,37 / 3,21	3,22 / 3,11 / 2,96	3,03 / 2,93 / 2,78	2,77 / 2,70 / 2,56	2,61 / 2,55 / 2,42	2,39 / 2,33 / 2,22	2,28 / 2,22 / 2,11	2,21 / 2,15 / 2,05
	1,25mi (2,0km)	5,00 /4,71 / 4,53	3,60 / 3,45 / 3,29	3,30 / 3,17 / 3,02	3,09 / 2,99 / 2,84	2,83 / 2,74 / 2,60	2,66 / 2,58 / 2,45	2,42 / 2,36 / 2,24	2,30 / 2,24 / 2,13	2,23 / 2,17 / 2,07
	1,50mi (2,4km)	5,04 / 4,74 / 4,58	3,62 / 3,47 / 3,31	3,32 / 3,19 / 3,04	3,11 / 3,00 / 2,86	2,84 / 2,75 / 2,61	2,67 / 2,59 / 2,46	2,43 / 2,36 / 2,25	2,31 / 2,24 / 2,14	2,23 / 2,17 / 2,07
2,5	0,125mi (0,2km)	2,62 / 2,67 / 2,75	2,37 / 2,38 / 2,36	2,30 / 2,31 / 2,27	2,24 / 2,25 / 2,20	2,17 / 2,16 / 2,11	2,12 / 2,11 / 2,04	2,04 / 2,02 / 1,95	1.99 / 1,97 /1,90	1,97 / 1,93 / 1,87
,	0,375mi (0,6km)	4,11 / 4,10 / 4,01	3,14 / 3,13 / 3,02	2,93 / 2,92 / 2,80	2,78 / 2,77 / 2,65	2,58 / 2,57 / 2,46	2,46 / 2,44 / 2,33	2,28 / 2,26 / 2,16	2,19 / 2,16 / 2,06	2,13 / 2,10 / 2,01
	0,625mi (1,0km)	5,04 / 4,84 / 4,66	3,62 /3,52 / 3,35	3,32 / 3,23 / 3,08	3,11 / 3,03 / 2,88	2,84 / 2,77 / 2,64	2,67 / 2,61 / 2,48	2,43 / 2,38 / 2,26	2,31 / 2,26 / 2,15	2,23 / 2,18 / 2,08
	0,875mi (1,4km)	5,48 / 5,17 / 4,99	3,85 /3,69 / 3,52	3,51 / 3,37 / 3,21	3,27 / 3,15 / 3,00	2,96 / 2,87 / 2,73	2,77 / 2,69 / 2,56	2,50 / 2,43 / 2,32	2,36 / 2,30 / 2,19	2,28 / 2,22 / 2,12
	1,25mi (2,0km)	5,73 / 5,36 / 5,20	3,98 / 3,79 / 3,64	3,61 / 3,45 / 3,30	3,36 / 3,22 / 3,08	3,03 / 2,92 / 2,79	2,83 / 2,73 / 2,60	2,54 / 2,47 / 2,35	2,40 / 2,33 / 2,22	2,31 / 2,24 / 2,14
	1,50mi (2,4km)	5,80 / 5,40 / 5,26	4,02 / 3,81 / 3,67	3,64 / 3,47 / 3,33	3,38 / 3,24 / 3,10	3,05 / 2,93 / 2,80	2,84 / 2,74 / 2,62	2,55 / 2,47 / 2,36	2,41 / 2,33 / 2,23	2,32 / 2,25 / 2,15
3,5	0,125mi (0,2km)	2,62 / 2,67 / 2,93	2,37 / 2,38 / 2,45	2,30 / 2,31 / 2,34	2,24 / 2,25 / 2,26	2,17 / 2,16 / 2,16	2,12 / 2,11 / 2,09	2,04 / 2,02 / 1,98	1,99 / 1,97 / 1,92	1,97 / 1,93 / 1,89
	0,375mi (0,6km)	4,88 /4,89 / 4,86	3,54 / 3,54 / 3,46	3,25 / 3,25 / 3,16	3,05 / 3,05 / 2,96	2,80 / 2,79 / 2,69	2,63 / 2,62 / 2,53	2,41 / 2,39 / 2,30	2,29 / 2,26 / 2,18	2,22 / 2,19 / 2,10
	0,625mi (1,0km)	6,34 / 6,05 / 5,88	4,30 / 4,15 / 3,99	3,87 / 3,75 / 3,59	3,58 / 3,47 / 3,32	3,20 / 3,11 / 2,98	2,97 / 2,89 / 2,76	2,64 / 2,58 / 2,46	2,48 2,42 / 2,31	2,38 / 2,32 / 2,22
	0,875mi (1,4km)	7,03 / 6,58 / 6,40	4,66 / 4,43 / 4,26	4,16 / 3,97 / 3,81	3,83 / 3,66 / 3,51	3,39 / 3,26 / 3,12	3,12 / 3,01 / 2,88	2,76 / 2,67 / 2,55	2,57 / 2,49 / 2,38	2,46 / 2,39 / 2,28
	1,25mi (2,0km)	7,44 / 6,88 / 6,74	4,87 / 4,58 / 4,43	4,33 / 4,10 / 3,96	3,97 / 3,77 / 3,63	3,50 / 3,35 / 3,21	3,22 / 3,09 / 2,96	2,82 / 2,72 / 2,60	2,62 / 2,53 / 2,42	2,50 / 2,42 / 2,32
	1,50mi (2,4km)	7,53 /6,95 / 6,83	4,92 / 4,62 / 4,48	4,38 / 4,13 / 3,99	4,01 / 3,80 / 3,66	3,53 / 3,37 / 3,24	3,24 / 3,10 / 2,98	2,84 / 2,73 / 2,62	2,63 / 2,54 / 2,44	2,51 / 2,43 / 2,33
4,5	0,125mi (0,2km)	2,62 / 2,67 / 3,13	2,37 / 2,38 / 2,56	2,30 / 2,31 / 2,43	2,24 / 2,25 / 2,34	2,17 / 2,16 / 2,21	2,12 / 2,11 / 2,13	2,04 / 2,02 / 2,01	1,99 / 1,97 / 1,95	1,97 / 1,93 / 1,91
	0,375mi (0,6km)	5,80 / 5,83 / 5,88	4,02 / 4,03 / 3,99	3,64 / 3,65 / 3,59	3,38 / 3,39 / 3,32	3,05 / 3,05 / 2,98	2,84 / 2,84 / 2,76	2,55 / 2,55 / 2,46	2,41 / 2,39 / 2,31	2,32 / 2,30 / 2,22
	0,625mi (1,0km)	7,90 / 7,53 / 7,35	5,11 / 4,92 / 4,75	4,53 / 4,38 / 4,22	4,14 / 4,01 / 3,85	3,63 / 3,53 / 3,39	3,32 / 3,24 / 3,10	2,90 / 2,83 / 2,71	2,68 / 2,62 / 2,51	2,55 / 2,50 / 2,39
	0,875mi (1,4km)	8,91 / 8,32 / 8,11	5,64 / 5,34 / 5,15	4,96 / 4,72 / 4,54	4,50 / 4,29 / 4,13	3,92 / 3,75 / 3,60	3,56 / 3,42 / 3,27	3,07 / 2,97 / 2,83	2,82 / 2,73 / 2,61	2,67 / 2,59 / 2,47
	1,00mi (1,6km)	9,19 / 8,53 / 8,33	5,78 / 5,45 / 5,27	5,08 / 4,81 / 4,63	4,60 / 4,37 / 4,21	3,99 / 3,81 / 3,66	3,62 / 3,47 / 3,33	3,11 / 3,00 /2,87	2,85 / 2,76 / 2,64	2,70 / 2,62 / 2,50
5,5	0,125mi (0,2km)	2,62 / 2,67 / 3,37	2,37 /2,38 / 2,69	2,30 / 2,31 / 2,53	2,24 / 2,25 / 2,42	2,17 2,16 / 2,28	2,12 / 2,11 / 2,19	2,04 / 2,02 / 2,05	1,99 / 1,97 / 1,98	1,97 / 1,93 / 1,94
	0,375mi (0,6km)	6,87 / 6,97 / 7,09	4,58 / 4,63 / 4,62	4,10 / 4,14 / 4,11	3,77 / 3,81 / 3,76	3,35 / 3,38 / 3,31	3,09 / 3,11 / 3,04	2,73 / 2,74 / 2,66	2,55 / 2,55 / 2,47	2,44 / 2,43 / 2,36
	0,625mi (1,0km)	9,78 / 9,37 / 9,13	6,09 / 5,89 / 5,68	5,33 / 5,16 / 4,97	4,82 / 4,68 / 4,49	4,16 / 4,05 / 3,88	3,76 / 3,67 / 3,51	3,21 / 3,14 / 3,00	2.93 /2,88 / 2,74	2,77 / 2,72 / 2,59
	0,875mi (1,4km)	11,20/10,49/10,21	6,83 / 6,48 / 6,24	5,94 5,65 / 5,43	5,33 / 5,09 / 4,88	4,56 /4,37 / 4,18	4,09 / 3,93 / 3,76	3,45 / 3,34 / 3,18	3,12 / 3,03 / 2,89	2,93 / 2,85 / 2,71
	1,00mi (1,6km)	11,60/10,80/10,52	7,04 / 6,64 / 6,41	6,11 / 5,78 / 5,57	5,47 / 5,20 / 5,00	4,67 / 4,46 / 4,27	4,18 / 4,01 / 3,83	3,51 / 3,39 / 3,24	3,17 / 3,08 / 2,93	2,97 / 2,89 / 2,75
6	0,125mi (0,2km)	2,62 / 2,67 / 3,51	2,37 / 2,38 / 2,76	2,30 / 2,31 / 2,59	2,24 / 2,25 / 2,74	2,17 / 2,16 / 2,32	2,12 / 2,11 / 2,22	2,04 / 2,02 / 2,08	1,99 /1,97 / 2,00	1,97 / 1,93 / 1,95
	0,375mi (0,6km)	7,58 / 7,64 / 7,78	4,90 / 4,98 / 4,98	4,36 / 4,43 / 4,40	3,99 / 4,05 / 4,01	3,52 / 3,56 / 3,51	3,23 / 3,26 / 3,20	2,83 / 2,85 / 2,78	2,63 / 2,64 / 2,56	2,51 / 2,51 / 2,44
	0,625mi (1,0km)	10,87/10,45/10,17	6,66 / 6,45 / 6,23	5,79 / 5,63 / 5,42	5,21 / 5,07 / 4,87	4,46 / 4,36 / 4,17	4,01 / 3,92 / 3,75	3,39 / 3,33 / 3,18	3,08 / 3,03 / 2,88	2,89 / 2,85 / 2,71
	0,875mi (1,4km)	12,54/11,78/11,43	7,54 / 7,16 / 6,88	6,51 / 6,20 / 5,95	5,81 / 5,56 / 5,32	4,94 / 4,74 / 4,53	4,40 / 4,24 / 4,04	3,67 / 3,56 / 3,39	3,30 / 3,22 / 3,06	3,08 / 3,01 / 2,86
	1,00mi (1,6km)	13,20/12,15/11,81	7,78 / 7,35 / 7,08	6,71 / 6,36 / 6,11	5,99 / 5,69 / 5,46	5,07 / 4,85 / 4,64	4,51 / 4,33 / 4,13	3,75 / 3,62 / 3,45	3,37 / 3,27 / 3,11	3,14 / 3,05 / 2,90

Obs: HV=veículos pesados (inclui ônibus e veículos recreacionais), HV=SU+TT; SU:unitários (100lb/hp, até 20u3 eixos); TT:combinados (150lb/hp, mais de 20u3 eixos, reboques e semi-reboques). Interpolação lagrangeana: e_{vp} =e30.(%p-50).(%p-70)/800+e30.(%p-70)/400\+e30.(%p-50).(%p-50)/800 e (em especial: e_{vp} =e30.(%p-50.e30+1,875.e30-5,250.e30+4,375.e30-6).

$$CAF_{mix} = CAF_{ao} - CAF_{mix} - CAF_{gmix} \text{ e } SAF_{mix} = \hat{V}_{FLmix} / \underbrace{\hat{V}_{FL}}_{V_{FL}} \text{ com } \widetilde{V}_{FL} = F\widetilde{F}S \text{ (sem ajuste)}$$

onde $CAF_{ao} = 1,0$ ou ajuste pelo clima, incidentes ou obras na via (para autos); $CAF_{Tmix} = 0,53.P_{HV}^{0,73}, \text{ com } P_{HV} \text{ \'e a proporção de pesados (de SUs e TTs)}$ $CAF_{gmix} = \rho_{gmin}.máx \left\{0;0,69.\left(e^{12,9.i_g}-1\right)\right\}máx \left\{0;1,72.\left(1-1,71.e^{-1,964.L\left[km\right]}\right)\right\}, \text{ onde}$

$$\rho_{\text{gmin}} = \begin{cases} 8.P_{\text{HV}} \text{ ,se } P_{\text{HV}} < 0.01 \\ 0.126 - 0.03.P_{\text{HV}} \text{ ,c.c.} \end{cases}, \ i_{\text{g}} \text{ \'e o aclive (m/m), } L[\text{km}] \text{ \'e a extensão do aclive } \end{cases}$$

$$\text{implícito:} \quad e_{\mathrm{VP}} = \frac{\widetilde{c}_{\mathrm{fao}} - \left(1 - p_{\mathrm{VP}}\right) \hat{c}_{\mathrm{f}}}{p_{\mathrm{VP}}.\hat{c}_{\mathrm{f}}} \quad \text{em} \quad \hat{c}_{\mathrm{f}} = \widetilde{c}_{\mathrm{f}}.CAF_{\mathrm{mix}} = \widetilde{c}_{\mathrm{fao}}.f_{\mathrm{VP}} = \frac{\widetilde{c}_{\mathrm{fao}}}{P_{\mathrm{A}}.e_{\mathrm{A}} + P_{\mathrm{VP}}.e_{\mathrm{VP}}} \quad \text{e} \quad \widetilde{c}_{\mathrm{fao}} = \widetilde{c}_{\mathrm{f}}.CAF_{\mathrm{ao}} = \widetilde{c}_{\mathrm{fao}}.CAF_{\mathrm{ao}} = \widetilde{c}_{\mathrm{fao}}.CAF_{\mathrm{a$$

curva de operação: dados iniciais são as curvas de tempo de viagem $t_{vi} = f_i \left[L \right]$, i=SU,TT ou $t_{vi} = f_i \left[d_M \right] + \delta_{dM} \cdot \left(L - d_M \right)$ se L>d_M=10000ft (3km) (**Tabelas 26-7,8**) ou V=V_M ($\delta_{dM} = 1/V_M$)

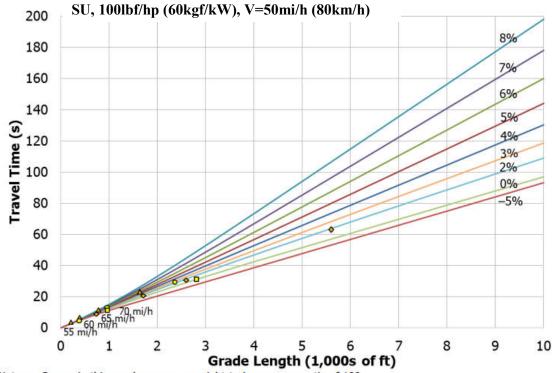
$$\text{SU: } \tau_{\text{SU},k} = \frac{t_{\text{vSU}}}{L} = \tau_{\text{SU0}} \text{, } \tau_{\text{SU}} = \tau_{\text{SU},k} + \Delta \tau_{\text{I}} = \frac{1}{V_{\text{SU}}} \text{; TT: } \tau_{\text{TT},k} = \frac{t_{\text{vTT}}}{L} = \tau_{\text{TT0}} \text{, } \tau_{\text{TT}} = \tau_{\text{TT},k} + \Delta \tau_{\text{I}} = \frac{1}{V_{\text{TT}}} = \frac{1}{V_{\text{TT}}$$

$$\text{auto:} \ \tau_{a,k} = \frac{1}{\widetilde{V}_{FL}} = \tau_{a0} \ , \ \ \tau_{a} = \tau_{a,k} + \Delta \tau_{I} + \sum_{i} \! \delta_{i} \ \ , \\ \delta_{i} = \frac{\delta_{0i}}{1,6} \cdot \left(\frac{\hat{q}_{f}}{1000}\right)^{\!b_{i}} \cdot \left(P_{i}\right)^{\!c_{i}} \cdot \left(\frac{1,6}{100}.\text{máx} \left\{0; \tau_{i,k} - \frac{1}{\widetilde{V}_{FL}}\right\}\right)^{\!d_{i}} \cdot \left(P_{i}\right)^{\!c_{i}} \cdot \left(\frac{1,6}{100}.\text{máx} \left\{0; \tau_{i,k} - \frac{1}{\widetilde{V}_{FL}}\right\}\right)^{\!d_{i}} \cdot \left(P_{i}\right)^{\!c_{i}} \cdot \left(P_{$$

$$\left(\,\delta_{0SU} = 100,\!42; b_{SU} = 0,\!46; c_{SU} = 0,\!68; d_{SU} = 2,\!76\,; \;\; \delta_{0TT} = 110,\!64; b_{TT} = 1,\!36; c_{TT} = 0,\!62; d_{TT} = 1,\!81\,\right)$$

$$\text{onde } \Delta\tau_{_{I}} = \left(\frac{1}{\widetilde{V}_{_{ao}}} - \frac{1}{\widetilde{V}_{_{FL}}}\right) \left(1 + 3 \cdot \left(\frac{1}{CAF_{mix}} - 1\right)\right) \text{ e } \widetilde{V}_{_{ao}} \text{ \'e obtida com } \widetilde{q}_{_{f}} = \frac{\hat{q}_{_{f}}}{CAF_{mix}} \text{ para autos }$$

$$\text{com } \hat{V}_{\text{mix}} = \frac{1}{\tau_{\text{mix}}} \text{ e } \overline{\tau}_{\text{mix}} = p_{\text{a}}.\tau_{\text{a}} + p_{\text{SU}}.\tau_{\text{SU}} + p_{\text{TT}}.\tau_{\text{TT}} \text{ (equivale à média harmônica de } V = \frac{1}{\tau}\text{)}$$

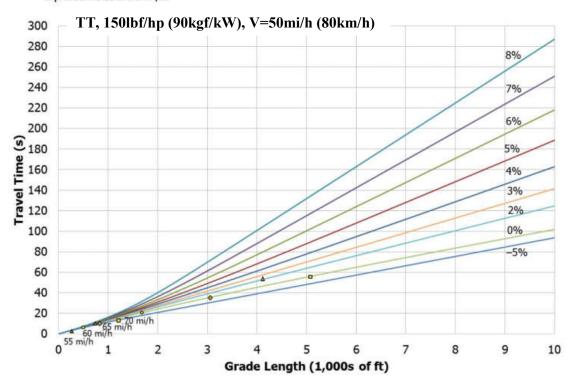

$$\hat{V}_{\text{FLmix}} \text{ com } \hat{q}_0 = 1 \frac{v}{h.fx} \text{ (melhor } \hat{V}_{\text{FLmix}} = \frac{1}{\tau_{\text{mix}0}} \text{ e } \overline{\tau}_{\text{mix}0} = p_a.\tau_{a0} + p_{\text{SU}}.\tau_{\text{SU}0} + p_{\text{TT}}.\tau_{\text{TT}0} \text{)}$$

também obtém previsão $V_m = \frac{1}{\tau_m} e K_m = \frac{q_m}{V_m}$ para o tipo de veículo m em condições <u>reais</u> !

curva de operação agregada: calibrar usando velocidades para fluxos $\,\hat{q}_1=0,\!9.\hat{c}_{_f}\,\,e\,\,\hat{q}_2=\hat{c}_{_f}$

$$\hat{V} = \begin{cases} \hat{V}_{\text{FL}} \text{, se } \hat{q}_{f} \leq \hat{q}_{\text{BP}}, \text{ ou se } \hat{q}_{f} \leq \hat{c}_{f} \\ \hat{V}_{\text{FL}} - (\hat{V}_{\text{FL}} - \hat{V}_{\text{C}}) \left(\frac{\hat{q}_{f} - \hat{q}_{\text{BP}}}{\hat{c}_{f} - \hat{q}_{\text{BP}}} \right)^{a_{\text{mix}}} & \hat{q}_{\text{BP}} = \widetilde{q}_{\text{BPao}} \cdot \left(1 - 0.4 \cdot \left(P_{\text{HV}} \right)^{0.1} \cdot \left(1 + e^{30.i_{g}} \right) \left(\frac{\text{L[km]}}{1.6} \right)^{0.01} \right) \geq 0, \hat{V}_{c} = \hat{V}_{q2} \\ \hat{V}_{\text{FL}} - (\hat{V}_{\text{FL}} - \hat{V}_{\text{C}}) \left(\frac{\hat{q}_{f} - \hat{q}_{\text{BP}}}{\hat{c}_{f} - \hat{q}_{\text{BP}}} \right)^{a_{\text{mix}}} & a_{\text{mix}} = 1.195 \cdot \ln \left[\left(\hat{V}_{\text{FL}} - \hat{V}_{\text{q1}} \right) / \left(\hat{V}_{\text{FL}} - \hat{V}_{\text{q2}} \right) \right] / \ln \left[\left(\hat{q}_{1} - \hat{q}_{\text{BP}} \right) / \left(\hat{q}_{2} - \hat{q}_{\text{BP}} \right) \right] \end{cases}$$

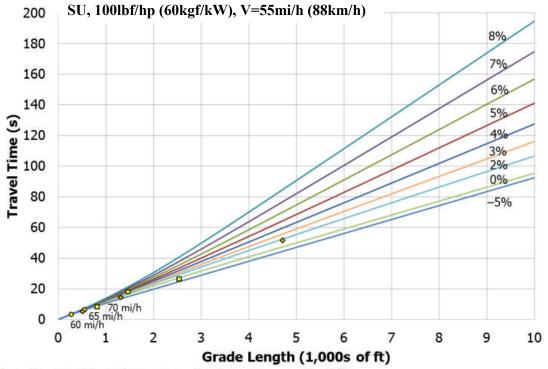
Curvas de Tempo de Viagem (do Modelo de Tráfego Misto): $V_{\text{ini}} = \hat{V}_{\text{FL}} = 50 \text{mi/h} = 80 \text{km/h}$



δ_{dM} ,	δ_{dMk}
\$/ft	ş/km
0,0208	68,2
0,0186	61,0
0,0165	54,1
0,0146	47,9
0,0136	44,6
0,0136	44,6
0,0136	44,6
0,0136	44,6
0,0136	44,6

Figura 26-A1, Figura 25-A4 (HCM/6thEd, 2016)

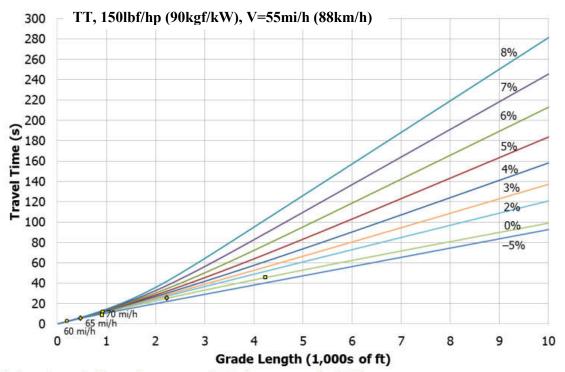
Notes: Curves in this graph assume a weight-to-horsepower ratio of 100.


Triangles indicate where a truck reaches 55 mi/h, circles indicate 60 mi/h, diamonds indicate 65 mi/h, and squares indicate 70 mi/h.

δ_{dM}	δ_{dM} , δ_{dMk}							
s/ft	ş/km							
0,0310	101,7							
0,0272	89,2							
0,0236	77,4							
0,0202	66,3							
0,0171	56,1							
0,0143	46,9							
0,0136	44,6							
0,0136	44,6							
0,0136	44,6							

Figura 26-A6, Figura 25-A15 (HCM/6thEd, 2016)

Curvas de Tempo de Viagem (do Modelo de Tráfego Misto): $V_{\text{ini}} = \hat{V}_{\text{FL}} = 55 \text{mi/h} = 88 \text{km/h}$



$\delta_{ m dMs}$,	δ_{dMk}
s/ft	ş/km
0,0208	68,2
0,0186	61,0
0,0165	54,1
0,0146	47,9
0,0129	42,3
0,0124	40,7
0,0124	40,7
0,0124	40,7
0,0124	40,7

Figura 26-A2, Figura 25-A5 (HCM/6thEd, 2016)

Notes: Curves in this graph assume a weight-to-horsepower ratio of 100.

Circles indicate where a truck reaches 60 mi/h, diamonds indicate 65 mi/h, and squares indicate 70 mi/h.

δ_{dM}	,	δ_{dMk}
---------------	---	----------------

s/ft	ş/km
0,0310	101,7
0,0272	89,2
0,0236	77,4
0,0202	66,3
0,0171	56,1
0,0143	46,9
0,0124	40,7
0,0124	40,7
0,0124	40,7

Figura 26-A7, Figura 25-A16 (HCM/6thEd, 2016)

Curvas de Tempo de Viagem (do Modelo de Tráfego Misto): $V_{ini} = \hat{V}_{FL} = 60 \text{mi/h} = 96 \text{km/h}$

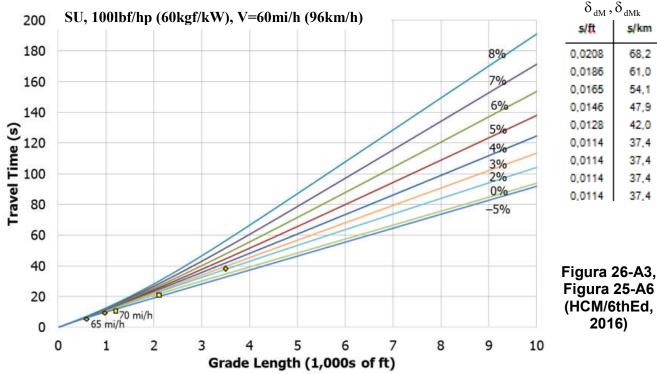


Figura 25-A6 (HCM/6thEd, 2016)

ş/km

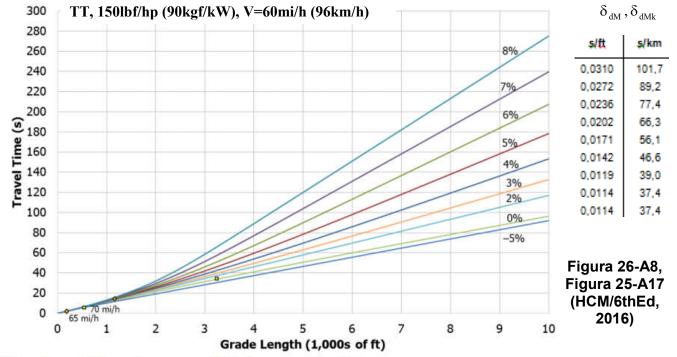
68.2

61,0

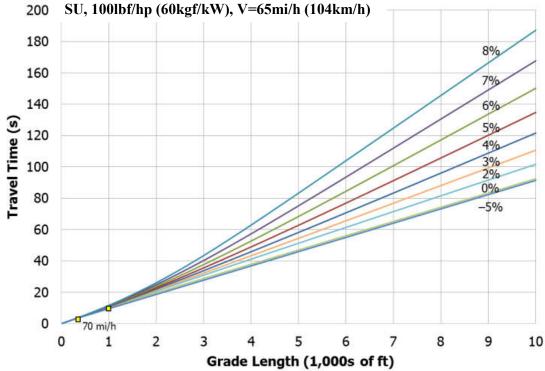
54,1

47,9

42,0

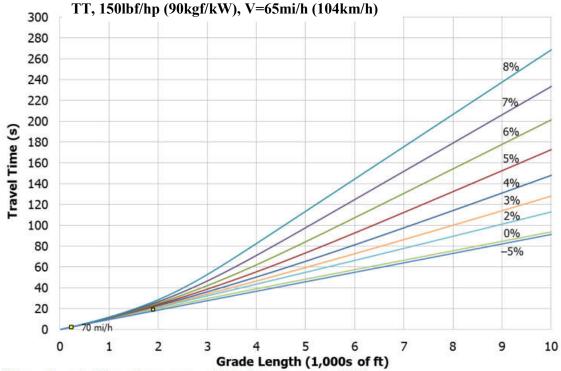

37,4

37,4


37,4

37,4

Curves in this graph assume a weight-to-horsepower ratio of 100. Diamonds indicate where a truck reaches 65 mi/h and squares indicate 70 mi/h.


Notes: Curves in this graph assume a weight-to-horsepower ratio of 150. Diamonds indicate where a truck reaches 65 mi/h and squares indicate 70 mi/h. Curvas de Tempo de Viagem (do Modelo de Tráfego Misto): $V_{\text{ini}} = \hat{V}_{\text{FL}} = 65 \text{mi/h} = 104 \text{km/h}$

δ_{dM} , δ	$\delta_{ m dMk}$
s/ft	ş/km
0,0208	68,2
0,0186	61,0
0,0165	54,1
0,0146	47,9
0,0128	42,0
0,0113	37,1
0,0105	34,4
0,0105	34,4
0,0105	34,4

Figura 26-A4, Figura 25-A7 (HCM/6thEd, 2016)

Notes: Curves in this graph assume a weight-to-horsepower ratio of 100. Squares indicate where a truck reaches 70 mi/h.

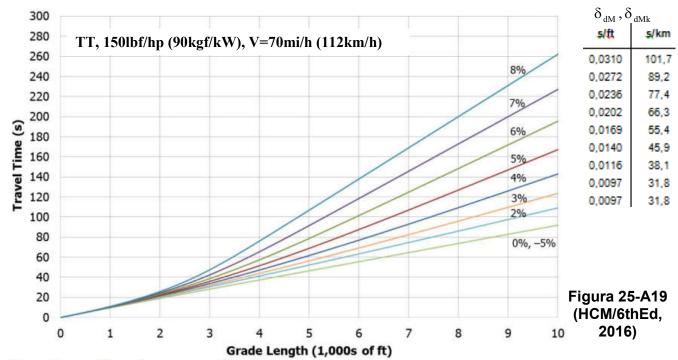
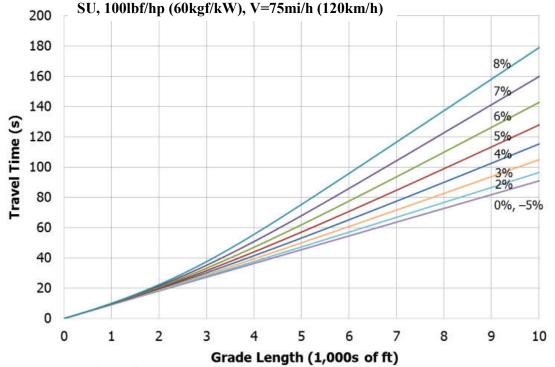

$\delta_{\rm dM}, \delta$	dMk
s/ft	ş/km
0,0310	101,7
0,0272	89,2
0,0236	77,4
0,0202	66,3
0,0170	55,8
0,0141	46,3
0,0118	38,7
0,0105	34,4
0,0105	34,4

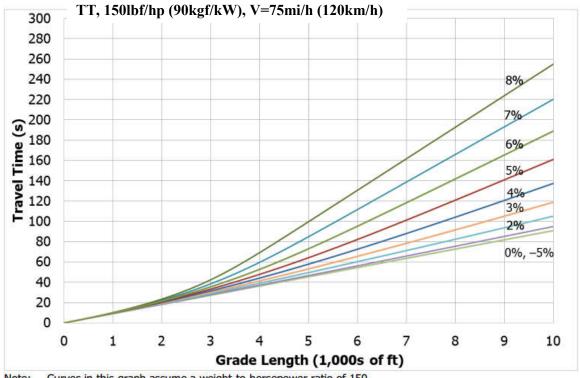
Figura 26-A9, Figura 25-A18 (HCM/6thEd, 2016)

Notes: Curves in this graph assume a weight-to-horsepower ratio of 150. Squares indicate where a truck reaches 70 mi/h.


Curvas de Tempo de Viagem (do Modelo de Tráfego Misto): $V_{ini} = \hat{V}_{FL} = 70 mi/h = 112 km/h$ SU, 100lbf/hp (60kgf/kW), V=70mi/h (112km/h)

(não fornecida)

Note: Curves in this graph assume a weight-to-horsepower ratio of 150.


Curvas de Tempo de Viagem (do Modelo de Tráfego Misto): $V_{ini} = \hat{V}_{FL} = 75 \text{mi/h} = 120 \text{km/h}$

δ_{dM} ,	δ_{dMk}
s/ft	ş/km
0,0208	68,2
0,0186	61,0
0,0165	54,1
0,0145	47,6
0,0127	41,7
0,0112	36,7
0,0099	32,5
0,0091	29.9
0,0091	29,9

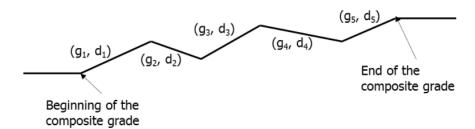
Figura 26-A5, Figura 25-A8 (HCM/6thEd, 2016)

Curves in this graph assume a weight-to-horsepower ratio of 100.

$\delta_{_{dM}},\delta_{_{dMk}}$							
s/ft	ş/km						
0,0310	101,7						
0,0272	89,2						
0,0236	77,4						
0,0202	66,3						
0,0169	55,4						
0,0138	45,3						
0,0115	37,7						
0,0091	29,9						
0,0091	29,9						

Figura 26-A10, Figura 25-A20 (HCM/6thEd, 2016)

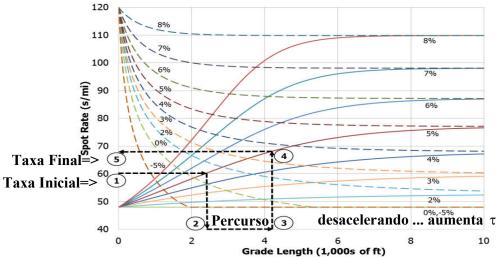
Note: Curves in this graph assume a weight-to-horsepower ratio of 150.


TABELA 25-24 / 26-7. Valores de $\delta_{dM}\big[s/\,ft\big]$ e $\delta_{dMk}\big[s/\,km\big]$ para SUs - HCM/6thEd (2016)

Aclive	Taxa de Tempo de Viagem $\delta_{dM} \big[s/ft \big]$ e $\delta_{dMk} \big[s/km \big]$ a 10000ft (3000m)											
	V _{FL} =50 mi/h		V _{FL} =5	5 mi/h	V _{FL} =60 mi/h		V _{FL} =65 mi/h		V _{FL} =70 mi/h		V _{FL} =75 mi/h	
	s/ft	s/km	s/ft	s/km	s/ft	s/km	s/ft	s/km	s/ft	s/km	s/ft	s/km
8%	0.0208	68.2	0.0208	68.2	0.0208	68.2	0.0208	68.2	0.0208	68.2	0.0208	68.2
7%	0,0186	61,0	0,0186	61,0	0,0186	61,0	0,0186	61,0	0,0186	61,0	0,0186	61,0
6%	0,0165	54,1	0,0165	54,1	0,0165	54,1	0,0165	54,1	0,0165	54,1	0,0165	54,1
5%	0,0146	47,9	0,0146	47,9	0,0146	47,9	0,0146	47,9	0,0145	47,6	0,0145	47,6
4%	0,0136	44,6	0,0129	42,3	0,0128	42,0	0,0128	42,0	0,0128	42,0	0,0127	41,7
3%	0,0136	44,6	0,0124	40,7	0,0114	37,4	0,0113	37,1	0,0112	36,7	0,0112	36,7
2%	0,0136	44,6	0,0124	40,7	0,0114	37,4	0,0105	34,4	0,0100	32,8	0,0099	32,5
0%	0,0136	44,6	0,0124	40,7	0,0114	37,4	0,0105	34,4	0,0097	31,8	0,0091	29.9
-5%	0,0136	44,6	0,0124	40,7	0,0114	37,4	0,0105	34,4	0,0097	31,8	0,0091	29,9

TABELA 25-25 / 26-8. Valores de $\delta_{\rm dM} \big[s \, / \, ft \big]$ e $\delta_{\rm dMk} \big[s \, / \, km \big]$ para TTs - HCM/6thEd (2016)

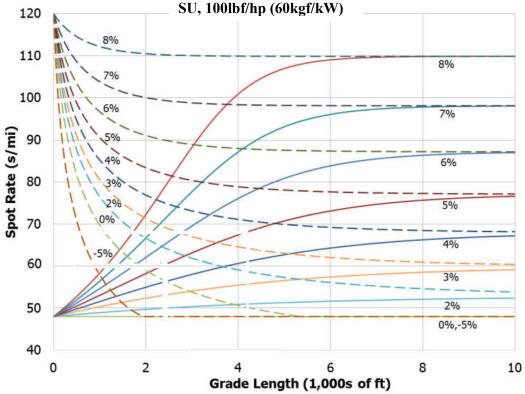
Aclive	Taxa de Tempo de Viagem $\delta_{\rm dM} [s/{ m ft}]$ e $\delta_{\rm dMk} [s/{ m km}]$ a 10000ft (3000m)											
	V _{FL} =50 mi/h		V _{FL} =55 mi/h		V _{FL} =60 mi/h		V _{FL} =65 mi/h		V _{FL} =70 mi/h		V _{FL} =75 mi/h	
	s/ft	s/km	s/ft	s/km	s/ft	s/km	s/ft	s/km	s/ft	s/km	s/ft	s/km
8%	0.0310	101.7	0.0310	101.7	0.0310	101.7	0.0310	101.7	0.0310	101.7	0.0310	101.7
7%	0,0272	89,2	0,0272	89,2	0,0272	89,2	0,0272	89,2	0,0272	89,2	0,0272	89,2
6%	0.0236	77,4	0.0236	77.4	0.0236	77,4	0.0236	77,4	0.0236	77.4	0.0236	77,4
5%	0,0202	66,3	0,0202	66,3	0,0202	66,3	0,0202	66,3	0,0202	66,3	0,0202	66,3
4%	0,0171	56,1	0,0171	56,1	0,0171	56,1	0,0170	55,8	0,0169	55,4	0,0169	55,4
3%	0,0143	46,9	0,0143	46,9	0,0142	46,6	0,0141	46,3	0,0140	45,9	0,0138	45,3
2%	0,0136	44,6	0,0124	40,7	0,0119	39,0	0,0118	38,7	0,0116	38,1	0,0115	37,7
0%	0,0136	44,6	0,0124	40,7	0,0114	37,4	0,0105	34,4	0,0097	31,8	0,0091	29,9
-5%	0,0136	44,6	0,0124	40,7	0,0114	37,4	0,0105	34,4	0,0097	31,8	0,0091	29,9


trechos com rampas combinadas: novo procedimento com taxas de tempo de viagem (taxas de tempo de viagem pontuais=inverso das velocidades pontuais anteriores ...) trecho composto deve começar (e se possível terminar) em um trecho extenso em nível

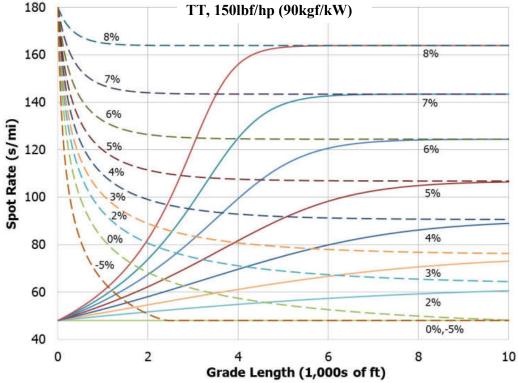
dados: aclive g_j , extensão d_j , velocidade \widetilde{V}_{FLj} (autos); tráfego q_j (misto, p_{SUj} , p_{TTj} , FHP_j)

- obter CAF_{ao} e CAF_{mixj} como segmentos independentes; obter C_{mixj} e j_c com mín C_{mixj} (>Q)

- para cada segmento (no percurso): $\tau_{\text{ini,j}} = \frac{1}{V_{\text{ini,j}}} = \tau_{\text{fin,j}}$ e $V_{\text{fin,j}} = \frac{1}{\tau_{\text{fin,j}}}$ sem interação

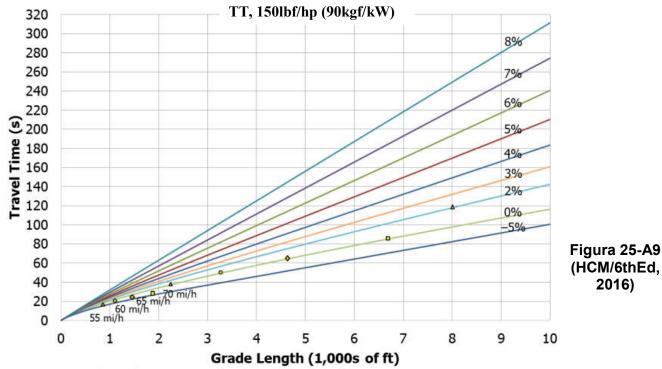

Notes: Curves in this graph assume a weight-to-horsepower ratio of 100. Solid curves are for an initial speed of 75 mi/h (48 s/mi) and dashed curves are for an initial speed of 30 mi/h (120 s/mi).

com curva da velocidade inicial=final anterior: obter os tempos de viagem para SU e TT


$$\begin{aligned} &\text{obter}\, \Delta\tau_{\mathrm{I}} = \left(\frac{1}{\widetilde{V}_{ao}} - \frac{1}{\widetilde{V}_{\mathrm{FL}}}\right) \!\! \left(1 + 3 \!\left(\frac{1}{CAF_{mixj}} - 1\right)\right), \delta_{\mathrm{i}} = \frac{\delta_{0\mathrm{i}}}{1,6} \! \cdot \! \left(\frac{\hat{q}_{\mathrm{f}}}{1000}\right)^{b_{\mathrm{i}}} \! \cdot \! \left(P_{\mathrm{i}}\right)^{c_{\mathrm{i}}} \left(\frac{1,6}{100}.\text{máx} \!\left\{0; \tau_{\mathrm{i},kj} - \frac{1}{\widetilde{V}_{\mathrm{FL}}}\right\}\right)^{d_{\mathrm{i}}} \\ &\text{distinguindo} \qquad \qquad \text{SU/TT acelerando} \qquad \qquad \text{SU/TT desacelerando} \\ &\delta_{0\mathrm{SU}} = 100,42; b_{\mathrm{SU}} = 0,46; c_{\mathrm{SU}} = 0,68; d_{\mathrm{SU}} = 2,76 \; ; \quad \delta_{0\mathrm{SU}} = 54,72; b_{\mathrm{SU}} = 1,16; c_{\mathrm{SU}} = 0,38; d_{\mathrm{SU}} = 1,73 \\ &\delta_{0\mathrm{TT}} = 110,64; b_{\mathrm{TT}} = 1,36; c_{\mathrm{TT}} = 0,62; d_{\mathrm{TT}} = 1,81 \; ; \quad \delta_{0\mathrm{TT}} = 69,72; b_{\mathrm{TT}} = 1,32; c_{\mathrm{TT}} = 0,61; d_{\mathrm{TT}} = 1,33 \\ &\text{obter} \; \tau_{\mathrm{SU},j} = \tau_{\mathrm{SU},kj} + \Delta\tau_{\mathrm{I}} \; , \; \tau_{\mathrm{TT},j} = \tau_{\mathrm{TT},kj} + \Delta\tau_{\mathrm{I}} \; \text{para SU, TT e} \; \tau_{\mathrm{a},j} = \tau_{\mathrm{a},kj} + \Delta\tau_{\mathrm{I}} + \sum_{\mathrm{i}} \delta_{\mathrm{i}} \; \text{para auto} \; \dots \end{aligned}$$

(a velocidade final para auto, com interação, pode ser avaliada especificamente com $\delta_{osU}=64,\!50; b_{sU}=0,\!77; c_{sU}=0,\!34; d_{sU}=1,\!53$; $\delta_{ott}=79,\!50; b_{tT}=0,\!81; c_{tT}=0,\!56; d_{tT}=1,\!32$)

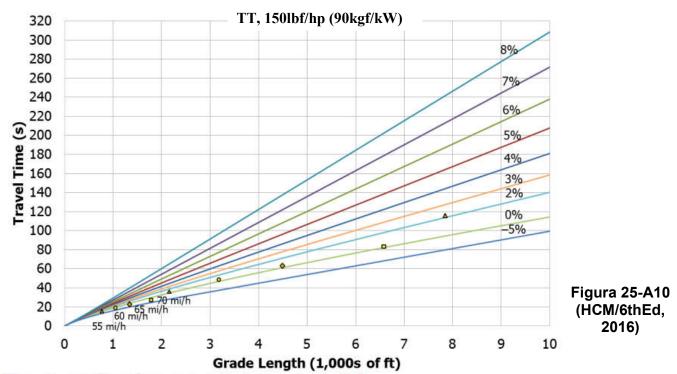
Notes: Curves in this graph assume a weight-to-horsepower ratio of 100. Solid curves are for an initial speed of 75 mi/h (48 s/mi) and dashed curves are for an initial speed of 30 mi/h (120 s/mi).



Notes: Curves in this graph assume a weight-to-horsepower ratio of 130. Solid curves are for an initial speed of 75 mi/h (48 s/mi) and dashed curves are for an initial speed of 20 mi/h (180 s/mi).

Curvas de Tempo de Viagem (do Modelo de Tráfego Misto): $V_{ini}=20mi/h=32km/h$ SU, 100lbf/hp (60kgf/kW)

(não fornecida)


Curvas de Tempo de Viagem (do Modelo de Tráfego Misto): $V_{ini} = 20mi/h = 32km/h$

Curvas de Tempo de Viagem (do Modelo de Tráfego Misto): $V_{ini} = 25mi/h = 40km/h$ SU, 100lbf/hp (60kgf/kW)

(não fornecida)

Curvas de Tempo de Viagem (do Modelo de Tráfego Misto): $V_{ini} = 25 mi/h = 40 km/h$

Curvas de Tempo de Viagem (do Modelo de Tráfego Misto): $V_{ini} = 30mi/h = 48km/h$ SU, 100lbf/hp (60kgf/kW)

(não fornecida)

Curvas de Tempo de Viagem (do Modelo de Tráfego Misto): $V_{ini} = 30 mi/h = 48 km/h$

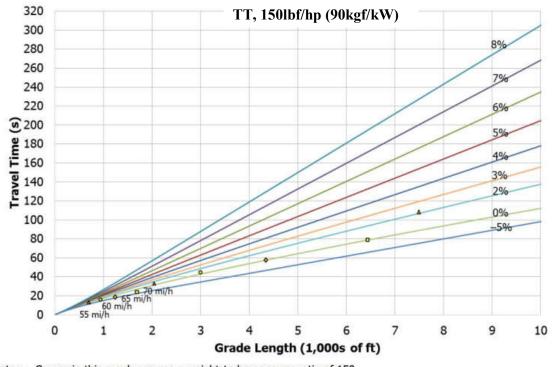
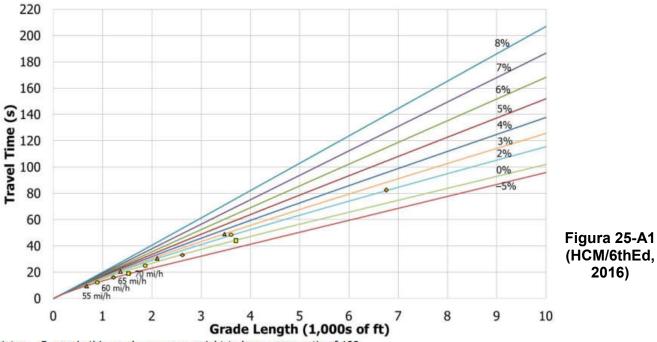
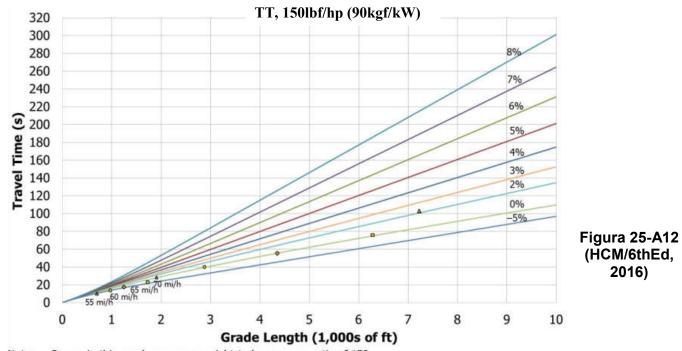
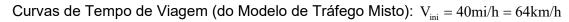



Figura 25-A11 (HCM/6thEd, 2016)

Curvas de Tempo de Viagem (do Modelo de Tráfego Misto): $V_{ini} = 35mi/h = 56km/h$

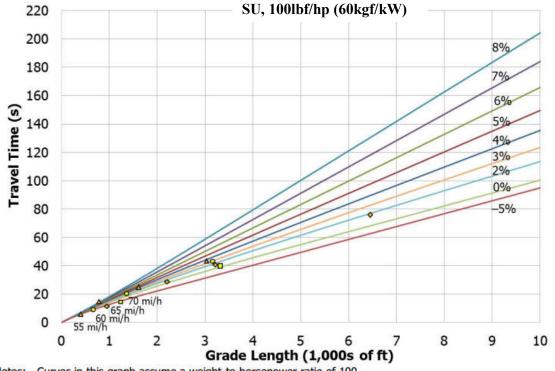
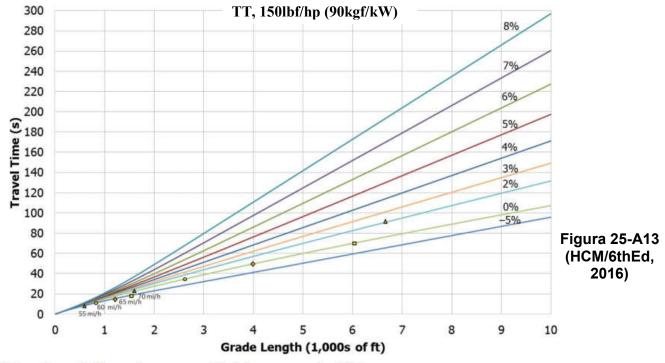

SU, 100lbf/hp (60kgf/kW)

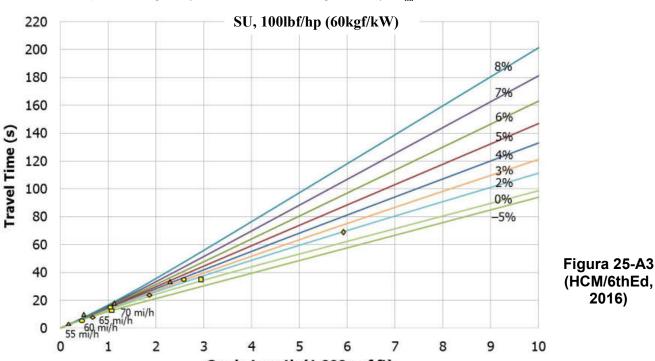


Notes: Curves in this graph assume a weight-to-horsepower ratio of 100.

Triangles indicate where a truck reaches 55 mi/h, circles indicate 60 mi/h, diamonds indicate 65 mi/h, and squares indicate 70 mi/h.

Curvas de Tempo de Viagem (do Modelo de Tráfego Misto): $V_{ini} = 35mi/h = 56km/h$

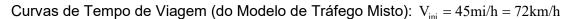



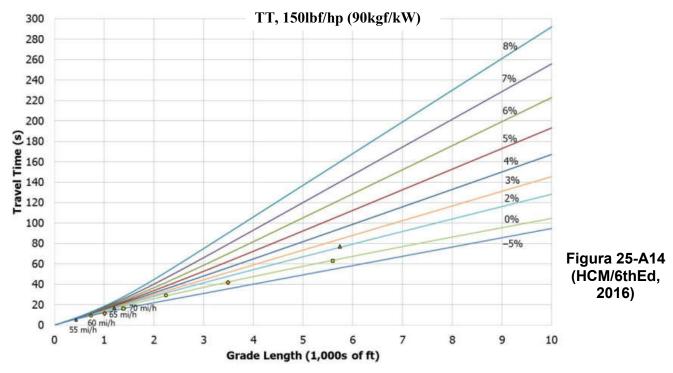

Figura 25-A2 (HCM/6thEd, 2016)

Notes: Curves in this graph assume a weight-to-horsepower ratio of 100.

Triangles indicate where a truck reaches 55 mi/h, circles indicate 60 mi/h, diamonds indicate 65 mi/h, and squares indicate 70 mi/h.

Curvas de Tempo de Viagem (do Modelo de Tráfego Misto): $V_{ini} = 40mi/h = 64km/h$





Curvas de Tempo de Viagem (do Modelo de Tráfego Misto): $V_{ini} = 45mi/h = 72km/h$

Notes: Curves in this graph assume a weight-to-horsepower ratio of 100.

Triangles indicate where a truck reaches 55 mi/h, circles indicate 60 mi/h, diamonds indicate 65 mi/h, and squares indicate 70 mi/h.

funções de tempo de viagem: curvas teóricas obtidas por simulação veicular (no tráfego)!

não há uma clara exposição sobre a obtenção das curvas fornecidas !

o NCFRP R31 é citado, adotando uma restrição de tração e funções tradicionais (do NCHRP R185, como obtidas nos anos 70, e adotadas no NCHRP R505)

também não há uma clara exposição sobre a calibração dos modelos de tráfego! parecem ter sido especificamente calibrados mas não há relatório publicado sobre a calibração ou sobre a base teórica adotada nos modelos propostos

para veículos pesados: com $a_{\text{TE}}[t] = \text{máx} \{ a_{\text{ENG}}[t]; a_{\text{ADH}}[t] \}$ (máxima potência tratora), resistência $a_{\text{R}}[t] = a_{\text{Rr}}[t] + a_{\text{Ra}}[t] + a_{\text{Rg}}[t]$ (rolamento, aerodinâmica, gravitacional)

hipótese de máxima aceleração: $a[t] = a_{TE}[t] + a_{R}[t]$ enquanto $v[t] < v_{DES}$ (desejada)

$$a_{\rm ENG}\!\left[t\right]\!=\!\frac{\eta.P}{M.v}\!=\!\frac{K_{\eta/v1}.K_{\rm eleP}}{W/P.v.m\acute{a}x\!\left\{\!1,v_{min}/v\right\}\!+K_{\eta/v2}/v.m\acute{a}x\!\left\{\!1,v_{min}/v\right\}}.G\;,\;\;v_{min}=\!10ft/s$$

 $a_{ADH}\big[t\big] = \mu.\frac{\rho_{Tr}.W}{M} = \mu.\rho_{Tr}.G \text{ , } \rho_{Tr} \cong 0,25 \text{ (eixo trator), } \mu = f_{ABS}.\mu_{dd} \cong 0,90 \text{ (seco),}$

$$a_{Ra}[t] = -\frac{C_{D}.A.\gamma.v^{2}}{2.M} = \frac{-K_{Da}.v^{2}.K_{eleA}}{W/A}.G, \ a_{Rg}[t] = -\frac{W.tg[\alpha_{i}]}{M} \cong -i.G,$$

$$a_{_{Rr}}\!\!\left[t\right]\!=\!-\!\!\left(\!0,\!0076\!-\!\!\beta_{_{\! v}}.v\right)\!\!G \text{ se } v\leq v_{_{min}} \text{ ou } a_{_{Rr}}\!\!\left[t\right]\!=\!\!\left(\!-0,\!0076\!-\!\!\beta_{_{\! v}}.v\!-\!\frac{K_{_{r/v}}.K_{_{eleP}}}{W/P.v}\right)\!\!\!.\!\!G \text{ ,}$$

$$K_{_{\eta/\nu l}} = 477, 7\,\frac{lbf}{hp}\,\frac{ft}{sec} = 88, 73\,\frac{kgf}{kW}\,.\,\frac{m}{s}\,,\;\; K_{_{\eta/\nu 2}} = 14080\frac{lbf}{hp}\,\frac{ft2}{sec\,2} = 797, 1\frac{kgf}{kW}\,.\,\frac{m2}{s2}\,,$$

$$K_{Da} = 0.00065 \frac{lbf.s2}{ft4} = 0.0342 \frac{kgf.s2}{m4}$$
, $\gamma = 0.064 lb/ft3 = 1.03 kg/m3$,

$$\beta_{\rm v} = 0,0000124 \, {\rm s} \, / \, \, {\rm ft} = 0,000041 \, {\rm s} \, / \, \, {\rm m} \, \, , \ \, K_{\rm r/v} = 6,92 \, \frac{lbf}{hp} \, \frac{ft}{sec} = 1,285 \, \frac{kgf}{kW} \, . \, \frac{m}{s}$$

onde W/P é a relação peso/potência nominal (eficiência mecânica $\eta \cong 0.86$);

 $W/A\,$ é a relação peso/área frontal (coeficiente aerodinâmico $\,C_{_D}\cong 0{,}65\,)\,$

G é a aceleração da gravidade (nominal G = 32,17 ft/sec 2 = 9,78 m/s 2)

(o NCHRP R505 incorporou uma restrição de comportamento do condutor na aceleração que não obteve aceitação e foi excluído no NCFRP R31)

integração numérica: usualmente é suficiente usar a[t] fixo em passos de 1seg ...

$$v\big[t\big] = v_0 + \int_0^t a\big[\tau\big] d\tau \;,\;\; d\big[t\big] = d_0 + \int_0^t v\big[\tau\big] d\tau \;,\;\; t\big[V\big] = t_0 + \int_{V0}^V \frac{dv}{a\big[v\big]} \;,\;\; d\big[V\big] = d_0 + \int_{V0}^V \frac{v.dv}{a\big[v\big]} \;,$$

fontes mais recentes: TRUCKSIM, IHSDM e outros modelos de simulação veicular (diversos modelos de simulação de tráfego também têm modelos similares ...)

curva de tempo de viagem contém apenas o componente próprio veicular (cinético) (são similares às curvas de velocidade anteriores, mas em termos médios)

frota nova (melhoria de desempenho decorre da redução da relação peso/potência):

Exhibit 26. Physical and performance characteristics of trucks.* NCFRP REPORT 31

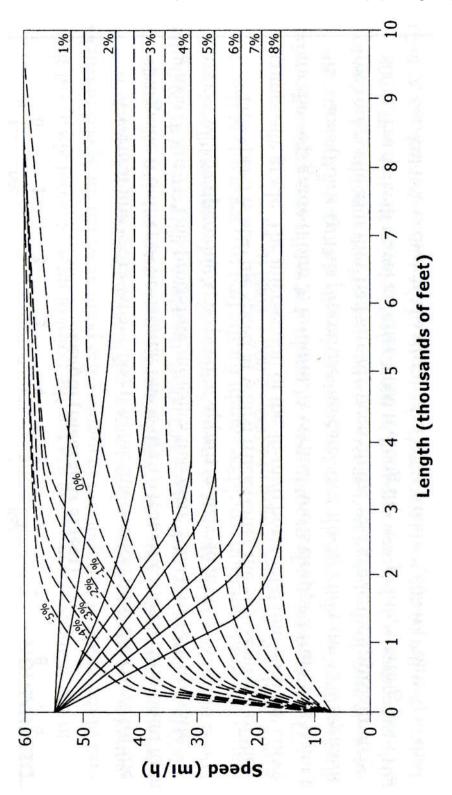
Class	Weight	(pounds)	Down Had	**Range of Weight/Horsepower	
FHWA	Minimum	Maximum	Power (hp)		
6	15,000	46,000	220	68 - 209	
7	20,000	53,000	250	80-212	
8	28,000	66,000	310	90 - 213	
9	30,000	80,000	380	79 - 211	
10	30,000	87,000	410	73 - 212	
11	35,000	92,000	440	80 - 209	
12	35,000	105,000	500	70 - 212	
13	35,000	120,000	570	61-211	

^{*}Researchers defined trucks as vehicles with three or more axies (Middleton, 2006).

**Estimated from weight and power values.

(varia mais com a idade e condição de carga do que com o tipo de veículo!)

Exhibit 20. FHWA vehicle classification scheme.


NCFRP REPORT 31

Class	Illustration	Description			
10	800	Motorcycles: All two or three-wheeled motorized vehicles.			
2	600	Passenger Cars: All sedans, coupes, and station wagons manufactured primarily for the purpose of carrying passengers and including those passenger cars pulling recreational or other light trailers.			
3	TANK THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COL	Other Two-Axle, Four-Tire Single Unit Vehicles: All two-axle, four-tire vehicles other than passenger cars. Generally pick-up trucks, sports utility vehicles, vans.			
4		Buses: All vehicles manufactured as traditional passenger- carrying buses with two axies and six tires or three or more axies. Excludes modified buses no longer capable of mass passenger transport.			
5	EXIST.	Two-Axie, Six-Tire, Single-Unit Trucks: All vehicles on a single frame including trucks, camping and recreational vehicles motor homes, etc., with two axies and dual rear wheels.			
6	Ø 88	Three-Axle Single-Unit Trucks: All vehicles on a single frame including trucks, camping and recreational vehicles, meter homes, etc., with three axles.			
7	600 E00	Four or More Axle Single-Unit Trucks: All trucks on a single frame with four or more axles.			
8	6	Four or Fewer Axle Single-Trailer Trucks: All vehicles with four or fewer axles consisting of two units, one of which is a tractor or straight truck power unit.			
9	B	Five-Axle Single-Trailer Trucks: All two-axle vehicles consisting of two units, one of which is a tractor or straight truck power unit.			
10	9	Six or More Axle Single-Trailer Trucks: All vehicles with six or more axles consisting of two units, one of which is a tractor or straight truck power unit.			
11	6.	Five or Fewer Axle Multi-Trailer Trucks: All vehicles with tive or fewer axles consisting of three or more units, one of which is a tractor or straight truck power unit.			
12		Six-Axle Multi-Trailer Trucks: All six-axle vehicles consisting of three or more units, one of which is a tractor or straight truck power unit.			
13	6	Seven or More Axle Multi-Trailer Trucks: All vehicles with seven or more axles consisting of three or more units, one of which is a tractor or straight truck power unit.			

Adapted from FHWA, 2001 and Maryland SHA, 2012.

curvas de operação antigas (baseadas no NCHRP R185 e R505)

Figura 11-A1. Curvas de Velocidade para Caminhão de 200 lb/hp (120kg/kw) - HCM/2010

Procedimento para Avaliar Uso das Rodovias pelos Ciclistas: com ajustes

- Qualidade de serviço para os ciclistas: mesma elemento mas avaliação distinta ...
 - tendência de adotar uma visão multimodal (e promover sustentabilidade)
 - critério de qualidade de serviço (não nível de serviço) avaliado pelo usuário
 recomendado também para outras rodovias comuns: uso do acostamento ou faixa direita
- Estimativa do índice de qualidade percebido pelos ciclistas (BLOS):

$$\begin{split} BLOS &= \beta_0 + \beta_Q.F_Q + \beta_{SH}.F_S.F_H + \beta_P.F_P - \beta_W.F_W \\ onde \quad \beta_0 &= 0,057 \text{ (intercepto),} \\ \beta_Q &= 0,507 \text{ (efeito do tráfego na faixa externa)} \\ com \quad F_Q &= \ln\!\left[q^{\rm O}\right] e \; q^{\rm O} = \frac{VH^d}{FPH^d.N} \text{ (em v/h na faixa direita)} \\ \beta_{SH} &= 0,1999 \text{ (efeito do limite de velocidade e veículos pesados)} \\ com \quad F_S &= 1,1199.\ln\!\left[\frac{S_L - 32km/h}{1,6}\right] + 0,8103 \text{, limite de velocidade: } S_L \text{ em km/h} \end{split}$$

e $F_H = (1+0.1038.\% HV)^2$, veículos pesados em porcentagem: %HV (se fluxo total Q até 200v/h então %HV deve ser limitado a 50%)

$$\beta_P = 7,066$$
 (efeito da qualidade do pavimento) com $F_P = \left(\frac{1}{P}\right)^2$

P: condição do pavimento na escala do U.S.HPMS (0=péssimo a 5=ótimo)

 $\beta_{\rm W} = 0{,}005$ (efeito da largura de faixa efetiva) com $F_{\rm W} = \left(3{,}28.W_{\rm e}\right)^2$, $W_{\rm e}$ em metro

com
$$W_e = W_v + L_A - \%OP/100.(3.0m)$$
 se o acostamento tem $L_A \ge 2.4m(8ft)$

?
$$W_e = W_v + L_A - \text{\%OP/100.2.}(L_A + 0.6\text{m}) \text{ se } 1.2\text{m}(4\text{ft}) \le L_A < 2.4\text{m}(8\text{ft})$$

?
$$W_e = W_v + \%OP/100.(L_A + 0.6m)$$
 se o acostamento tem $L_A < 1.2m(4ft)$

onde %OP é a porcentagem da extensão ocupada por estacionamento

e
$$W_v = L_O + L_A$$
 se fluxo total Q até 160v/h ou $W_v = (L_O + L_A)(2 - 0.005.Q)$
em caso contrário (L_O é a largura faixa externa, à direita)

(índice estimado por regressão linear, a partir de notas atribuídas por usuários/ciclistas)

Nível de serviço para os ciclistas: também definido, em função da qualidade de serviço

TABELA 15-4. Nível de Serviço para Bicicletas em Rodovias de Pista Simples - HCM/2010 (também adotado em Rodovias de Múltiplas Faixas)

NÌVEL DE SERVIÇO	ÍNDICE DE QUALIDADE (BLOS)
А	≤1,5
В	>1,5 a 2,5
С	>2,5 a 3,5
D	>3,5 a 4,5
E	>4,5 a 5,5
F	>5,5

Comentários sobre as Revisões do U.S.HCM/6thEd (2016)

- deficiência comuns aos procedimentos anteriores:
 - . não analisa situações de sobre-demanda (Q>C) e aleatoriedade
 - . não analisa distribuição dos fluxos por faixa (leves e pesados) (mas diferencia a operação para leves e pesados no modelo de tráfego misto)
 - . estimativa dos fatores equivalentes (voltam a ser de capacidade):
 - admite que os automóveis não são afetados pelo perfil da via admite que efeito dos pesados não varia com nível de fluxo ($x = \frac{q}{C}$)

não avalia perda de velocidade dos pesados com congestionamento

(modelo de tráfego misto avalia perda de velocidade adicional provocada pelos pesados)

- ⇒ os procedimentos atuais são teoricamente mais adequados que do HCM/85
 - . curvas básicas de desempenho próprias do segmento (100% autos)!
 - . ainda ignora muitos fatores que afetam a velocidade de fluxo livre
 - . admite que a velocidade de fluxo livre caracteriza totalmente a capacidade ! novo modelo de tráfego misto pode avaliar velocidade média real (para autos e pesados)
 - . adota relação peso/potência típica de 100lb/hp para SU e 160lb/hp para TT (carga ...)
 - . alega produzir resultados similares de equivalentes, iguais aos anteriores com pvp maior!?
- o procedimento para vias expressas:
 - . não considera outros fatores geométricos (como perfil vertical e horizontal)
 - . mas introduz efeitos importantes como trechos em obras e faixas de uso especial
- o procedimento para rodovias de múltiplas faixas:
 - . não considera efeito do no faixas e geometria na velocidade de fluxo livre
 - . não considera os mesmos efeitos analisados para vias expressas (extrapolação)
- revisão dos valores de capacidade básica é admissível (valores do HCM/2010)
- novo modelo para tráfego misto e fatores equivalentes tem de ser validados!
 - . e_{VP}: melhoria da relação peso/potência menor no Brasil (necessário validar ainda mais ...) deveria manter fatores equivalente distintos para fluxo e para densidade ... os fatores são similares aos anteriores com p_{VP} maior (os piores dados anteriores).
 - . modelo de tráfego misto: equivalente implícito não pondera V de SU,TT (pondera i_g e p_{VP}), nem pondera a composição SU/TT (considerados apenas na previsão de V misto); curvas de tempo de viagem não validadas e sujeitas a diversas críticas relevantes!

VER EXERCÍCIO REVISÃO EXPRESSAS VER EXERCÍCIO REVISÃO RODOVIAS

- ⇒ previsão da qualidade de serviço para ciclistas promove a visão multimodal!
 - . no entanto, modelos empíricos e métodos de calibração são ainda incipientes
 - . versão original do HCM2010 sem revisões ou ajustes e correções relevantes ...