Procedimento do U.S.HCM2010

- integra análise modo auto, pedestre e bicicleta (como usual no HCM/2010)
 - . nível de serviço para auto função de atraso de controle e razão Q/C
 - . nível de serviço para pedestre/bicicleta função de nota subjetiva (LoS Score)

Ver Tabela 18-4,5

(HCM2010 não distingue claramente conceitos de nível e qualidade de serviço mas nota subjetiva é medida de qualidade de serviço percebida pelos usuários)

- análise de operação usa explicitamente esquemas dos controladores nos EUA
 - . adota esquema de numeração da NEMA, similar às interseções sem semáforo
 - . incorpora maior parte dos parâmetros de controle de tempos fixos e atuado

Ver Figura 18-2

- atraso médio de controle com fórmula dinâmica (termo determinístico regular calculado com QAP="polígono de acumulação de fila"); incorpora de forma simplificada o efeito do tipo de controlador semafórico e da coordenação semafórica, além da fila inicial, sobre os atrasos e calcula fila média e máxima (para diversos percentis)
 - Ver análise geral do construção de QAPs (e ADPs)
- calcula fluxo de saturação (e capacidade) por grupo de faixas do HCM85 a 2000 fluxo básico de saturação:1900 veq/hv (pop<250mil:1750 veq/hv); ajustamento pelo efeito de geometria (largura da faixa, revisado, e declividade, do HCM/97-2000), considerando separadamente os efeitos de movimentos de estacionamento (função do número de movimentos por hora), das paradas de ônibus (função do número de movimentos por hora), do HCM/97-2000, além de outros efeitos de interferência caracterizados por tipo de local (CBD), distinguindo fatores equivalentes por tipo de veículo apenas para caminhões

Ver Tabela 18-12 e Sumário ...

- trata como suplementar a influência de movimentos de pedestres (com prioridade) sobre os fatores equivalentes dos movimentos de conversão, sem fluxo oposto veicular, a partir do bloqueio de faixas, revisando o método do HCM/97-2000
 - Ver análise suplementar: bloqueio de pedestres
- trata a dependência entre fator equivalente e capacidade para os movimentos de conversão permitidos (de forma simplificada) e a interação entre movimentos permitidos e protegidos (ou ambos, permitido e protegido)

Ver análise suplementar: conversões à esquerda Ver análise geral do equilíbrio entre faixas

- procedimento revisado para análise de controle atuado pelo tráfego: Bonneson **Ver controle atuado ...**
- incorpora procedimento de análise para pedestre e bicicleta (LevelOfService Score).
 - . mantém análise baseada no espaço disponível para pedestres em esquinas . introduz análise integrada de qualidade de serviço para pedestres e bicicletas
 - Ver procedimento para QoS de pedestres e ciclistas

Capítulo 8. Fluxo Descontínuo – Métodos Práticos de Análise

TABELA 18-4. Nível de Serviço para Modo Auto em Interseções Semaforizadas- HCM/2010

Atraso de Controle por Veículo (seg)	Nível de Serviço para Q/C≤1	Nível de Serviço para Q/C>1
≤10	Α	F
>10 e ≤20	В	F
>20 e ≤35	С	F
>35 e ≤55	D	F
>55 e ≤80	E	F
>80	F	F
	≤10 >10 e ≤20 >20 e ≤35 >35 e ≤55 >55 e ≤80	≤10 A >10 e ≤20 B >20 e ≤35 C >35 e ≤55 D >55 e ≤80 E

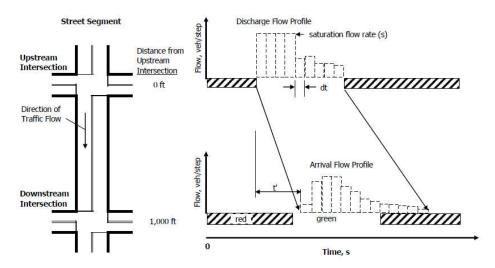
Obs.: para aproximações ou movimentos, nível de serviço é definido pelo atraso de controle apenas.

$$\begin{aligned} &d_a=d_r+d_s \text{ onde } d_r=\sum_i \frac{\left(n_i+n_{i+1}\right)t_i}{2\cdot q_i t_c}, \ n_i,t_i \text{ do QAP="Poligono de Acumulação de Fila" regular em } t_c \\ &\text{sub-período i (duração } t_{di} \text{): } n_{i+1}=n_i+\left(q_i-c_{si}\right)t_i \geq 0, \text{ em r: } c_{si}=0; \text{ em g: } c_{si}=S_i \text{ (em } t_{si}) \\ &\text{se } q_i < c_{si}, \ t_i=\min \left\{t_{di},t_{si}=\frac{n_i}{c_{si}-q_i}\right\} \text{ (em } t_{di}-t_{si}, \ n_i=0 \text{) senão } t_i=t_{di} \text{ (} d_r=d_{rs}\text{ se } q=C_s \text{)} \\ &\text{regular (para } \overline{q} \leq \overline{C} \text{): } \text{com } C=C_q \text{ se } n_0=0\text{ eQ} < C_q \text{ ou } C=C_s \text{ se } n_0>0\text{ ouQ} > C_q \text{ (} X=\frac{Q}{C} \text{)} \\ &\text{em } T\text{: se } Q>C_q, \ T_s=T,q=C=C_s, \overline{d}_r=d_{rs}; \text{ se } n_0=0\text{ eQ} < C_q, \ T_s=0,q=Q,C=C_q, \overline{d}_r=d_{rq} \\ &\text{se } n_0>0\text{ e } Q0: \text{ se } X=\frac{Q}{C}\geq 1, \ t_s=T \text{ (período com fila), } d_3=\frac{n_0}{C}=n_r=n_0+\left(X_r-1\right)\overline{C}.T>0 \\ &\text{ se } X=\frac{Q}{C}<1, \ t_s=\min \left\{\frac{R_s}{C_s}=1, \ t_s=T \text{ (período$$

Efeito dos Pelotões no Atraso Regular no HCM2010:

- efeito dos pelotões (integrado com a análise de corredores arteriais)
 - . recomenda determinar a proporção de chegadas no verde $P_{\rm g}~$ por simulação (construir perfis cíclicos de tráfego baseados no modelo de Robertson, com

$$\delta_{_{t}} = ls, t_{_{min}} = \bar{t}_{_{R}} - \frac{1}{F} + 1,25, F = \frac{1}{1 + 0,138.\bar{t}_{_{R}} + 0,315/\delta_{_{t}}} \text{ e } q_{_{i}}^{_{B}} = F.q_{_{i-t_{min}}}^{^{A}} + (1 - F).q_{_{i-1}}^{^{A}};$$


q_i^A, q_i^B: fluxo de entrada e chegada final no link AB;

. a proporção de chegadas no verde é $\,P_{_g}\,=\frac{N_{_g}}{N_{_c}}$, onde

 $N_{\rm g} = \sum_{\rm i \in g} q_{\rm i}^{\rm B}$: é o total de chegadas no verde

 $N_{_{c}} = \sum_{_{i}} \! q_{_{i}}^{^{B}}$: é o total de chegadas no ciclo

. a razão de pelotão é $\,R_{_p} = \frac{P_g}{u}\,,$ onde $\,u = \frac{g_{_{ef}}}{t_{_c}}\,$ é a taxa de verde efetivo

(naturalmente pode ser obtido em campo, para interseções existentes).

-
$$d_1 = PF.\frac{(1-u)^2}{2.(1-u.X_q)}.t_c$$
, $com X_q \le 1$ $(d_1 = \frac{r}{2} para X \ge 1, pois X_q = 1) com PF da TABELA 31-46 (método considerado somente na análise expedita complementar)$

Fila média/máxima no HCM2010:

não é analisada de forma consistente: $n_b = n_{b1} + n_{b2} + n_{b3}$ (total, por faixa)

$$R_{_b}=n_{_b}.\overline{\ell}_{_v}\big/L_{_a}\text{ , }\overline{\ell}_{_v}=p_{_{vl}}.\ell_{_{vl}}+p_{_{vp}}.\ell_{_{vp}}\text{, }\ell_{_{vl}}=7\text{,}6m\text{(}25\text{ft}\text{)}\text{, }\ell_{_{vp}}=13\text{,}7m\text{(}45\text{ft}\text{)}\text{ (leves/pesados)}$$

L_a: extensão disponível no segmento (da entrada do segmento à linha de retenção)

-
$$n_{b1} = m\acute{a}x\{n_i\}$$
 do ADP="Polígono de Chegadas e Partidas" ajustado (ver adiante ...)

$$\text{ou } n_{\text{bl}} = q_{\text{r}}.r + q_{\text{g}}.\left(t_{\text{s}} - \delta_{\text{ba}}\right), \ t_{\text{s}} = \frac{q_{\text{r}}.r - q_{\text{g}}.\delta_{\text{ba}}}{S - q_{\text{o}}} \ \left(\text{com } q_{\text{g}} = \frac{P_{\text{g}}}{u}.q, q_{\text{r}} = \frac{1 - P_{\text{g}}}{1 - u}.q, \ P_{\text{g}} = R_{\text{p}}.u, q \leq C \right)$$

-
$$n_{b2}$$
: sobre-fila; $n_{b2} = \overline{n}_2 = \overline{C}.d_2$ (suposta constante no período; inconsistente se Q>C)

-
$$n_{b3}$$
: da fila inicial; $n_{b3}=n_0$ se $X=\frac{Q}{C}\geq 1$; $n_{b3}=\frac{n_0+n_T}{2}$ se $X=\frac{Q}{C}<1$ (inconsistente ...).

Aleatoriedade da Fila no HCM2010:

percentil p:
$$n_{bp} = (n_{b1} + n_{b2})f_{bp} + n_{b3}$$
; $p = 85\% 90\% 95\%$ $z_p = 1,04 1,28 1,64$, $p = \alpha$ (unicaudal)

$$\text{se } X = \frac{Q}{C} \geq 1 \text{, } f_{\text{bp}} = min \left\{ 1,8; 1 + z_{\text{p}} \sqrt{\frac{I}{\left(n_{\text{b1}} + n_{\text{b2}}\right)}} + 0,60.z_{\text{p}}^{-0.24}. \left(\frac{g}{t_{\text{c}}}\right)^{0,33}. \left(1 - e^{-2-2.X}\right) \right\}$$

$$\text{se } X = \frac{Q}{C} < 1, \ f_{\text{bp}} = \text{min} \left\{ 1,8; 1 + z_{\text{p}} \sqrt{\frac{I}{\left(n_{\text{b1}} + n_{\text{b2}}\right)}} \right\}, \ I : \text{ajustamento da regulação à montante}$$

$$R_{_{bp}}=n_{_{bp}}.\overline{\ell}_{_{v}}\big/L_{_{a}}$$
 (probabilidade de bloqueio no segmento, se $R_{_{bp}}>1$)

Alternativa do HCM2000: simplificação que dispensa a construção QAP/ADP ...

$$d_a = d_r + d_s \text{ com } d_r = PF.d_1 e d_1 = \frac{(1-u)^2}{2.(1-u.X_q)}.t_c, com X_q \le 1 (0.5.r \text{ para } X \ge 1, pois X_q = 1)$$

$$PF = \frac{(1 - P_g).f_p}{1 - u}, P_g = \frac{q_g.g}{\overline{q}.t_c}, R_p = \frac{P_g}{u} \text{ medidos (para } f_p \text{, TABELA 16-12, do HCM2000)}$$

(na ausência de dados, adotar AT=4 para fluxos diretos e AT=3 para conversões ou estimar $P_{\rm g}$ através de $R_{\rm p}$, ponderando pelos volumes de tráfego se preciso)

fila média:
$$n_a = n_r + n_s$$
, $n_r = PF'.n_l e d_l = \frac{q_m.(1-u)^2}{2.(1-u.X_q)}.t_c$, $com X_q \le 1 \ (0.5.C.r \ para \ X \ge 1)$

$$PF' = \frac{(1 - P_g).(1 - y)}{(1 - u).(1 - R_p.y)}, P_g = \frac{q_g.g}{\overline{q}.t_g}, R_p = \frac{P_g}{u}, \text{ medidos (ou } P_g = R_p.u \text{), } q_m = \frac{q + \frac{n_0}{T_p}}{m}$$

$$n_{_{S}} = n'_{_{2}} \ com \ n'_{_{2}} = 900.c_{_{m}}.T_{_{P}}.\left[(x_{_{m}}-1) + \sqrt{(x_{_{m}}-1)^2 + \frac{8.\kappa.x_{_{m}}}{c_{_{m}}.T} + \frac{16.\kappa.n_{_{om}}}{(c_{_{m}}.T)^2}}\right], \ onde \ n_{_{N}} = n'_{_{N}} \ com \ n'_{_{N}} = 900.c_{_{M}}.T_{_{N}}.$$

$$x_{m} = \frac{q_{m}}{c_{m}}, \ n_{0m} = \frac{n_{0}}{m}, \ \kappa = 0.12.I \left(\frac{s_{m}.g}{3600}\right)^{0.7} \ \text{em tempo fixo,} \ \kappa = 0.10.I \left(\frac{s_{m}.g}{3600}\right)^{0.6} \ \text{atuado}$$

efeito da fila inicial em $q_m = \frac{q + \frac{n_0}{T_P}}{m}$, em n_1 (inconsistente) e em n_2 (consistente)

Tabela 18-8,29. Relação entre Tipo de Chegada e Razão de Pelotão (Rp)- HCM/2010

			, -,
Tipo de Chegada	ValorPadrão, R _P	Qualidade de Progressão	Condições Prováveis
1	0,333	Muito pobre	Coordenação desfavorável;
			espaçamento entre semáforos≤488m (1600ft)
2	0,667	Desfavorável	Intermediário entre 1 e 3
	4 000		0 // 1
3	1,000	Chegada aleatória	Semáforos Isolados;
_			espaçamento entre semáforos>975m (3200ft)
4	1,333	Favorável	Coordenação favorável em;vias de mão dupla;
			espaçamento entre semáforos 488-975m (1600-3200ft)
5	1,667	Muito favorável	Coordenação favorável em;vias de mão dupla;
			espaçamento entre semáforos ≤488m (1600ft)
6	2,000	Excepcional	Coordenação favorável em via de mão única , redes densas e
			áreas centrais; espaçamento entre semáforos≤244m (800ft)

Obs.: A relação entre a razão de pelotão e a porcentagem do fluxo que chega no verde ér $R_P = P_g/u$ onde u é a taxa de verde.

TABELA 31-46. Fator de Ajuste (PF) para Qualidade de Progressão - HCM/2010

Padrão de	Fator de Ajuste para Qualidade de Progressão (PF)					
Operação	u=0,20 (20%)	u=0,30 (30%)	u=0,40 (40%)	u=0,50 (50%)	u=0,60 (60%)	u=0,70 (70%)
Não coordenado	1,00	1,00	1,00	1,00	1,00	1,00
Coordenado *	0,92	0,86	0,78	0,67	0,50	0,22

Obs: * Estimado por PF=(1-1,33.u)/(1-u), onde u=g/tc (corresponde a admitir Pg=1,33.u).

TABELA 16-12. Fator de Ajustamento (PF) para Atraso Uniforme (d₁)- HCM/2000

ואט	TABLEA 10-12: 1 atol ac Ajustamento (11) para Atraso officimie (a1)-110m/2000					
	Fator de Ajustamento de Progressão (PF)					
	$PF=(1-P) f_P / (1-u), u=g/t_c (ver observação)$					
Taxa de Verde			Tipo de C	Chegada (AT)		
(g/t_c)	AT-1	AT-2	AT-3	AT-4	AT-5	AT-6
0,20	1,167	1,007	1,000	1,000***	0,833	0,750
0,30	1,286	1,063	1,000	0,986	0,714	0,571
0,40	1,445	1,136	1,000	0,895	0,555	0,333
0,50	1,667	1,240	1,000	0,767	0,333	0,000
0,60	2,001	1,395	1,000	0,576	0,000	0,000
0,70	2,556	1,653	1,000	0,256	0,000	0,000
f_{P}	1,000	0,930	1,000	1,150	1,000	1,000
R_P	0,333	0,667	1,000	1,333	1,667	2,000
Progressão	muito ruim	ruim	chegada aleatória	boa	muito boa	excepcional

Obs: * Tabulação é baseada em valores de atraso de f_P e R_P. **P= R_P. u (não deve exceder 1.0). *** PF não deve exceder 1.0 para AT-3 até AT-6.

TABELA 16-13. Fator de Atraso Incremental (k) por Tipo de Controlador (d₂)- HCM/2000

TABLEA 10 10:1 atol ac Atlaso molemental (k) por lipo ac controlador (a2) molimetos						
Extensão de	Grau de Saturação (X)					
Verde (UE, seg.)	≤0,50	0,60	0,70	0,80	0.90	≥1,0
≤2,0	0,04	0,13	0,22	0,32	0,41	0,50
2,5	0,08	0,16	0,25	0,33	0.42	0,50
3,0	0,11	0,19	0,27	0,34	0,42	0,50
3,5	0,13	0,20	0,28	0,35	0,43	0,50
4,0	0,15	0,22	0,29	0,36	0,43	0,50
4,5	0,19	0,25	0,31	0,38	0,44	0,50
5,0*	0,23	0,28	0,34	0,39	0,45	0,50
Tempos						
Fixos	0,50	0,50	0,50	0,50	0,50	0,50

Obs: Para um dado UE e seu valor k_{min} em X=0,5, a fórmula para k é (1-2. k_{min}).(X-0,50)+ k_{min} , com $k_{min} \le k \le 0,5$.

* para EU>5,0 seg, extrapolar o valor de k mantendo k $\le 0,5$

Tabela 18-6,7. Dados Requeridos - Modo Auto - Interseções Semaforizadas - HCM/2010

Símbolo	Referência	Definição
Tráfego		
Q (V)	Movimento	Demanda de tráfego, por movimento, em v/h
	Aproximação	Fluxo de Conversões à Direita no Vermelho, em v/h
%VP (%HV)	G.Movimento	Porcentagem de veículos pesados
FHP (PHF)	Interseção	Fator de hora-pico da interseção
R_p	G.Movimento	Razão de Pelotão (=Pg/u)
I	G.Movimento	Fator de Ajustamento para Filtragem à Montante
$n_0\left(Q_b\right)$	G.Movimento	Fila Inicial
$S_b(s_o)$	G.Movimento	Fluxo de saturação básico (ideal), em veq/hv.fx
f_u	G.Movimento	Fator de Ajustamento para Utilização das Faixas
$Q_{ped}\left(v_{ped}\right)$	Aproximação	Fluxo de pedestres, em ped/h
Q _{bic} (v _{bike}	Aproximação	Fluxo de bicicletas, em bic/h
$N_{\rm m}$	G.Movimento	Número de movimentos de estacionamento na área da interseção, em manobras/h (*)
N_{b}	Aproximação	Número de paradas de ônibus na área da interseção, em manobras/h (*)
Geometria		
N	G.Movimento	Número de faixas
L(W)	G.Movimento	Largura média das faixas, em metros
	Aproximação	Número de faixas de saída
L_{S}	G.Movimento	Extensão de armazenamento na baia de conversão à direita ou esquerda, em metros
	G.Movimento	Existência de estacionamento na via
%i (%G)	Aproximação	Declividade, em porcentagem (+ é aclive, - é declive)
Semáforo		
	Interseção	Tipo de operação do semáforo (P/A, programado a tempos fixos ou atuado pelo tráfego)
	Interseção	Sequência de Fases Semafóricas (Estágios Semafóricos)
	Aproximação	Tipo de Operação da Conversão à Esquerda (Lead, Lag, Opposed, Split) e opção Dallas
IC (PT)	Fase Semafórica	Intervalo de Corte (Passage Time), em seg., se atuado
g (G)	Fase Semafórica	Tempo de verde, em seg. , programado se tempo fixo, mínimo/máximo, se atuado
Ia (Y)	Fase Semafórica	Tempo de entreverdes em amarelo, em seg.
$I_{v}(R)$	Fase Semafórica	Tempo de entreverdes em vermelho de segurança, em seg.
$g_{edx} (G_{edx})$	Fase Semafórica	Tempo de verde para pedestres, seg (Walk)
I eisc (F)	Fase Semafórica	Tempo de limpeza (piscante) para pedestres, seg (Flashing Don´t Walk)
	Fase Semafórica	Opções de atuação (phase recall, dual entry, simultaneous gap-out)
$t_{c}\left(C\right)$	Interseção	Tempo de ciclo da operação do semáforo, em seg. se tempo fixo ou coordenado-atuado
	Fase Semafórica	Repartição da Fase Semafórica, se coordenado-atuado
	Interseção	Defasagem (Offset), s, se coordenado
	Interseção	Ponto de Referência da Defasagem (Offset) , se coordenado
	Interseção	Modo Forçado, se coordenado-atuado
Outros		
CBD, Outro	Interseção	Tipo de Área
$T_{P}\left(T\right)$	Interseção	Duração do período de análise, em h
	G.Movimento	Modo de detecção (pulso/presença) e Extensão do detector de linha de retenção
$V_L(S_L)$	Aproximação	Velocidade Limite, km/h (mph)

$$S = \widetilde{S}_b.N.f_L.f_{VP}.f_i.f_{est}.f_{bus}.f_{loc}.f_u.f_{cd}.f_{ce}.f_{pd}.f_{pe} \text{ , onde}$$

$S_b(s_0)$	fluxo básico de saturação, usualmente 1900 veq/hv.fx
$f_{L}\left(f_{W}\right)$	fator de correção devido à largura (Tabela 18-13)
$f_{VP}\left(f_{HV}\right)$	fator de correção devido aos veículos pesados (e _{VP} =2,0)
$f_{i}\left(f_{g}\right)$	fator de correção devido à declividade (-6,0% a +10,0%)
$f_{est}\left(f_{p}\right)$	fator de correção devido às manobras de estacionamento (18seg/manobra)
$f_{bus}\left(f_{bb}\right)$	fator de correção devido às paradas de ônibus (14,4seg/parada)
$f_{loc}\left(f_{a}\right)$	fator de correção devido ao tipo de local (1,0; ou 0,90 em CBD:)
$f_{u}\left(f_{LU}\right)$	fator de correção devido à diferença de utilização das faixas (f_u = $(q/N)/q_{f,max}$)
$f_{cd}\left(f_{RT}\right)$	fator de correção devido às conversões à direita (e _D =1,18 ou análise suplementar)
$f_{ce}\left(f_{LT}\right)$	fator de correção devido às conversões à esquerda (e _E =1,05 ou análise suplementar)
$f_{pd}\left(f_{Rpb}\right)$	fator de correção devido a pedestres e bicicletas na conversão à direita (suplementar)
$f_{pe}\left(f_{Lpb}\right)$	fator de correção devido a pedestres na conversão à esquerda (suplementar)

FIGURA 18-2. Numeração dos Movimentos em Interseção Semaforizada- HCM/2010

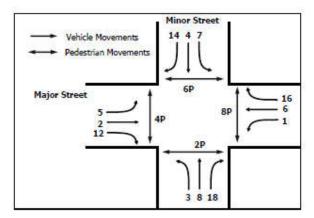


FIGURA 18-12. Definição dos Grupos de Faixas em Interseção Semaforizada- HCM/2010

Number of Lanes	Movements by Lanes	Movement Groups (MG)		Lane Groups (LG)	
11	Left, thru., & right:	MG 1:	\rightarrow	LG 1:	\rightarrow
2	Exclusive left:	MG 1:	_	LG 1:	
	Left & thru.:	MG 2:	\overline{a}	LG 2:	\equiv
.2	Thru. & right:	MG 1:	\rightarrow	LG 2:	7
	Exclusive left:	MG 1:	_	LG 1:	1
3	Through:	MG 2:	\equiv	LG 2:	\Rightarrow
	Thru. & right:		83 ₹ 0	LG 3:	\rightarrow

Sumário - Fator de Ajustamento para Fluxo de Saturação - HCM/2010

Entor	Fator Fórmula Variáveis Observações						
Fator			Observações				
Largura de Faixa Média f_L (f_w), revisado	$\begin{array}{l} f_L = 0.96 L \geq 2.4 m, L \leq 3.0 m \; (8\text{-}\!<10 \text{ft}) \\ f_L = 1.00 \; L \geq 3.0 m, \; L \leq 3.9 m \; (10\text{-}\!12.9 \text{t}) \\ f_L = 1.04 \; L \geq 3.9 m \; (\text{>}\!12.9 \text{ft}) \end{array}$	L: largura da faixa, em metros	se L > 4,8m, a análise com 2 faixas pode ser considerada.				
Veículos Pesados f_{VP} (f_{HV})	$f_{\rm VP} = \frac{100}{100 + \% {\rm VP.}(e_{\rm VP} - 1)}$	%VP: porcentagem de veículos pesados	$0 \le WVP \le 100$, onde $e_{VP} = 2,0$ passageiro de carro por veículos pesados.				
Rampas f _i (f _g)	f _I =1 - %i/200	%I: porcentagem de aclive (negativo para declive)	-6≤%i ≤+10				
Manobras de Estacionamento f_{est} (f_p)	f _{est} = <u>N - 0,1 - 18 N_m/3600</u> N	N: no.de faixas N _m : manobras/hora de estacionamento até 75m (250ft) da linha de retenção	$ 0 {\leq} N_{\rm m} {\leq} 180 $				
Manobras de Obstrução de Ônibus f_{bus} (f_{bb})	$f_{bus} = \frac{N - 14,4 \text{ N}_b/3600}{N}$	N: no.de faixas N₀: manobras/hora de ônibus (parada) até 75m (250ft) da linha de retenção	$ 0 {\le} N_b {\le} 250 $				
Tipo de Área f _{loc} (f _a)	0,900 para CBD (centro) 1,000 para outras áreas						
Utilização de Faixa $f_{\rm u}$ $(f_{\rm LU})$	$f_u = \underbrace{-q_t}_{q_{\underline{f}\underline{u}}}.$	q: fluxo total, sem ajuste, nas faixas q _{fii} : fluxo, sem ajuste, na faixa com maior volume N: no.de faixas	Ver Tabela 18-30				
Conversões à Esquerda $f_{ce}\left(f_{LT}\right)$	$\begin{array}{l} \text{para estágios protegidos} \\ e_{\mathrm{ce}} = 1,05 \text{ (ou } e_{\mathrm{ce}} = 1+1,71/R_{\mathrm{ce}}[\text{m}])^* \\ \text{para faixas exclusivas: } f_{\mathrm{ce}} = 1/e_{\mathrm{ce}} \\ f_{\mathrm{ce}} = \underbrace{1}_{\text{tom, one faixa}} \text{com faixa} \\ \hline 1+0,05.P_{\mathrm{ce}} \text{ compartilhada} \end{array}$	P _{cc} : proporção de conversões à esquerda	análise suplementar para conversões permitidas; não discute claramente operação protegida/permitida (critérios do HCM-2000 são aplicáveis)				
Conversões à Direita f_{cd} (f_{RT})	$\begin{array}{l} e_{\rm cd}\!=\!1,\!18 \text{ (ou } e_{\rm cd}\!=\!1+1,\!71/R_{\rm cd}[m])^*\\ \text{para faixas exclusivas: } f_{\rm cd}\!=\!1/e_{\rm cd}\\ f_{\rm ce}\!=\!\frac{1}{\text{1+0,18.P}_{\rm cd}} \text{ compartilhada} \end{array}$	P _{cd} : proporção de conversões à direita	análise suplementar para conversões permitidas; não discute claramente operação protegida/permitida (critérios do HCM-2000 são aplicáveis)				
Bloqueio por Pedestres e Ciclistas	para conversão à esquerda em faixa exclusiva: $f_{pe} = A_{pbe}$ compartilhada: $e_{cm} = 1 + P_{lc} \cdot (e_e/f_{pc} - 1)$ HCM-2000: $f_{pe} = 1 - P_{ce} \cdot (1 - A_{pbe}) \cdot (1 - P_{ceA})$ para conversão à direita em faixa exclusiva: $f_{pd} = A_{pbd}$ compartilhada: $e_{cm} = 1 + P_{lc} \cdot (e_e/f_{pc} - 1)$ HCM-2000: $f_{pd} = 1 - P_{cd} \cdot (1 - A_{pbd}) \cdot (1 - P_{cdA})$	$\begin{array}{c} P_{\rm ces}P_{\rm cd} \colon \text{proporção de} \\ \text{conversões à esquerda e à} \\ \text{direita} \\ A_{\rm pbc}, A_{\rm pbd} \colon \text{bloqueio de pedestre} \\ \text{em conversões à esquerda e} \\ \text{à direita} \\ P_{\rm ceA}, P_{\rm cdA} \colon \text{proporção de} \\ \text{conversões à esquerda e à} \\ \text{direita protegidas} \end{array}$	A _{pb} =f(ocupância nas faixas dos pedestres, número de faixas de saída e entrada das conversões veiculares); não discute claramente operação protegida/permitida (critérios do HCM-2000 são aplicáveis)				

^{*} Efeito de R[m] introduzido na análise de interseções em interconexões.

TABELA 18-30. Valores Padrão de Fatores de Utilização de Faixa- HCM/2010

TABLEA 10-00.	TABLEA 10-00: Valores i adiao de l'atores de ottilização de l'aixa- Hollizo io					
Movimento de Grupo de		Porcentagem de tráfego na				
Faixas	Número de faixas no grupo	faixa para com uso mais	Fator de utilização f _u (f _{LU})			
	de faixa	intenso	• • • •			
	1	100,0	1,000			
Direto ou compartilhada	2	52,5	0,952			
	3*	36,7	0,908			
Conversão à esquerda (LT)	1	100,0	1,000			
exclusiva	2*	51,5	0,971			
Conversão à direita (RT)	1	100,0	1,000			
exclusiva	2*	56,5	0,885			

 $^{^*}$ Se o grupo de faixas tem mais faixas que o número de faixas mostrado na tabela, é recomendável que uma pesquisa seja feita ou que o maior fator de utilização f_u (f_{LU}) seja usado para o tipo de grupo de faixa.

Análise Suplementar do bloqueio de pedestres e ciclistas (revisado) no HCM-2010

- tem preferências sobre conversão (exceto em estágios com conversão protegido)
- pode ser ignorado (f=1) quando não há pedestres e ciclistas conflitantes e quando a conversão à direita é protegida ou a conversão à esquerda é protegida se mão-dupla ...
- ocupância das faixas de tráfego pelos pedestres em travessia:

$$O_{pg} = \begin{cases} q_{pg} / 2000, \text{ para } q_{p} \leq 1000 \text{ped/h} \\ 0.4 + q_{pg} / 10000, \text{ para } q_{p} > 1000 \text{ped/h} \end{cases}, \text{ mantendo}$$

$$O_{p} \leq 0.9$$

 $\text{onde } q_{pg} = \frac{q_{ped}}{u_{nef}} \leq 5000 ped \, / \, h \; \; \text{\'e o fluxo de pedestres no verde com } u_{pef} = \frac{g_{pef}}{t}$

sendo o tempo efetivo de verde do pedestre $g_{pef} = g$ ou $min\{g, g_{ped} + I_{pisc}\}$

- ocupância das faixas de tráfego pelos ciclistas na interseção:

$$O_{\rm bg} = 0.02 + \frac{q_{\rm bg}}{2700} \text{ onde } q_{\rm bg} = \frac{q_{\rm bic}}{u_{\rm pef}} \leq 1900 bic \, / \, h \text{ \'e o fluxo de ciclistas no verde}$$

- ocupância combinada nas zonas de conflito com pedestres e ciclistas:

para conversões à direita (e esquerda se mão-única) sem ciclistas: $O_C = \frac{g_{ped}}{g}.O_{pg}$

 $\text{senão (existindo também ciclistas)}: \ \mathbf{O}_{\text{C}} = \frac{g_{\text{ped}}}{g}.\mathbf{O}_{\text{pg}} + \mathbf{O}_{\text{bg}} - \frac{g_{\text{ped}}}{g}.\mathbf{O}_{\text{pg}}.\mathbf{O}_{\text{bg}}$

para conversões à esquerda (mão-dupla) permitida e protegida-permitida:

$$O_{\rm C} = \begin{cases} 0 \ , \ \text{se} \ g_{\rm pef} \le g_{\rm s0} \\ \\ \frac{g_{\rm ped} - g_{\rm s}}{g - g_{\rm s}} . O_{\rm u} . e^{-5.\frac{q_0}{3}} \\ \\ \frac{g_{\rm ped}}{g - g_{\rm s}} . O_{\rm u} . e^{-5.\frac{q_0}{3}} \\ \end{cases} , \ \text{c.c.} \quad \text{com} \ \ O_{\rm u} = O_{\rm p} \\ \\ \left(1 - 0.5. \frac{g_{\rm s}}{g_{\rm ped}}\right) \ \text{se} \ \ g_{\rm s} < g_{\rm ped} \ \ \text{(senão} \ O_{\rm u} = 0 \ \text{)}$$

sendo $g_s = G_s - \ell \le g_{ef}$, $G_s = \frac{q_0 \cdot r}{S_0 - q_0}$ correspondente à dissipação da fila do fluxo oposto

- efeito de bloqueio no estágio com conversões permitidas (preferência dos pedestres)
 - se $N_{saida} = N_{entrada}$ (faixas de saída e entrada das conversões): $A_{\rm C}$ = $1-O_{\rm C}$
 - se $N_{saida} > N_{entrada}$ (veículos contornam os pedestres): $A_{\rm C}$ = 1-0,6.0 $_{\rm C}$
- fator de correção (conjunto com estágio protegido para as conversões, se houver):

conv.direita: exclusiva $f_{\text{pbD}} = A_{\text{cD}}$; compartilhada equivalente ajustado $e_{\text{Db}} = \frac{e_{\text{D}}}{f_{\text{pbD}}}$

conv.esquerda: exclusiva $f_{\text{pbE}} = A_{\text{cE}}$; compartilhada equivalente ajustado: $e_{\text{Eb}} = \frac{e_{\text{E}}}{f_{\text{pbE}}}$

- . efeito das mudanças de faixa: $e_{\mathrm{Dm}} = 1 + P_{\ell c} \cdot \left(\frac{e_{\mathrm{D}}}{f_{\mathrm{pbD}}} 1 \right) e \ e_{\mathrm{Em}} = 1 + P_{\ell c} \cdot \left(\frac{e_{\mathrm{E}}}{f_{\mathrm{pbE}}} 1 \right)$
 - $P_{\ell c}$ é a probabilidade de mudança de faixa (avaliado com o modelo de Bonneson)

Análise Suplementar para Conversão à Esquerda (revisado) no HCM-2010

tempo perdido na dissipação da fila do fluxo oposto: $g_s = G_s - \ell \le g_{ef}$ e $g_u = g - g_s$

$$\text{onde } G_s = \frac{q_{mf0}.P_{r0}.t_c}{S_{m0} - q_{mf0}.P_{g0}} \text{ ou } G_s = 4,943. \\ \left(q_{m0}\right)^{0,762}.\left(P_{r0}.t_c\right)^{1,061} \text{ para faixa simples}$$

$$\text{com } q_{\rm m0} = \frac{q_0}{N_0} \text{, } q_{\rm mf0} = \frac{q_{\rm m0}}{f_{\rm u}} \text{, } S_{\rm m0} = \frac{S_0}{N_0} \cong 0.5 \text{v/s e } P_{\rm g0} = 1 - P_{\rm r0} \text{ (} P_{\rm g0} = R_{\rm P}.u \text{)}$$

tempo com fluxo direto (sem bloqueio pela conversão): $g_f = G_f - \ell \le g_s$ e $g_n = g_s - g_f$

com
$$G_f = g.e^{-0.882.N_{CE}^{0.717}}$$
 ou $G_f = g.e^{-0.860.N_{CE}^{0.629}}$ para pista simples ($N_{CE} = p_E.Q.t_c$)

$$\text{sujeito a } g_{\mathrm{f,máx}} = \frac{\overline{n}_{\mathrm{f}}}{s_{\mathrm{f}}} - \ell_{\mathrm{p}} \text{ com } \overline{n}_{\mathrm{f}} = \frac{1 - P_{L}}{P_{L}} \cdot \left(1 - \left(1 - P_{L}\right)^{n_{\mathrm{máx}}}\right) \text{ e } n_{\mathrm{máx}} = S_{\mathrm{m}}.g_{\mathrm{p}} = 0.5.g_{\mathrm{p}}(s)$$

conversão à esquerda no verde útil: $C_{Eu} = \frac{e^{-q_{mo}.\alpha_o}}{1-e^{-q_{mo}.\beta_{2o}}}.q_{mo}$ com fluxo oposto q_{mo} e $\overline{n}_u = C_{Eu}.g_u$

$$e_{\text{CEu}} = E_{\text{L1}} \text{ vt / vu com } E_{\text{L1}} \cong \frac{\widetilde{S}_{\text{T}}}{C_{\text{Fu}}}; \ \alpha_{\text{o}} \left(t_{\text{co}}\right) = 4.5 \text{s e } \beta_{\text{o}} \left(t_{\text{fo}}\right) = 2.5 \text{ou} 4.5 \text{s (exclusivo ou não)}$$

conversão à esquerda com movimento oposto bloqueado em via de faixa simples: $n_m = \overline{n}_d$

$$e_{CEb} = E_{L2} \text{ vt/vb onde } E_{L2} = \frac{1 - \left(1 - p_{L0}\right)^m}{p_{L0}}, \text{ } m = S_m \cdot \left(g_s - g_f\right), \text{ } S_m = 0.5 \text{ v/s e } \overline{n}_d = \dots$$

períodos de operação na faixa lateral esquerda: no verde efetivo $g = G - \ell$ (G de foco)!

- 1: opera $q_T \text{ com } s_T$ durante $g_f = G_f \ell \le g_s$ ($g_f = 0$ em faixas exclusivas)
- 2: movimento direto oposto bloqueado $\,g_{_{n}} = g_{_{s}} g_{_{f}}\,$ (0 se $\,G_{_{s}} < G_{_{f}}$) com $\,E_{_{L2}}$
- 3: operam ambos os movimentos $\,g_{_{u}}=g-g_{_{s}}$ ($g-g_{_{f}}$ se $\,G_{_{s}}>G_{_{f}}$) com $\,E_{_{L1}}$

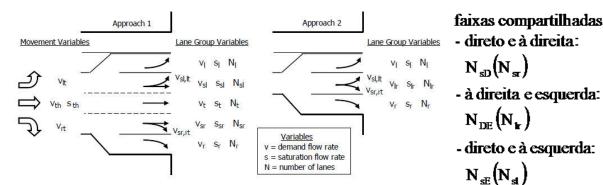
onde $\rm\,f_L$ é o fator de aproveitamento da faixa esquerda da aproximação ! ($\rm E_{L1m}$ e $\rm E_{L2m}$ incorporam os efeitos adicionais de bloqueio e mudança de faixa)

conversões no final do verde:
$$n_{\text{CE}} > n_{\text{min}} = n_{\text{f}}$$
, $n_{\text{f}} \cong 1 + p_{\text{L}} \Rightarrow f_{\text{L}} \geq \frac{\left(1 + p_{\text{L}}\right)}{\sigma}$

no fluxo oposto: assume-se
$$\frac{S_0}{N_0}$$
 \cong 1800 v / hv = 0,5 v / sv (para evitar cálculo recíproco)

mas deve obter repartição dos fluxos de equilíbrio entre faixas no sentido analisado ...

não discute claramente protegido/permitido ou permitido/protegido (antes ou depois), critério proposto no HCM-2000: adotar $X_{\rm antes} = 100\%$, $X_{\rm depois}$ residual


Análise Geral da Repartição do Tráfego entre Faixas no HCM-2010

- generalização do método tradicional introduzido no HCM1985 ...
- equilíbrio pelo critério de tempo de ocupação das faixas: com fila $\Omega = t_s = q.h_s = \frac{Q}{c} = y$!

$$\text{em cada faixa: } \sum\nolimits_{^{m}} \frac{Q_{^{mi}}}{S_{^{mi}}} = \frac{Q_{^{i}}}{S_{^{i}}} \Rightarrow S_{^{i}} = \frac{Q_{^{i}}}{\sum\nolimits_{^{m}} \frac{Q_{^{mi}}}{S_{^{mi}}}} \text{, global: } \sum\nolimits_{^{m}} \frac{Q_{^{mi}}}{S_{^{mi}}} = \frac{Q_{^{i}}}{S_{^{i}}} = \frac{\sum\nolimits_{^{i}} Q_{^{i}}}{\sum\nolimits_{^{i}} S_{^{i}}} = \overline{y}_{^{S}}$$

revisão: incorporação do modelo de mudança de faixas de Bonneson $E_m = 1 + P_{\ell c}(E_b - 1)$

$$P_{\ell c} = 1 - \left(2.\frac{q_{\ell}}{S_{\ell c}} - 1\right)^2 \text{, onde } S_{\ell c} = \frac{1}{t_{\ell c}} \text{ com } t_{\ell c} = 3.7s \text{ e } q_{\ell} \text{ \'e o fluxo na faixa lateral}$$

faixas compartilhadas

- direto e à direita:

$$N_{sD}(N_{sr})$$

$$N_{DE}(N_{r})$$

- direto e à esquerda:

$$N_{sE}(N_{sl})$$

q,: fluxo na faixa lateral (admitido como o fluxo médio das faixas compartilhadas)

- processo iterativo: Q_{mi} de equilíbrio $Q_{i} = \sum_{m} Q_{mi} = \overline{y}_{s}.S_{i}$ nas faixas compartilhadas
 - . inicialmente, pode-se assumir fluxos de conversões nas faixas exclusivas ...
 - . ao final de cada iteração, solução anterior Q_{mi} é atualizada com Q_{i} = $\overline{y}_{s}.S_{i}$...
 - .. alocar os fluxos de conversão para $\,Q_{_{mi}}\,$ até $\,Q_{_{i}}\,$ nas faixas exclusivas ...
 - .. alocar fluxos de conversão residuais nas faixas compartilhadas ...
 - .. identificar fluxos diretos em faixas compartilhadas e faixas exclusivas ...
 - .. atualizar fluxos de saturação por manobra S_{mi} e por faixa $S_{i} = \frac{Q_{i}}{\sum_{m} \frac{Q_{mi}}{S}}$..

(direto: $S_{tm} = f_{tm}.S_t$; $f_{tm} = 0.91$ se há faixas compartilhadas; senão $f_{tm} = 1.0$)

(nas faixas compartilhadas,
$$S_c = f_c . S_t$$
, onde $f_c = \frac{1}{1 + P_D . (e_{Dm} - 1) + P_E . (e_{Em} - 1)}$

.. verificar equilíbrio: $\overline{y}_{S} = \frac{\sum_{i} Q_{i}}{\sum S_{i}}$, $Q_{i} = \overline{y}_{S}.S_{i}$ (convergência em Q_{i} ou Q_{mi})

. nas faixas compartilhadas, solução fornece P_{Di} (dado p_{D}) e P_{Ei} (dado p_{E}) ...

Análise Geral para Construção do QAP/ADP Regular no HCM-2010

- QAP: "Polígono de Acumulação de Fila" regular (n_i, t_i) em um ciclo, para $\overline{Q} \le \overline{C}$) (generalização do método tradicional introduzido no HCM1985 ...)
- operação dividida em estágios e sub-períodos (dissipação de filas, bloqueio de filas, ...) iterações: ponto com $n_i=0$ (inicial: final do verde principal) ou reduzir Q até $\overline{q}=\overline{Q}\leq\overline{C}$
- sub-período i: $n_{i+1} = n_i \ + \left(Q_i c_{Si}\right)\!t_i \ \geq 0, \\ r: c_{Si} = 0; \\ g: c_{Si} = S_i \ \ \text{(dissipação de filas } \\ w_i = c_{Si} q_i \ \text{)}$

$$\text{se }Q_{_{i}} < c_{_{Si}}, t_{_{i}} = \text{min} \bigg\{ t_{_{di}}, t_{_{si}} = \frac{n_{_{i}}}{c_{_{Si}} - q_{_{i}}} \bigg\} \text{ (}t_{_{di}} - t_{_{si}} \text{ com } n_{_{i}} = 0 \text{), senão } t_{_{i}} = t_{_{di}} \text{ (duração de i)}$$

$$Q_{_{i}} \text{ \'e a taxa de chegadas: } Q_{_{g}} = \frac{P_{_{g}}}{u}.Q \text{ (verde), } Q_{_{r}} = \frac{1-P_{_{g}}}{1-u}.Q \text{ (vermelho), } q = min \Big\{Q, c_{_{Si}}\Big\}$$

($P_{g} = R_{p}.u$: razão de chegadas no verde; R_{p} : razão de pelotão; u : taxa de verde)

 q_i é a taxa de partidas ($C_s = \overline{q}$ com fila contínua; sem fila residual $\overline{q} = \overline{Q}$, regular):

. para operação protegida: tempo morto inicial $\sim 2s$; ganho no amarelo $\sim 2s\,$...

 $(\text{se conv.esquerda ou direita: } S = \widetilde{S}_b.N.f_L.f_{VP}.f_i.f_{est}.f_{bus}.f_{loc}.f_u.(f_{ce}.f_{pe}).(f_{cd}.f_{pd}))$

. para operação permitida: tempo morto inicial e ganho no amarelo da Tabela 31-16 (se conv.esquerda em fx.compartilhada, deve-se obter g_s , g_{so} e g_f , g_d ; $g_u = g_p - g_s$;

em
$$g_{\rm f}$$
, $q_{\rm if}=S_{\rm t}$; em $g_{\rm u}$, $q_{\rm iu}=S_{\rm 1}$ com $e_{\rm c}=E_{\rm L1m}$; em $g_{\rm id}$, $q_{\rm iu}=S_{\rm 2}$ com $e_{\rm c}=E_{\rm L2m}$;

se conv.esquerda em fx.exclusiva, em g_u , $q_{iu} = S_{pu} = s_p.f_L.f_{VP}.f_i.f_{est}.f_{bus}.f_{loc}.f_u.f_{pbE}$;

se conv.direita em fx.compartilhada: em g_{p} , q_{if} = S_{sr} com e_{c} = E_{Rm} ; caso adicional,

se conv.direita em fx.exclusiva: em g_p , $q_{iu} = S_{ru} = s_o.f_L.f_{VP}.f_i.f_{est}.f_{bus}.f_{loc}.f_u.f_{pbD}$)

. para operação protegida-permitida ou permitida-protegida, mais um sub-período com operação protegida é adicionado (fx.compartilhada ou fx.exclusiva ...)

. para fluxo direto(protegido): $q_i = S_{tm} = \widetilde{S}_b.N.f_L.f_{VP}.f_i.f_{est}.f_{bus}.f_{loc}.f_u.(f_{ce}.f_{pe}).(f_{cd}.f_{pd}).f_{tm}$

com $\rm\,f_{tm}=0.91$ se há faixas compartilhadas (interferências); senão $\rm\,f_{tm}=1.0$

- ADP="Poligono de Chegadas e Partidas": $n_{b,i+1} = n_{b,i} + Q_i \cdot t_i$ até $n_i = 0$; parada parcial: $V_i > V_s$

. ajuste para
$$V=V_s$$
 : $\delta_{ba}=\frac{\left(V_a-V_s\right)^2}{2.V_a}.\left(\frac{1}{b}+\frac{1}{a}\right)$ com $V_s=8$ km/h (5mph), fila no HCM/2010

$$\begin{array}{l} V_{a} \cong 0.9. V_{0} \ , V_{0} = V_{B0} + 0.47. VL \ , \\ V_{B0} = 25.6 mi/h \ , \\ VL: \ limite \ de \ velocidade \end{array}, \begin{array}{l} b = 4 ft/s \\ \cong 4.4 km/h/s \ , \\ \cong 3.8 km/h/s \end{array}$$

deslocamento do ADP de $\pm \frac{\delta_{ba}}{2}$ para reduzir a fila n!? (melhor: $-Q.\delta_{ba}$ paradas parciais)

- previsão da razão do espaço ocupado pela fila armazenada (queue storage ratio):

. extensão máxima (final) da fila (*back of queue*): $n_b = n_{b1} + n_{b2} + n_{b3}$, $R_b = n_b.\ell_v/L_a$

$$. \ n_{_{b1}} = n_{_{br}} \ \text{regular; se } \delta_{_{ba}} \leq S. \Big(l - P_{_g}\Big) g. \frac{Q}{C} \ \text{então} \ n_{_{br}} = Q_{_{r}}.r + Q_{_{g}}. \Big(t_{_{s}} - \delta_{_{ba}}\Big), \\ t_{_{s}} = \frac{Q_{_{r}}.r - \delta_{_{ba}}.P_{_{g}}/g}{S. \Big(l - X_{_{q}}.P_{_{g}}\Big)};$$

$$\text{se } \delta_{\text{ba}} > S. \left(1 - P_{\text{g}} \right) g. \frac{Q}{C} \text{ então } n_{\text{br}} = Q_{\text{r}}. \left(r - \delta_{\text{ba}} + t_{\text{s}} \right), t_{\text{s}} = \frac{Q_{\text{r}}.r. \left(r - \delta_{\text{ba}} \right)}{S. \left(r - X_{\text{q}}. \left(1 - P_{\text{g}} \right) g \right)}$$

TABELA 31-16. Ajustes do Tempo Morto Inicial e do Ganho no Amarelo- HCM/2010

(pha	se Sequence ase numbers wn in boxes)	Displayed Unblocked Permitted Green Time $G_U(s)^{\vartheta}$	Permitted Start-Up Lost Time I _{1,p} (s) ^b	Permitted Extension Time $e_p(s)^c$
Lead- Lead	5 6	$G_{U1} = \min[D_{\rho 1} + D_{\rho 2} - D_{\rho 5} - Y_6 - R_{c6}, G_{U1}^*]$ with $G_{U1}^* = D_{\rho 2} - Y_6 - R_{c6} - G_{c2}$	1,1*	e_1
	1 2 5 6	$G_{U1} = D_{p2} - Y_6 - R_{c6} - G_{q2}$	1,1*	$e_{\rm i}$
Lead- Lag or Lead-	6 5	$G_{U1} = D_{p6} - Y_6 - R_{c6} - D_{p1} - G_{q2}$	0.0	e_1
Perm	1 2 6 5	No permitted period	Not applicable	Not applicable
	1 2	$G_{U1} = D_{p6} - Y_6 - R_{c6} - D_{p1} - G_{q2}$	0.0	e_1
Lag- Lead or	2 1 5 6	No permitted period	Not applicable	Not applicable
Lag- Perm	2 1 5 6	$G_{U1} = D_{\rho 2} - Y_2 - R_{c2} - \max[D_{\rho 5}, G_{q2}]$	1,1	0.0
	6 1	$G_{UL} = \min[D_{p2} - Y_2 - R_{c2}, D_{p6} - Y_6 - R_{c6}] - G_{q2}$	1,1	0.0
Perm- Lead	5 6	$G_{U1} = D_{\rho 2} - Y_2 - R_{c2} - \max[D_{\rho 5}, G_{q2}]$	<i>I</i> _{1,1}	e ₁
Perm- Lag	6 5	$G_{UA} = \min[D_{\rho 2} - Y_2 - R_{c2r} D_{\rho 6} - Y_6 - R_{c6}] - G_{c2}$	1,1	e_1
Perm- Perm	6	$G_{U1} = D_{p2} - Y_6 - R_{c6} - G_{g2}$	1,1	e_1
Lag- Lag	2 1 6 5	$G_{UA} = \min[D_{\rho 2} - Y_2 - R_{c2r} D_{\rho 6} - Y_6 - R_{c6}] - G_{q2}$	1,1	e ₁ *
	2 1 6 5	$G_{UA} = \min[D_{\rho 2} - Y_2 - R_{c2}, D_{\rho 6} - Y_6 - R_{c6}] - G_{q2}$	l _{1,1}	e_1*

* $G_{\mathcal{Q}_2}$ is computed for each opposing lane and the value used corresponds to the lane requiring the longest time to clear. In general, if the opposing lanes serve through movements exclusively, then $G_{\mathcal{Q}_2} = g_q + f_1$. If an opposing lane is shared, then $G_{\mathcal{Q}_2} = g_p - g_e + f_1$, where g_p is the effective green time for permitted operation (s), g_e is the green extension time (s), and f_1 is the start-up lost time (s).

If $D_{\mathcal{D}_2} > (D_{\mathcal{B}_1} - Y_1 - R_d)$ then, $f_1^* = D_{\mathcal{B}_2} - (D_{\mathcal{B}_1} - Y_1 - R_d) + f_1 - e_1$; otherwise, $f_1^* = 0.0$. Regardless, the result should not be less than 0.0 or more than f_1 . $f_2^* = f_1^* = D_{\mathcal{B}_2} - (D_{\mathcal{B}_2} - Y_1 - R_d)$, provided that the result is not less than 0.0 or more than e_1 .

Perm = permitted.

Figura 31-15,29. QAP/ADP Básico para Grupos de Faixas em Estágio Protegido - HCM/2010

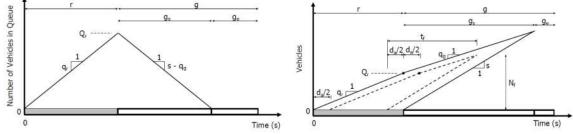


Figura 31-17,30. QAP/ADP p/Conversão à Esquerda Permitida FxExclusiva - HCM/2010

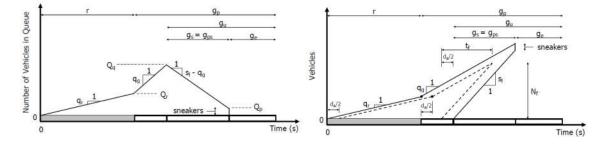


Figura 31-18,31. QAP/ADP p/Conversão à Esquerda Permitida FxCompartilhada - HCM/2010

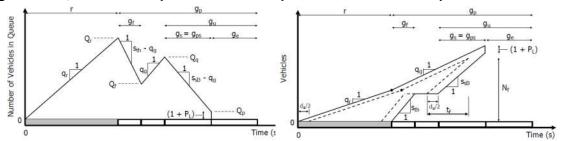


Figura 31-19,32. QAP/ADP p/ConvEsquerda Antes Protegida-Permitida Exclusiva - HCM/2010

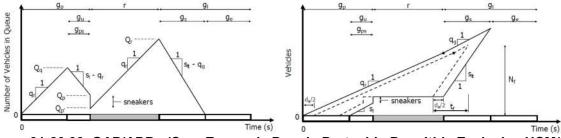


Figura 31-20,33. QAP/ADP p/ConvEsquerda Depois Protegida-Permitida Exclusiva-HCM/2010

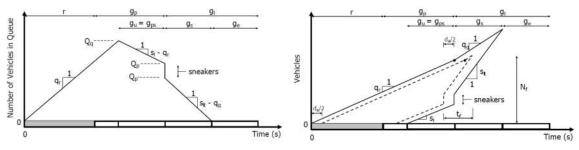


Figura 31-21,34. QAP/ADP p/ConvEsquerda Antes Protegida-Permitida Compartilhada-HCM/2010

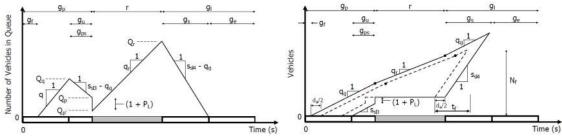
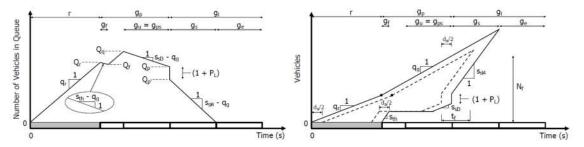



Figura 31-22,35. QAP/ADP p/ConvEsquerda Depois Protegida-Permitida Compartilhada-HCM/2010

Controle Atuado (revisado) no HCM-2010 ...

```
- previsão dos tempos médios e análise de desempenho: processo iterativo baseado no
modelo de Bonneson para estimativa da intervalo máximo aceito (MAH) para detecção
```

em fluxos por faixa com distribuição de Cowan (
$$\Pr[H_i \geq h] = 1 - \theta_{Li}.e^{-\lambda_i.\left(h - \tau_i\right)}, \lambda_i = \frac{\theta_{Li}.q_i}{1 - q_i.\tau_i}$$
)

e parâmetros de Akçelik (
$$\theta_{\rm Li} = e^{-\gamma_i.q_i.\tau_i}$$
 , $\gamma = 0.6;0.5;0.8$ p/1;2;3+fxs, $\tau = 1.5{\rm s};0.5{\rm s}$ p/1;2+fxs)

- estimativa da duração dos estágios:
$$D_{\rm k}=\ell_0+g_{\rm s}+g_{\rm e}+I_{\rm a}+I_{\rm v}$$
 (suposição $e=0$ em $I_{\rm a}$)

$$\text{tendo-se } \lambda^* = \sum \lambda_{_{i}}, \theta_{_{L}}^{} * = e^{-\sum \gamma_{_{i}}, q_{_{i}}, \tau_{_{i}}} \,, \\ \tau^* = \sum \lambda_{_{i}}, \tau_{_{i}} \, / \, \lambda^*, \\ q^* = \sum q_{_{i}} \, \text{ para } \Pr[\left\{H^* \geq h^*\right\}]$$

. valores iniciais calculados com um dos tempos parametrizados (
$$g_{\rm ef0}, r_{\rm ef0}$$
); (semáforo isolado: mínimo $g_{\rm in} + e_0 + I$, máximo $g_{\rm max} + I$; coordenado: $g_{\rm r} = \nu_{\rm r}.t_{\rm c}$)

. para cada estágio atuado (se fixo adotar g), dado o tempo de vermelho anterior:

.. tempo de dissipação da fila acumulada:
$$g_s = \frac{q_r \cdot r_{ef0}}{S - q_g}$$
 ou obtido do QAP ($\geq g_{in} + e_0$)

.. probabilidade de extensão do verde:
$$p_e = Pr\big[H^* < MAH\big] = 1 - \theta_L *.e^{-\lambda^*.(MAH - \tau^*)}$$

$$MAH = f\big[e_0\big(PT\big)\big] \text{ (função da forma de detecção e extensão): } MAH \cong e_0 + t_0$$

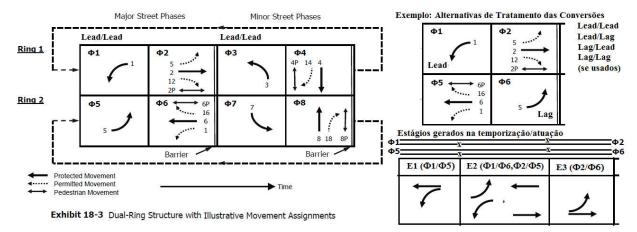
$$t_0 = \frac{\ell_d + \overline{\ell}_v}{V_a}, \ \ell_d, \ \overline{\ell}_v \text{: extensão do detector e do veículo, } V_a \text{: velocidade (autos)}$$

.. tempo médio de extensão do verde:
$$\overline{g}_e = p_e.\overline{n}_e.\overline{h}^* \text{ com } \overline{h}^* \cong 1/q^* \text{ (melhor } \overline{h}_<*,\overline{h}_{s<}*)$$
 onde número de extensões até o verde máximo: $n_{\text{emáx}} = q^*.(g_{\text{máx}} - (\ell_0 + g_s)) \ge 0$

$$\text{mas } \overline{n}_{e} = \frac{{p_{e}}^{2} \cdot \left(1 - {p_{e}}^{n_{emáx}} \right)}{\left(1 - {p_{e}} \right)} \quad \text{(número médio, dado } n_{e} \leq n_{emáx} \text{ e } \ell_{0} + g_{s} + g_{e} \leq g_{máx} \text{)}$$

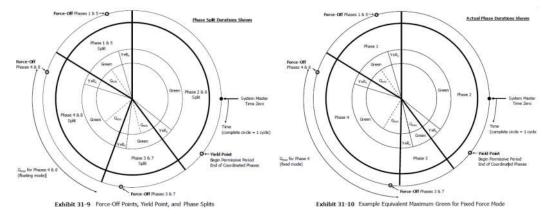
.. probabilidade de ativação (se opcional):
$$p_c = 1 - (1 - p_v)(1 - p_p)$$
 com $p_i = 1 - e^{-q_{ia} \cdot t_c}$ onde $q_{ia} = q_i$ para veículos e $q_{ia} = p_a \cdot q_i$ para pedestres (botoeira: $p_a \cong 0.5$)

.. duração do estágio requerido:
$$D_{_{r}}=p_{_{v}}.(l-p_{_{p}})D_{_{v}}+p_{_{p}}.(l-p_{_{v}})D_{_{p}}+p_{_{v}}.p_{_{p}}.máx\{D_{_{v}},D_{_{p}}\}$$
 onde
$$D_{_{v}}=\ell_{_{0}}+g_{_{s}}+\overline{g}_{_{e}}+I \text{ para veículos e } D_{_{p}}=g_{_{ped}}+I_{_{pisc}} \text{ para pedestres}$$


.. probabilidade de extensão máxima (
$$max$$
-out ao invés de gap -out): $p_x = p_e^{n_x}$?!

$$\text{onde } n_x = \frac{\left(g_{\text{máx}} - \left(\ell_0 + g_s\right)\right)}{\overline{h}_< *} \geq 0 \text{, } \overline{h}_< * = \frac{\tau * + \theta_L * / \lambda * - \left(MAH + 1/\lambda *\right) \theta_L * \cdot e^{-\lambda * \cdot (MAH - \tau *)}}{1 - \theta_L * \cdot e^{-\lambda * \cdot \cdot (MAH - \tau *)}} \text{ !?}$$

.. verificação dos tempos efetivos e de tempo de ciclo:
$$t_c = \sum D_k$$
, $g_{efk} = D_k - I_{\ell k}$. reiterar se os tempos não são compatíveis com os anteriores (g_{ef} , r_{ef})


estrutura dos controladores atuados nos EUA é peculiar em diversos aspectos:

 atuação tradicional (com intervalo de corte=unidade de extensão) similar,
 além da coordenação com semi-atuação e atuação total (proposta no HCM ...)
 estrutura com anéis duais (dual ring), concatenados, não é usual no Brasil (diversos anéis compartilham controle e relógio mas são "independentes" ...)

alguns parâmetros de atuação não são usuais (ou são restritos) no Brasil:

- . barreira (barrier): força sincronização dos anéis (Br: anéis "independentes")
- . modo de início/final: dual (somente se ambos os anéis) ou simples (Br: simples)
- . limite forçado (force-off), na coordenação com atuação (Br. $\mathrm{O_{f}\!-\!I}$ estágio principal)
- (na proposta do HCM, pode ser definido para todos os estágios coordenados)
- . limite liberado (yield), na coordenação com atuação (Br: O_f –I estágio principal $-g_{min}$)
- (na proposta do HCM, pode ser definido para todos os estágios coordenados)
- . modo de ponto forçado: flutuante (da entrada, não do ciclo) ou fixo (Br: fixo)
 - . opções de atuação automática (*recall to min/max*): independente da detecção (utilizado para implementar semi-atuação garantindo duração do estágio principal)
 - . opções de estágio de repouso (rest on): se não há detecção concorrente ...
- estimativa dos tempos no controle atuado baseado em parâmetros equivalentes: máximo intervalo permitido (MAH): traduz brecha de corte e requisito simultâneo verde máximo equivalente: traduz verde máximo ou pontos forçado/liberado ...

há parâmetros do padrão NEMA, que o método do HCM2010 não incorpora:

- . verde inicial variável: conta detecções no vermelho e calcula verde inicial até ${
 m g}_{
 m inim\acute{a}x}$
- . controle "volume-densidade": reduz unidade de extensão de U a U_{min} após g_{min}

Tabela 18-9a. Dados Requeridos - Modo Pedestre - Interseções Semaforizadas - HCM/2010

Símbolo	Referência	Definição
Tráfego		
Q (V)	Movimento	Demanda de tráfego, por movimento, em v/h
	Aproximação	Fluxo de Conversões à Direita no Vermelho, em v/h
	G.Movimento	Fluxo de Conversões à Esquerda Permitidas, em v/h
V85	Aproximação	Velocidade do Percentil 85% no meio do segmento, km/h (mph)
Q_{ped} (v_{ped})	Movimento	Fluxo de pedestres, em ped/h
Geometria		
L(W)	Aproximação	Largura Total da calçada, em metros
N	Via	Número de faixas
Ni	Via	Número de ilhas na Conversão à Direita
$L_{\rm f}$	Via	Largura da faixa de travessia, em metros
L_{t}	Via	Extensão da faixa de travessia, em metros
r(R)	Aproximação	Raio de curva, em metros
Semáforo		
g edx (G edx)	Fase Semafórica	Tempo de verde para pedestres, seg (Walk)
I eisc (F)	Fase Semafórica	Tempo de limpeza (piscante) para pedestres, seg (Flashing Don't Walk)
	Fase Semafórica	Opções de atuação (rest in walk)
$t_{c}(C)$	Interseção	Tempo de ciclo da operação do semáforo, em seg. se tempo fixo ou coordenado-atuado
$I_{a}\left(Y\right)$	Fase Semafórica	Tempo de entreverdes em amarelo, em seg.
$I_{v}(R)$	Fase Semafórica	Tempo de entreverdes em vermelho de segurança, em seg.
	Fase Semafórica	Duração da Fase Semafórica (Estágio Semafórico) servindo os pedestres, em seg.
	Fase Semafórica	Existência de grupo focal para pedestres
Outros		
$T_{P}(T)$	Interseção	Duração do período de análise, em h

Tabela 18-9b. Dados Requeridos - Modo Bicicleta - Interseções Semaforizadas - HCM/2010

Símbolo	Referência	Definição
Tráfego		
Q (V)	Aproximação	Demanda de tráfego, por movimento, em v/h
Q_{bic} (v_{bike}	Aproximação	Fluxo de bicicletas, em bic/h
	Aproximação	Proporção ocupada de estacionamento na via
Geometria		
L(W)	Aproximação	Largura da via, em metros
N	Aproximação	Número de faixas
Lo (Wo)	Aproximação	Largura da faixa direta externa (à direita), em metros
Lb (Wb)	Aproximação	Largura da ciclo-faixa, em metros
La (Ws)	Aproximação	Largura do acostamento pavimentado externo (à direita), em metros
Semáforo		
t _c (C)	Interseção	Tempo de ciclo da operação do semáforo, em seg. se tempo fixo ou coordenado-atuado
$I_a(Y)$	Fase Semafórica	Tempo de entreverdes em amarelo, em seg.
$I_{v}\left(R\right)$	Fase Semafórica	Tempo de entreverdes em vermelho de segurança, em seg.
	Fase Semafórica	Duração da Fase Semafórica (Estágio Semafórico) servindo os ciclistas, em seg.
Outros		
$T_{P}(T)$	Interseção	Duração do período de análise, em h

Procedimento para QoS de Pedestres em Travessia Semaforizada:

TABELA 18-5. Nível de Serviço para Modo Pedestre e Bicicleta em Interseções Semaforizada-HCM/2010

Nível de Serviço	Nota de Nível de Serviço
Α	≤2,0
В	>2,0,≤2,75
С	>2,75,≤3,5
D	>3,5,≤4,25
E	>4,25,≤5,0
F	>5,0

Nota de Nível de Serviço (*LS Score*) para pedestres: $I_{ped} = 0.5997 + \Delta_N + \Delta_O + \Delta_V + \Delta_D$

 $\Delta_{_{N}}=0,\!682.N_{_{c}}^{^{0,514}}$, onde $\,N_{_{c}}\,$ é número de faixas atravessadas

$$\Delta_{Q} = 0,00569. \frac{Q_{Dverm} + Q_{Eperm}}{5} - N_{IcD}. \left(0,0027. \frac{Q_{H,M}}{4.N_{c}} - 0,1946\right),$$

onde $Q_{\mathrm{Dverm}} + Q_{\mathrm{Eperm}}$ é a soma dos fluxos de conversão na travessia (conversões à direita no vermelho e conversões à esquerda permitidas) N_{IcD} é o número de ilhas de canalização na conversão à direita $Q_{\mathrm{H.M}}$ é o fluxo total de veículos que cruzam a travessia da via

$$\Delta_{\rm V}=0,\!00013.\frac{Q_{\rm H,M}}{4.N_{\rm o}}.\frac{V_{\rm 85,M}}{1.6} \text{ , onde } V_{\rm 85,M} \text{ \'e a velocidade (em km/h) na via}$$

correspondente ao do percentil 85 (85% dos veículos)

 $\Delta_{\rm D}=0.0401.\ell n \left[d_{\rm ped}\right]$, onde $d_{\rm ped}$ é o atraso médio por pedestre na travessia

$$d_{ped} = p_d \cdot \overline{d}_p = \frac{\left(t_c - g_{pede}\right)^2}{2.t_c}$$
, onde g_{pede} é o verde efetivo para pedestres

- com foco de pedestre de tempo fixo ou com botoeira: $g_{\rm pede} = g_{\rm ped} + 4 seg$
- sem foco de pedestre de tempo fixo ou com botoeira: $g_{\text{pede}} = g_{\text{veic}}$ ou $\,\overline{g}_{\text{veic}}$

fluxo de pedestres uniforme:
$$p_d = \frac{t_c - g_{pede}}{t_c}$$
, $\overline{d}_p = \frac{\left(t_c - g_{pede}\right)}{2}$, $N_{pd} = p_d.q_p.t_c = q_p.\left(t_c - g_{pede}\right)$

(também deve ser analisado o espaço na área de espera das esquinas)

- tempo de dissipação da fila na travessia
$$t_{ps} = \begin{cases} t_s + \frac{L_{ped}}{V_{ped}} + 0.27. \frac{N_{pd}}{W/W_b}, W > W_b \\ t_s + \frac{L_{ped}}{V_{ped}} + 0.27. N_{pd}, W \leq W_b \end{cases}$$

largura básica da faixa: $W_b = 10 {\rm ft} \cong 3.0 {\rm m}$; tempo de início: $t_s = 3.2 {\rm seg}$ (incorpora o efeito de formação de pelotão de pedestres na travessia)

Procedimento para Pedestres em Áreas de Espera e Circulação:

- deveria considerar espaço disponível (m²/ped) e grau de mobilidade permitido;
- critério proposto considera qualitativamente o espaço disponível por pedestre;

TABELA 18-24. Nível de Serviço para Pedestres em Áreas de Circulação- HCM/2010

Espaço por Pedestre	Descrição Qualitativa do Espaço para Pedestres
> 60 ft2/ped (1,2m2/ped)	Habilidade de mover-se no caminho desejado, sem necessidade de alterar movimento
> 40-60 ft2/ped (0,9-1,2 m2/ped)	Necessidade ocasional de ajustar caminho para evitar conflito
> 24-40 ft2/ped (0,6-0,9 m2/ped)	Necessidade frequente de ajustar caminho para evitar conflito
> 15-24 ft2/ped (0,3-0,6 m2/ped)	Restrição à velocidade e à habilidade de ultrapassar pedestres mais lentos
> 8-15 ft2/ped (0,2-0,3 m2/ped)	Restrição à velocidade; habilidade muito limitada de ultrapassar pedestres mais lentos
≤ 8 ft2/ped (0,2 m2/ped)	Velocidade severamente limitada; contato frequente com outros usuários

- estimativa do espaço por pedestre com base no conceito espaço-tempo (Fruin): avalia probabilidade de estar na área=%do espaço-tempo ocupando a área!
- com semáforo, circulação na área de espera:
 - . total disponível: $TS = t_c(W_a.W_b 0.215.r^2), r = min\{R, W_a, W_b\}, no ciclo semafórico$
 - . tempo demandado na espera: pedestres saindo q_{poi} por travessia (i=1,2,...)

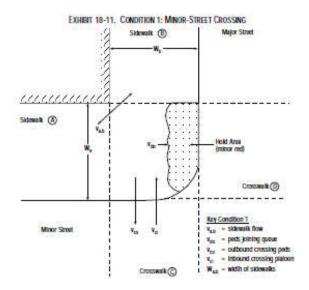
$$T_{ep} = T_{e1} + T_{e2}, T_{qi} = N_{pd}.d_{pi}, N_{pd} = p_{di}.q_{poi}.t_c, p_{di} = \frac{t_c - g_{pede}^i}{t_c}, d_{pi} = \frac{t_c - g_{pede}^i}{2}$$

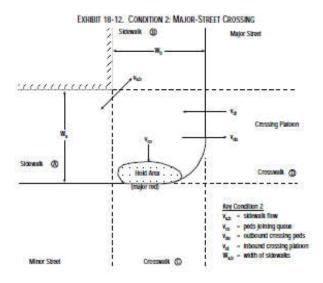
- . disponível p/circulação: $TS_{cp} = TS a_p . T_{cp}$, no ciclo semafórico, $a_p = 5 \frac{ft^2}{p} \cong 0.5 \frac{m^2}{p}$
- . espaço por pedestre circulante: $M_{cp} = \frac{TS_{cp}}{q_{pc,tot}.t_c.t_{pc}}$ (ver na Tabela 18-24)

 $q_{\rm pc,tot}$: soma dos fluxos de pedestres circulando; $\,t_{\rm pc}^{}=4s\,$: tempo circulando

- com semáforo, circulação na travessia da via:
 - . total disponível: $TS = L_{ped}.W_{e}.t_{pe}$, por ciclo semafórico
 - . disponível efetivo para pedestre: TS_{cw} = TS $TS_{tv}, com\, TS_{tv} \cong t_{tv}.N_{tv}.W_{e}$

(
$$t_{tv} \cong w_{sw}.t_{sw} = 40 ft.s \cong 12 m.s$$
, com $w_{sw} = 2,4 m e t_{sw} = 5 seg$, N_{tv} : conversões/ciclo)


- . tempo demandado: $T_{dp} = (q_{qo} + q_{qi})t_c.t_{ps}$, pedestres saindo q_{po} e chegando q_{pi}
- . espaço por pedestre atravessando: $M_{\rm cw} = \frac{TS_{\rm cw}}{T_{\rm dp}}$ (ver na Tabela 18-24)
- sem semáforos, ambos os aspectos são ignorados.


1

® 11.11.15 (4) 0 Area - 0.215R2 Minor Street round flow

EXHIBIT 18-10. INTERSECTION CORNER GEOMETRY AND PEDESTRIAN MOVEMENTS

0

Procedimento para QoS de Ciclistas em Aproximações de Semáforos:

TABELA 18-5. Nível de Serviço para Modo Pedestre e Bicicleta em Interseções Semaforizada-HCM/2010

Nível de Serviço	Nota de Nível de Serviço
Α	≤2,0
В	>2,0,≤2,75
С	>2,75,≤3,5
D	>3,5,≤4,25
E	>4,25,≤5,0
F	>5,0

Nota de Nível de Serviço (*LS Score*) para ciclistas: $I_{bic} = 4,1324 + \Delta_W + \Delta_O$

$$\Delta_{\rm W} = 0.0153.W_{\rm cd} - 0.2144.W_{\rm ot}$$
 onde,

$$W_{ol} = W_{ol} + W_{bl} + I_{pk}.W_{os} * \acute{e}$$
 a largura externa disponível

(da faixa externa, da ciclo-faixa adjacente e do acostamento pavimentado)

sendo
$$I_{pk}$$
. = 1 se não há estacionamento adjacente (0 caso contrário)

$$W_{os}^* = W_{os} - \delta_{wos}$$
 é a largura ajustada do acostamento

com $\delta_{\text{wos}} = 1.5 \text{m}$ se há guia adjacente (0 caso contrário)

W_{cd} é a largura total do cruzamento (de meio-fio a meio-fio)

$$\Delta_{_{Q}}=0,\!0066.\frac{Q_{_{t}}+Q_{_{D}}+Q_{_{E}}}{4.N_{_{t}}}$$
 , onde

 $Q_{\scriptscriptstyle D}$ é o fluxo de veículos na conversão à direita

 $Q_{\scriptscriptstyle E}$ é o fluxo de veículos na conversão à esquerda

Q, é o fluxo de veículos adiante (fluxo direto)

N, é o número de faixas exclusivas para fluxo adiante (diretas)

Recomenda analisar a operação com os modelos simplificados ...

"faixas" com 4ft(1,2m) a 6ft(1,8m) por sentido, fluxo de saturação de 2000bic/h/fx com tráfego de bicicletas segregado (não há recomendação se compartilhado)

$$C_b = \frac{g_{bef}}{t_c}.S_b$$
, $g_{bef} = g_{ef}$ (veicular correspondente)

$$d_{b} = \frac{t_{c}}{2} \frac{\left(1 - g_{bef} / t_{c}\right)^{2}}{1 - y_{a}}, y_{b} = min \left\{1; \frac{Q_{b}}{S_{b}}\right\}. \frac{g_{bef}}{t_{c}}$$

$$(\text{atraso regular com } y_{b} = \frac{q_{b}}{S_{b}}, q_{b} = \min\{Q_{b}; C_{b}\})$$

Comentários sobre o Procedimento do U.S.HCM/2010

- procedimentos generalizados do HCM/2010 são mais complexos (iterativos);
- implementação computacional requerida para alguns passos do procedimento geral;
- mantém tradição (positiva) de análise por grupo de movimentos (desde o HCM/85); com maior integração na análise da escolha entre faixas e bloqueios nas conversões;
- ➡ HCM/2010 não considera explicitamente o efeito de faixas de comprimento reduzido; e interferências de bloqueios tem de ser consideradas externamente;
- HCM/2010 usa estimativas de atraso e fila com termo adicional pela presença de fila inicial (procedimento baseado na análise de períodos sucessivos é mencionado como opção), apresentados de forma obscura e discutível;
- ➡ HCM/2010 passou a preferir procedimentos mais gerais para estimar fila e atraso regular, com QAP="Polígono de Acumulação de Filas"/ADP="Polígono de Chegadas e Partidas" (usando modelo de fila vertical) mas integração com efeito da fila inicial é discutível;
- HCM/2010 abandonou a recomendação de métodos para estimar a fila média e passou a recomendar apenas métodos para estimar a extensão máxima de fila (*back of queue*) incluindo a estima de filas máximas para percentis de 85%, 90% e 95%;
- HCM/2010 adota critério discutível para o termo de sobre-fila na extensão máxima da fila (adota o valor médio mas a fila é crescente quando Q>C e depois até decrescente ...);
- HCM/2010 recomenda avaliar efeito de pelotões por simulação (mais trabalhoso)
- ⇒ HCM/2010 usa critério direto de nível de serviço do HCM/97-2000:
- procedimentos revisados para controle atuado e mudanças de faixa importantes:
- procedimentos de avaliação da qualidade de serviço para pedestres e bicicletas;
- 🖈 também os procedimentos tradicionais para nível de serviço em calçadas e esquinas ...

VER EXERCÍCIO FLUXO DE SATURAÇÃO-HCM/2010