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Minimal mathematical model: 

Dynamical variables: 

Boundary conditions: 

  

€ 

Temperature field T(  x ,t)

Velocity field  u (  x ,t) = ˆ i u + ˆ j υ + ˆ k w
Pressure field p( x ,t)

  

€ 

T = Thot   and  ˆ j ⋅  u =υ = 0  at  y = 0
T = Tcold  and  ˆ j ⋅  u =υ = 0  at  y = h

The dimensionless equations of motion for the
Boussinesq approximation are

1

Pr

!
@u

@t
þ u "ru

"
þrp ¼ r2uþ RaĵT; (1)

r " u ¼ 0; (2)

@T

@t
þ u " rT ¼ r2T; (3)

where the Prandtl number Pr ¼ !=" is the ratio of the
fluid’s kinematic viscosity ! to its thermal diffusivity ",
and the Rayleigh number Ra ¼ g#!Th3=!" where g is
the acceleration of gravity, # is the fluid’s thermal expan-
sion coefficient, and !T is the imposed temperature drop
across the layer of thickness h. Lengths are measured in
units of h, time in units of h2=", and temperature in units
of !T. The velocity vector field uðx; y; tÞ ¼ îuðx; y; tÞþ
ĵvðx; y; tÞ satisfies no-penetration and free-slip (stress-
free) boundary conditions, and the temperature field
Tðx; y; tÞ is isothermal on the vertical boundaries at y ¼ 0
and y ¼ 1 as shown in Fig. 1. All dependent variables, u, v,
T, and the pressure field pðx; y; tÞ, are periodic in the
horizontal direction x with period " (the aspect ratio).

Taking the curl of (1) one obtains the evolution equation
for the scalar vorticity ! ¼ @v=@x& @u=@y,

1

Pr

!
@!

@t
þ u "r!

"
¼ r2!þ Ra

@T

@x
: (4)

The boundary conditions on u and v imply that ! ¼ 0 on
the vertical boundaries at y ¼ 0 and y ¼ 1.

The goal of the analysis is to use the equations of motion
to derive upper bounds on the Nusselt number defined as
Nu ¼ 1þ hvTi, where h"i represents the spatial and long
time average, in terms of Ra, Pr, and ". Toward this end we
utilize the background method [21], a mathematical device
introduced by Hopf to establish the existence of weak
solutions to the Navier-Stokes equations in bounded
domains [22]. For convection problems the background
method involves decomposing the temperature field into
a background profile $ðyÞ which satisfies the vertical

boundary conditions [$ð0Þ ¼ 1 and $ð1Þ ¼ 0] and a per-
turbation term %ðx; y; tÞ satisfying homogeneous boundary
conditions [%ðx; 0; tÞ ¼ 0 ¼ %ðx; 1; tÞ] so that Tðx; y; tÞ ¼
$ðyÞ þ %ðx; y; tÞ [11]. Implementing this decomposition the
temperature Eq. (3) implies

@%

@t
þ u "r% ¼ r2%þ $00ðyÞ & v$0ðyÞ: (5)

Then the equations of motion together with the boundary
conditions and the background decomposition imply

1

2 Pr

d

dt
kuk22 ¼ &k!k22 þ Ra

Z
v%dxdy; (6)

1

2 Pr

d

dt
k!k22 ¼ &kr!k22 þ Ra

Z
!
@%

@x
dxdy; (7)

1

2

d

dt
k%k22 ¼ &kr%k22 &

Z #
$0
@%

@y
þ $0v%

$
dxdy; (8)

krTk22 ¼ kr%k22 þ 2
Z

$0
@%

@y
dxdyþ k$0k22; (9)

where k "k 2 is the L
2 norm on the spatial domain and the

elementary identity kruk22 ¼ k!k22 was used in (6).
It is well known that the equations of motion imply

Nu ¼ hkrTk2i [10,11]. Thus, given coefficients a and b
with precise values to be determined, combining (6)–(9)
according to

b

Ra
' ð6Þ þ a

Ra3=2
' ð7Þ þ 2' ð8Þ þ ð9Þ; (10)

applying the long time average—remarking that it can be
shown within the background method that the time aver-
ages of the time derivatives vanish [11,21]—and dividing
by ", the Nusselt number is expressed

Nu ¼ 1

1& b

!Z 1

0
$0ðyÞ2dy& b

"
& 1

1& b
Q; (11)

where

Q ¼
%
jr%j2 þ a

Ra3=2
jr!j2 þ b

Ra
j!j2 þ 2$0v%

& a

Ra1=2
!
@%

@x

&
: (12)

Hence if we can choose the background profile $ðyÞ and
coefficients a > 0 and 0< b< 1 so that Q ( 0 for all
relevant %, ! and v, then the first term on the right hand
side of (11) is an upper bound on Nu. For the problem at
hand we may use the piecewise linear profile shown in
Fig. 2 where the thickness & of the ‘‘boundary layers’’ is to
be determined as a function of Ra to satisfy Q ( 0. With
this choice of $ðyÞ the bound will be

Nu ) 1

2&ð1& bÞ &
b

1& b
: (13)
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FIG. 1. Geometry for the 2d stress-free convection problem.
Boundary conditions for T, u, v, and the vorticity ! at the
isothermal no-slip vertical boundaries are shown. All these
variables as well as the pressure p are periodic in the horizontal
direction with period ".
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€ 

˙ T +  
 u ⋅
 
∇ T =κΔT

 
 ˙ u +  
 u ⋅
 
∇  
 u + 1

ρ

 
∇ p = νΔ 

 u + gα  ̂  j  T −T0( )

0 =
 
∇ ⋅  
 u 

Boussinesq equations: 

We want to compute the 

             vertical heat flux : 

€ 

Jy =  ρ c −κ ∂T
∂y

+υT
' 

( 
) 

* 

+ 
,  

=  ρ c κ
Thot −Tcold

h
+ ρ c υT

conduction 
heat flux 

convection 
heat flux 



  

€ 

˙ T +  
 u ⋅
 
∇ T =κΔT

 
 ˙ u +  
 u ⋅
 
∇  
 u + 1

ρ

 
∇ p = νΔ 

 u + gα  ̂  j  T −T0( )

0 =
 
∇ ⋅  
 u 

Boussinesq equations: 

Lots of parameters! 
€ 

Jy =  ρ c −κ ∂T
∂y

+υT
' 

( 
) 

* 

+ 
,  

=  ρ c κ
Thot −Tcold

h
+ ρ c υT

€ 

h,  L,  T0,  Thot - Tcold ,  g,  κ,  ρ,  ν,  α,  c

We want to compute the 

             vertical heat flux : 



The dimensionless equations of motion for the
Boussinesq approximation are

1
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þ u "ru

"
þrp ¼ r2uþ RaĵT; (1)

r " u ¼ 0; (2)

@T

@t
þ u " rT ¼ r2T; (3)

where the Prandtl number Pr ¼ !=" is the ratio of the
fluid’s kinematic viscosity ! to its thermal diffusivity ",
and the Rayleigh number Ra ¼ g#!Th3=!" where g is
the acceleration of gravity, # is the fluid’s thermal expan-
sion coefficient, and !T is the imposed temperature drop
across the layer of thickness h. Lengths are measured in
units of h, time in units of h2=", and temperature in units
of !T. The velocity vector field uðx; y; tÞ ¼ îuðx; y; tÞþ
ĵvðx; y; tÞ satisfies no-penetration and free-slip (stress-
free) boundary conditions, and the temperature field
Tðx; y; tÞ is isothermal on the vertical boundaries at y ¼ 0
and y ¼ 1 as shown in Fig. 1. All dependent variables, u, v,
T, and the pressure field pðx; y; tÞ, are periodic in the
horizontal direction x with period " (the aspect ratio).

Taking the curl of (1) one obtains the evolution equation
for the scalar vorticity ! ¼ @v=@x& @u=@y,

1

Pr

!
@!

@t
þ u "r!

"
¼ r2!þ Ra

@T

@x
: (4)

The boundary conditions on u and v imply that ! ¼ 0 on
the vertical boundaries at y ¼ 0 and y ¼ 1.

The goal of the analysis is to use the equations of motion
to derive upper bounds on the Nusselt number defined as
Nu ¼ 1þ hvTi, where h"i represents the spatial and long
time average, in terms of Ra, Pr, and ". Toward this end we
utilize the background method [21], a mathematical device
introduced by Hopf to establish the existence of weak
solutions to the Navier-Stokes equations in bounded
domains [22]. For convection problems the background
method involves decomposing the temperature field into
a background profile $ðyÞ which satisfies the vertical

boundary conditions [$ð0Þ ¼ 1 and $ð1Þ ¼ 0] and a per-
turbation term %ðx; y; tÞ satisfying homogeneous boundary
conditions [%ðx; 0; tÞ ¼ 0 ¼ %ðx; 1; tÞ] so that Tðx; y; tÞ ¼
$ðyÞ þ %ðx; y; tÞ [11]. Implementing this decomposition the
temperature Eq. (3) implies

@%

@t
þ u "r% ¼ r2%þ $00ðyÞ & v$0ðyÞ: (5)

Then the equations of motion together with the boundary
conditions and the background decomposition imply

1

2 Pr

d

dt
kuk22 ¼ &k!k22 þ Ra

Z
v%dxdy; (6)

1

2 Pr

d

dt
k!k22 ¼ &kr!k22 þ Ra

Z
!
@%

@x
dxdy; (7)

1

2

d

dt
k%k22 ¼ &kr%k22 &

Z #
$0
@%

@y
þ $0v%

$
dxdy; (8)

krTk22 ¼ kr%k22 þ 2
Z

$0
@%

@y
dxdyþ k$0k22; (9)

where k "k 2 is the L
2 norm on the spatial domain and the

elementary identity kruk22 ¼ k!k22 was used in (6).
It is well known that the equations of motion imply

Nu ¼ hkrTk2i [10,11]. Thus, given coefficients a and b
with precise values to be determined, combining (6)–(9)
according to

b

Ra
' ð6Þ þ a

Ra3=2
' ð7Þ þ 2' ð8Þ þ ð9Þ; (10)

applying the long time average—remarking that it can be
shown within the background method that the time aver-
ages of the time derivatives vanish [11,21]—and dividing
by ", the Nusselt number is expressed

Nu ¼ 1

1& b

!Z 1

0
$0ðyÞ2dy& b

"
& 1

1& b
Q; (11)

where

Q ¼
%
jr%j2 þ a

Ra3=2
jr!j2 þ b

Ra
j!j2 þ 2$0v%

& a

Ra1=2
!
@%

@x

&
: (12)

Hence if we can choose the background profile $ðyÞ and
coefficients a > 0 and 0< b< 1 so that Q ( 0 for all
relevant %, ! and v, then the first term on the right hand
side of (11) is an upper bound on Nu. For the problem at
hand we may use the piecewise linear profile shown in
Fig. 2 where the thickness & of the ‘‘boundary layers’’ is to
be determined as a function of Ra to satisfy Q ( 0. With
this choice of $ðyÞ the bound will be

Nu ) 1

2&ð1& bÞ &
b

1& b
: (13)
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FIG. 1. Geometry for the 2d stress-free convection problem.
Boundary conditions for T, u, v, and the vorticity ! at the
isothermal no-slip vertical boundaries are shown. All these
variables as well as the pressure p are periodic in the horizontal
direction with period ".
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Dimensionless variables: 

Challenge: 
find Nu(Ra,Pr) 

€ 

Nusselt number :  Nu ≡  
Jy

Jconduction
 =  1+ υT  

€ 

Rayleigh number :  Ra =
gα(Thot −Tcold )h3

νκ
       Prandtl number :  Pr =

ν
κ

  

€ 

˙ T +  
 u ⋅
 
∇ T = ΔT

 
1
Pr
 ˙ u +  
 u ⋅
 
∇  
 u ( ) +
 
∇ p = Δ 

 u + Ra  ˆ j  T

0 =
 
∇ ⋅  
 u 

  

€ 

Facts :   Nu =  
 
∇ T 

2
 =  1 +  

1
Ra

 

 
∇ 
 u  

2
  ≥  1
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The dimensionless equations of motion for the
Boussinesq approximation are

1

Pr

!
@u

@t
þ u "ru

"
þrp ¼ r2uþ RaĵT; (1)

r " u ¼ 0; (2)

@T

@t
þ u " rT ¼ r2T; (3)

where the Prandtl number Pr ¼ !=" is the ratio of the
fluid’s kinematic viscosity ! to its thermal diffusivity ",
and the Rayleigh number Ra ¼ g#!Th3=!" where g is
the acceleration of gravity, # is the fluid’s thermal expan-
sion coefficient, and !T is the imposed temperature drop
across the layer of thickness h. Lengths are measured in
units of h, time in units of h2=", and temperature in units
of !T. The velocity vector field uðx; y; tÞ ¼ îuðx; y; tÞþ
ĵvðx; y; tÞ satisfies no-penetration and free-slip (stress-
free) boundary conditions, and the temperature field
Tðx; y; tÞ is isothermal on the vertical boundaries at y ¼ 0
and y ¼ 1 as shown in Fig. 1. All dependent variables, u, v,
T, and the pressure field pðx; y; tÞ, are periodic in the
horizontal direction x with period " (the aspect ratio).

Taking the curl of (1) one obtains the evolution equation
for the scalar vorticity ! ¼ @v=@x& @u=@y,

1

Pr

!
@!

@t
þ u "r!

"
¼ r2!þ Ra

@T

@x
: (4)

The boundary conditions on u and v imply that ! ¼ 0 on
the vertical boundaries at y ¼ 0 and y ¼ 1.

The goal of the analysis is to use the equations of motion
to derive upper bounds on the Nusselt number defined as
Nu ¼ 1þ hvTi, where h"i represents the spatial and long
time average, in terms of Ra, Pr, and ". Toward this end we
utilize the background method [21], a mathematical device
introduced by Hopf to establish the existence of weak
solutions to the Navier-Stokes equations in bounded
domains [22]. For convection problems the background
method involves decomposing the temperature field into
a background profile $ðyÞ which satisfies the vertical

boundary conditions [$ð0Þ ¼ 1 and $ð1Þ ¼ 0] and a per-
turbation term %ðx; y; tÞ satisfying homogeneous boundary
conditions [%ðx; 0; tÞ ¼ 0 ¼ %ðx; 1; tÞ] so that Tðx; y; tÞ ¼
$ðyÞ þ %ðx; y; tÞ [11]. Implementing this decomposition the
temperature Eq. (3) implies

@%

@t
þ u "r% ¼ r2%þ $00ðyÞ & v$0ðyÞ: (5)

Then the equations of motion together with the boundary
conditions and the background decomposition imply

1

2 Pr

d

dt
kuk22 ¼ &k!k22 þ Ra

Z
v%dxdy; (6)

1

2 Pr

d

dt
k!k22 ¼ &kr!k22 þ Ra

Z
!
@%

@x
dxdy; (7)

1

2

d

dt
k%k22 ¼ &kr%k22 &

Z #
$0
@%

@y
þ $0v%

$
dxdy; (8)

krTk22 ¼ kr%k22 þ 2
Z

$0
@%

@y
dxdyþ k$0k22; (9)

where k "k 2 is the L
2 norm on the spatial domain and the

elementary identity kruk22 ¼ k!k22 was used in (6).
It is well known that the equations of motion imply

Nu ¼ hkrTk2i [10,11]. Thus, given coefficients a and b
with precise values to be determined, combining (6)–(9)
according to

b

Ra
' ð6Þ þ a

Ra3=2
' ð7Þ þ 2' ð8Þ þ ð9Þ; (10)

applying the long time average—remarking that it can be
shown within the background method that the time aver-
ages of the time derivatives vanish [11,21]—and dividing
by ", the Nusselt number is expressed

Nu ¼ 1

1& b

!Z 1

0
$0ðyÞ2dy& b

"
& 1

1& b
Q; (11)

where

Q ¼
%
jr%j2 þ a

Ra3=2
jr!j2 þ b

Ra
j!j2 þ 2$0v%

& a

Ra1=2
!
@%
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&
: (12)

Hence if we can choose the background profile $ðyÞ and
coefficients a > 0 and 0< b< 1 so that Q ( 0 for all
relevant %, ! and v, then the first term on the right hand
side of (11) is an upper bound on Nu. For the problem at
hand we may use the piecewise linear profile shown in
Fig. 2 where the thickness & of the ‘‘boundary layers’’ is to
be determined as a function of Ra to satisfy Q ( 0. With
this choice of $ðyÞ the bound will be
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FIG. 1. Geometry for the 2d stress-free convection problem.
Boundary conditions for T, u, v, and the vorticity ! at the
isothermal no-slip vertical boundaries are shown. All these
variables as well as the pressure p are periodic in the horizontal
direction with period ".
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Dimensionless variables: 

Challenge: 
find Nu(Ra,Pr) 

€ 

Nusselt number :  Nu ≡  
Jy

Jconduction
 =  1+ υ T  

€ 

Rayleigh number :  Ra =
gα(Thot −Tcold )h3

νκ
       Prandtl number :  Pr =

ν
κ

  

€ 

˙ T +  
 u ⋅
 
∇ T = ΔT

 
1
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 ˙ u +  
 u ⋅
 
∇  
 u ( ) +
 
∇ p = Δ 

 u + Ra  ˆ j  T

0 =
 
∇ ⋅  
 u 

  

€ 

Facts :   Nu =  
 
∇ T 

2
 =  1 +  

1
Ra

 

 
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 u  

2
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  Stability & instability 
 
 Conduction solution: 

•  Linear analysis → sufficient condition for instability. 

•  Write T (x,y,t) = 1– y + θ(x,y,t) and linearize in θ ... 

•  with θ  and υ ~ (θk,υk)· e–λt eikx  →  eigenvalue problem: 

•  with θk = 0 & vk = 0 = ∂y
2vk at boundaries y = 0,1. 

•  If any λ has real part < 0, then there is an instability.	



•   Lord R. ‘16:  Ra > Rac = 27π4/4  →   λmin< 0  →  convection 

  

€ 

 u  = 0        T =1− y       Nu =1

€ 

−λ ˆ θ k (y) = (∂y
2 − k 2) ˆ θ k + ˆ υ k (y)      − λ(∂y

2 − k 2) ˆ υ k = Pr (∂y
2 − k 2)2 ˆ υ k −Pr Ra k 2

 
ˆ θ k



•  “Energy” analysis → sufficient condition for stability. 

•  Let T (x,y,t) = 1– y + θ(x,y,t) … then without linearization, 

•  Q{θ,v} = ∫(θ,v)· S· (θ,v) with symmetric linear operator S. 

•  If Q{θ,v} > 0, i.e., all λ > 0 for S· (θ,v) = λ(θ,v) → stability.	



•   Fact: Ra < Rac = 27π4/4 → λmin > 0 → no convection.  

  

€ 

d
dt

 
1
2

θ 2 +
1

Pr Ra
 u 2

# 

$ % 
& 

' ( 
 dx dy∫  =  −

 
∇ θ

2
+

1
Ra
 
∇ 
 u 

2
− 2υθ

# 

$ % 
& 

' ( 
 dx dy∫

  Stability & instability 
 
 Conduction solution:   

€ 

 u  = 0        T =1− y       Nu =1

€ 

=  −Q{θ,υ}



Nu vs. Ra … the big picture: 

•   Nu ≥ 1 for all Ra 
•   Nu = 1 for all Ra < Rac ≈ 657 
•   What’s the behavior of Nu for Ra > Rac? 

J. Fluid Mech. (1958), vol. 4, part 3, pp. 225–260 

J. Fluid Mech. (1969), vol. 38, part 2, pp. 225–260 

…. 



Nu vs. Ra … the big picture: 

•   Nu ≥ 1 for all Ra 
•   Nu = 1 for all Ra < Rac ≈ 657 
•   What is the behavior of Nu for Ra >>> Rac? 

N
u

 
10

2  
10

1  
10

0  

Ra 





For turbulent convection, the mean 
temperature profile should look like: 

 
Nu ~ δ 

–1  …   δ = ƒ(Ra)   

 
Assume boundary layer 

thickness is determined by a 
marginal stability condition:  
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Postulated “ultimate” high-Ra scaling: Nu ~ Ra1/2 



Spiegel’s argument: 

•  Assume transport across the bulk is rate-limiting factor 

•  … so fluid elements ‘free-fall’ w/acceleration ~ g α ΔT 

•  … so vertical velocity scale is v ~ [g α ΔT  h]1/2 

•  … so convective heat flux Jconv ~ ρ v c ΔT 

•  … and therefore Nu = 1 + Jconv /Jcond 

•   ~ ρ c ΔT [g α ΔT  h]1/2 
   ÷ (ρ c κ ΔT /h) 

•   … so that Nu ~ (Pr Ra)1/2 
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We present an experimental study of turbulent Rayleigh-Bénard convection (RBC) in a cylindrical cell

of height 0.3 m, diameter 0.3 m. It is designed to minimize the influence of its structure on the convective

flow of cryogenic 4He gas of Prandtl number Pr ! 1, with the aim of resolving existing contradictions in

Nusselt (Nu) versus Rayleigh number (Ra) scaling. For 7:2" 106 # Ra & 1011 our data agree with

suitably corrected data from similar cryogenic experiments and are consistent with Nu / Ra2=7.
On approaching Ra ! 1011 our data display a crossover to Nu / Ra1=3 that approximately holds up to

Ra ffi 4:6" 1013; there is no sign of a transition to the ultimate Kraichnan regime. Differences in Nu(Ra)

scaling observed in similar RBC experiments for Ra * 1011 cannot be explained due to the difference in

Pr, but seem to depend also on experimental details.

DOI: 10.1103/PhysRevLett.107.014302 PACS numbers: 44.25.+f, 47.55.pb

The ideal laterally infinite Rayleigh-Bénard convection
(RBC) is a model for fundamental studies of buoyancy-
driven flows. It occurs in a (Boussinesq) fluid layer con-
fined between infinite perfectly conducting plates heated
from below in a gravitational field, and it is characterized
by the Rayleigh, Ra, and the Prandtl numbers, Pr. The
convective heat transfer efficiency is expressed by the
Nusselt number, Nu ¼ NuðRa; PrÞ. These dimensionless
numbers are defined as

Nu ¼ LH

!!T
; Ra ¼ g

"

#$
!TL3; Pr ¼ #

$
; (1)

where H is the total convective heat flux density, g stands
for the acceleration due to gravity, and !T is the tempera-
ture difference between the parallel bottom and top plates
separated by vertical distance L. The properties of the
working fluid are characterized by its heat conductivity !
and by the combination "=ð#$Þ, where " is the isobaric
thermal expansion, # is the kinematic viscosity, and $
denotes the thermal diffusivity. Functional dependence
Nu ¼ NuðRa; PrÞ at high Ra, usually expressed as a scaling
law Nu / Ra%Pr&, is intensively studied theoretically, nu-
merically, and experimentally [1].

The scaling law with % ! 1=3 corresponds to a model
where all !T occurs across the boundary layers (thin in
comparison with L at high Nu) adjacent to the plates, while
in the central turbulent region the working fluid is effec-
tively mixed. Heat transfer is controlled by thermal con-
duction of the boundary layers and the convective heat
flux does not depend on L. At very high Ra the boundary
layer should undergo a laminar-turbulent transition when
convection enters the ‘‘ultimate,’’ ‘‘asymptotic’’ regime,
with Nu / Ra1=2Pr(1=4ðlogRaÞ(3=2 and 0:15< Pr<1, as
predicted by Kraichnan [2].

Experimentally, RBC is often studied in cylindrical cells
of height L and diameter D, characterized by the aspect

ratio " ¼ D=L and Nu ¼ NuðRa; Pr;"Þ (for details of
scaling laws, in particular, the significance of % ¼ 2=7,
see [1]). The existence of the ultimate regime and its
position in the Ra, Pr, " parameter space is a challenging
open question, in view of its utmost importance for under-
standing many large scale convective flows in Nature.
Although Kraichnan himself assumed an onset at
extremely high Ra not yet achieved in any laboratory, for
" ! Pr ! 1 Grossmann and Lohse (G-L theory, see [1])
estimated the transition to the Nu / Ra1=2 regime at
Ra ! 1013 ( 1014.
Utilization of cryogenic 4He gas as a working fluid

offers an outstanding possibility to achieve very high Ra
thanks to the extremely large value of its fluid-properties
ratio "#(1$(1 near the critical point (Tc ¼ 5:1953 K,
pc ¼ 227:46 kPa, 'c ¼ 69:641 kg=m3) [3]. Moreover,
this ratio can easily be tuned over a wide range in situ
within a single experimental run. The highest values of Ra
using cryogenic gaseous 4He have been achieved in
Chicago [4,5], Grenoble [6,7], and Oregon (Eugene) [8],
albeit with controversial results on Nu(Ra) scaling at
high Ra. The Chicago and Oregon groups used " ¼ 1=2
cylindrical cells (L ¼ 40 cm and 1 m) and studied the
convective heat transport up to Ra ! 1014 and ! 1017,
respectively; the observed % did not exceed 1=3. This is
in striking contrast with the Grenoble results from the " ¼
1=2 cell of smaller height L ¼ 0:2 m: % ! 2=7 was found
for Ra< 1011 and a transition to a regime characterized by
% ! 0:4 above Ra ! 1011, interpreted as a transition into
Kraichnan ultimate regime [6]. Moreover, in subsequent
experiments in Grenoble, Roche, Gauthier, Kaiser, and
Salort observed similar transitions above Ra ! 1011 with
seven different " ¼ 1=2 convection cells (with smooth and
rough Cu plates, smooth brass bottom plate, mean flow
restrictions, tilted cell) and also with the " ¼ 1:14 cell [7].
In Trieste, Niemela and Sreenivasan performed additional

PRL 107, 014302 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
1 JULY 2011

0031-9007=11=107(1)=014302(4) 014302-1 ! 2011 American Physical Society

experiments (using essentially the Oregon apparatus) with
a ! ¼ 1 cell up to Ra " 1015 and a ! ¼ 4 cell up to Ra "
2# 1013 [9], and claimed to find a transition from one
Nu " !Ra1=3 regime (with ! " 0:064) to another (with
! " 0:078) [10]. Although the results of all these cryo-
genic experiments are difficult to evaluate with precision
(in view of corrections needed due to, e.g., the finite con-
ductivity and heat capacity of the plates and sidewalls,
proximity to the critical point, parasitic heat leaks, adia-
batic gradient [1]), the Trieste cryogenic experiments and
the experiments of Funfschilling, Bodenschatz, and Ahlers
with gaseous He, N2, and SF6 at nearly ambient tempera-
ture (although indicating different, not yet fully understood
transitions at even higher Ra [10,11]) did not display
transition to the ultimate Kraichnan regime [12]. Hence
there was a clear call to design a suitable cryogenic
Rayleigh-Bénard cell to resolve these controversies.

In this Letter, we present NuðRa; Pr;! ¼ 1Þ (see Fig. 1)
for 7:2# 106 & Ra & 4:6# 1013. Although our apparatus
(upper inset in Fig. 1; for a detailed technical description
see [13]) is capable of reaching much higher Ra, we limit
ourselves to this range because (i) it covers adequately the
range of the main controversy, (ii) some of the above-
mentioned corrections are minimized for our cell that was
designed and built especially for this purpose, and (iii) the
working fluid—cryogenic helium gas—can be kept suffi-
ciently far from its critical point. The ! ¼ 1 cell with thin

(" ¼ 0:5 mm) stainless steel sidewalls of relatively low
thermal conductivity #w is 2R ¼ 0:3 m in diameter. The
top and bottom plates are made of 28 mm thick annealed
OFHC copper of thermal conductivity #p at least

2 kWm'1 K'1. The upper plate is thermally connected to
the liquid helium (LHe) vessel via a heat exchange chamber
(HEC) filled with gaseous 4He. The total external parasitic
heat leak to the cell (both radiative and conductive) is
suppressed to <1% of the lowest convective heat flux
used in the experiment, measured to (0:5%. Design of
the heaters ensures better than 1 mK temperature homoge-
neity of the internal side of plates, under the assumption
that the heat is uniformly supplied or removed. Four cali-
brated Lake Shore GR-200A-1500-1.4B Ge temperature
sensors (5 mK absolute accuracy guaranteed by the manu-
facturer for two of them, additional calibration [13] allows
determination of "T within 2 mK) are imbedded in the
center and near the edge of Cu plates. The pressure in the
cell is measured with an MKS Baratron 690 A (calibration
traceable to NIST) with 0.08% reading accuracy. Helium
properties are gained from the NIST database [3,14], based
on the actual pressure in the cell and the mean temperature
Tm assessed as arithmetic average of the plate temperatures.
Two stainless steel tubes thermally anchored to the LHe
vessel [15] are used for venting.

FIG. 1 (color online). Observed Nu(Ra) values [open (red)
circles] in comparison with the data sets obtained with the
! ¼ 1 cell in Trieste [9] [open (blue) squares] and with the
! ¼ 1:14 cell in Grenoble [7] [open (olive) triangles]. The upper
inset shows our cell: 1—LHe vessel; 2—heat exchange chamber,
3,5—Cu plates, 4—exchangeable part of the sidewall. The lower
inset shows how the thick Cu plate joins the thin stainless steel
wall (ssw), welded (w) to a stainless steel ring (ssr) that is brazed
(b) to the Cu plate.
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FIG. 2 (color online). The compensated NuRa'1=3 plot versus
Ra: our measured data (without wall correction) are shown as
(red filled) circles with error bars representing the total uncer-
tainty in NuRa'1=3 caused by uncertainties in the determination
of Tm (4 mK), p (0.1%), "T (2 mK) and heat power to the
bottom plate (0.5%); (red, yellow filled) circles are our data with
the wall corrections applied as described in the text; (olive)
triangles and open (olive) triangles represent the uncorrected
and corrected (! ¼ 1:14) Grenoble data set [7]; solid (blue)
squares and open (blue) squares are the uncorrected and
corrected (! ¼ 1) data sets from Trieste (Tm ¼ 5:34( 0:02 K)
[9]. The dashed (red) line is functional dependence Nu ¼
0:172Ra2=7, the dotted line Nu ¼ 0:156Ra2=7, and the solid
line Nu ¼ 0:0508Ra1=3.
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! " 0:078) [10]. Although the results of all these cryo-
genic experiments are difficult to evaluate with precision
(in view of corrections needed due to, e.g., the finite con-
ductivity and heat capacity of the plates and sidewalls,
proximity to the critical point, parasitic heat leaks, adia-
batic gradient [1]), the Trieste cryogenic experiments and
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with gaseous He, N2, and SF6 at nearly ambient tempera-
ture (although indicating different, not yet fully understood
transitions at even higher Ra [10,11]) did not display
transition to the ultimate Kraichnan regime [12]. Hence
there was a clear call to design a suitable cryogenic
Rayleigh-Bénard cell to resolve these controversies.

In this Letter, we present NuðRa; Pr;! ¼ 1Þ (see Fig. 1)
for 7:2# 106 & Ra & 4:6# 1013. Although our apparatus
(upper inset in Fig. 1; for a detailed technical description
see [13]) is capable of reaching much higher Ra, we limit
ourselves to this range because (i) it covers adequately the
range of the main controversy, (ii) some of the above-
mentioned corrections are minimized for our cell that was
designed and built especially for this purpose, and (iii) the
working fluid—cryogenic helium gas—can be kept suffi-
ciently far from its critical point. The ! ¼ 1 cell with thin

(" ¼ 0:5 mm) stainless steel sidewalls of relatively low
thermal conductivity #w is 2R ¼ 0:3 m in diameter. The
top and bottom plates are made of 28 mm thick annealed
OFHC copper of thermal conductivity #p at least

2 kWm'1 K'1. The upper plate is thermally connected to
the liquid helium (LHe) vessel via a heat exchange chamber
(HEC) filled with gaseous 4He. The total external parasitic
heat leak to the cell (both radiative and conductive) is
suppressed to <1% of the lowest convective heat flux
used in the experiment, measured to (0:5%. Design of
the heaters ensures better than 1 mK temperature homoge-
neity of the internal side of plates, under the assumption
that the heat is uniformly supplied or removed. Four cali-
brated Lake Shore GR-200A-1500-1.4B Ge temperature
sensors (5 mK absolute accuracy guaranteed by the manu-
facturer for two of them, additional calibration [13] allows
determination of "T within 2 mK) are imbedded in the
center and near the edge of Cu plates. The pressure in the
cell is measured with an MKS Baratron 690 A (calibration
traceable to NIST) with 0.08% reading accuracy. Helium
properties are gained from the NIST database [3,14], based
on the actual pressure in the cell and the mean temperature
Tm assessed as arithmetic average of the plate temperatures.
Two stainless steel tubes thermally anchored to the LHe
vessel [15] are used for venting.

FIG. 1 (color online). Observed Nu(Ra) values [open (red)
circles] in comparison with the data sets obtained with the
! ¼ 1 cell in Trieste [9] [open (blue) squares] and with the
! ¼ 1:14 cell in Grenoble [7] [open (olive) triangles]. The upper
inset shows our cell: 1—LHe vessel; 2—heat exchange chamber,
3,5—Cu plates, 4—exchangeable part of the sidewall. The lower
inset shows how the thick Cu plate joins the thin stainless steel
wall (ssw), welded (w) to a stainless steel ring (ssr) that is brazed
(b) to the Cu plate.
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FIG. 2 (color online). The compensated NuRa'1=3 plot versus
Ra: our measured data (without wall correction) are shown as
(red filled) circles with error bars representing the total uncer-
tainty in NuRa'1=3 caused by uncertainties in the determination
of Tm (4 mK), p (0.1%), "T (2 mK) and heat power to the
bottom plate (0.5%); (red, yellow filled) circles are our data with
the wall corrections applied as described in the text; (olive)
triangles and open (olive) triangles represent the uncorrected
and corrected (! ¼ 1:14) Grenoble data set [7]; solid (blue)
squares and open (blue) squares are the uncorrected and
corrected (! ¼ 1) data sets from Trieste (Tm ¼ 5:34( 0:02 K)
[9]. The dashed (red) line is functional dependence Nu ¼
0:172Ra2=7, the dotted line Nu ¼ 0:156Ra2=7, and the solid
line Nu ¼ 0:0508Ra1=3.

PRL 107, 014302 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
1 JULY 2011

014302-2
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Measurements of the Nusselt number Nu and of a Reynolds number Reeff for Rayleigh-Bénard

convection (RBC) over the Rayleigh-number range 1012 & Ra & 1015 and for Prandtl numbers Pr near

0.8 are presented. The aspect ratio ! ! D=L of a cylindrical sample was 0.50. For Ra & 1013 the data

yielded Nu / Ra!eff with !eff ’ 0:31 and Reeff / Ra"eff with "eff ’ 0:43, consistent with classical turbulent
RBC. After a transition region for 1013 & Ra & 5" 1014, where multistability occurred, we found !eff ’
0:38 and "eff ¼ " ’ 0:50, in agreement with the results of Grossmann and Lohse for the large-Ra

asymptotic state with turbulent boundary layers which was first predicted by Kraichnan.

DOI: 10.1103/PhysRevLett.108.024502 PACS numbers: 47.27.te, 47.55.P$

In a fluid between horizontal parallel plates and heated
from below, turbulent convection (known as Rayleigh-
Bénard convection or RBC) occurs when the temperature
difference "T ¼ Tb $ Tt between the bottom (Tb) and top
(Tt) plates is sufficiently large [1,2]. When a dimensionless
measure of "T known as the Rayleigh number Ra exceeds
a typical valueRa% ¼ Oð1014Þ [3,4], the system is expected
to undergo a transition. Below Ra% the turbulent heat
transport is limited by laminar boundary layers (BLs)
below the top and above the bottom plate. Above Ra% the
shear applied to the BLs by the turbulent interior is ex-
pected to rendered the BLs turbulent as well [5–7], thus
leading to a different heat-transport mechanism. The state
above Ra% is believed to be asymptotic in the sense that it
will prevail as Ra diverges. For that reason it has been
referred to as the ‘‘ultimate regime’’ [8,9]; we shall call it
the ultimate state (we shall refer to turbulent RBC below
Ra% as the ‘‘classical’’ state). Aside from the intrinsic
interest in the physics of this system, an extrapolation of
the properties from typical experimental ranges Ra & 1012

[1] to Ra ’ 1020 and higher, which is relevant to geo/
astrophysical systems, requires an understanding of the
ultimate state.

Over a decade ago Chavanne et al. [8–10] measured the
Nusselt number Nu(Ra) (the dimensionless effective ther-
mal conductivity) up to Ra ’ 1015 for a cylindrical sample
of aspect ratio ! ! D=L ¼ 0:50 (D is the diameter and L
the height) using fluid helium near its critical point at about
5 K and 2 bars. Their data reveal a transition in Nu(Ra)
near Ra ¼ 2" 1011 which they interpreted as the transi-
tion near Ra%. However, their Ra at the transition was much
lower than the expected Ra% ¼ Oð1014Þ [3]. For this and
other reasons [11] it seems unlikely to us that their BLs
underwent the transition to turbulence characteristic of the

transition from the classical to the ultimate state. However,
the authors of Refs. [9,13] have a different interpretation
[15] and still claim to have observed the ultimate-state
transition. Also about a decade ago, Niemela et al.
[16–18] measured Nu(Ra) up to Ra ’ 1017 in a nominally
equivalent experiment, and found no transition. Numerous
other low-temperature experiments were conducted for
! ¼ 0:50 [19–22], especially by Roche et al. [13]. Some
showed a transition and others did not. For the reasons
given [11] it seems unlikely to us (but, we are told [15], not
to the authors of Refs. [9,13]) that the BL transition to
turbulence associated with the ultimate state was involved
in them.
Here we report measurements of Nu(Ra) and of a

Reynolds number ReeffðRaÞ (to be defined explicitly be-
low) at close to ambient (as opposed to cryogenic) tem-
peratures. Both Nu and Reeff revealed a transition over the
same range of Ra; this range spanned more than a decade
from Ra%1 ’ 1013 to Ra%2 ’ 5" 1014 [4]. For Ra ( Ra%1 we
found Nu / Ra!eff with !eff ’ 0:31 and Reeff / Ra"eff with
"eff ’ 0:43, consistent with numerous measurements and
with predictions for classical RBC below Ra% (cf. [1]). For
Ra> Ra%2 we found !eff ’ 0:38 and "eff ¼ " ’ 0:50, in
agreement with predictions for the ultimate state [5]. For
Ra%1 < Ra< Ra%2 Reeff followed a nonmonotonic and not
always unique complex path. The observed transition
range (as opposed to a characteristic value of Ra%) is not
surprising since the BLs and the shear applied to them by
the turbulent bulk are known to be spatially inhomogene-
ous [23]. The location of this range along the Ra axis is
roughly consistent with the expected values of Ra% [3] for a
shear instability of the BLs. The multistability revealed by
Reeff in the transition range suggests that the transition is
discontinuous in the sense that, for instance, Reeff on the

PRL 108, 024502 (2012)

Selected for a Viewpoint in Physics
PHY S I CA L R EV I EW LE T T E R S

week ending
13 JANUARY 2012

0031-9007=12=108(2)=024502(5) 024502-1 ! 2012 American Physical Society

branch below and the branch above the transition do not
evolve continuously one into the other. Further evidence
for a discontinuous transition comes from an extrapolation
of Reeff in the ultimate state to smaller Ra, which meets the
classical branch at Ra ’ 4! 1012, i.e., well below the
transition range between the two states. We believe that
our measurements revealed the transition from classical
RBC to the ultimate state, and that they show this transition
to be discontinuous.

A large cylindrical sample of height L ¼ 2:24 m and
diameter D ¼ 1:12 m known as the High-Pressure
Convection Facility II (HPCF-II) was placed in an even
larger pressure vessel known as the ‘‘Uboot of Göttingen’’
at the Max Planck Institute for Dynamics and Self
Organization in Göttingen, Germany [24,25]. The Uboot
and HPCF-II were filled with the gas sulfur hexafluoride
(SF6) at pressures up to 19 bars. The HPCF-II was com-
pletely sealed, except for a 2.5 cm inner-diameter tube
which passed through the sidewall at mid height and
permitted the gas to enter the HPCF-II from the Uboot.
One tube end was accurately flush with the inside of the
wall and the other end terminated in a remotely operable
valve. Once filled with the valve open, the desired tem-
peratures of the top and bottom plates were established,
and after equilibration for about 8 hours the valve was
closed and all desired measurements were made.

The Prandtl number Pr # !=" (! is the kinematic vis-
cosity and " the thermal diffusivity) was 0.79 (0.86) near
Ra ¼ 1012 (1015). The measurements were made at several
mean temperatures Tm ¼ ðTt þ TbÞ=2 and at various pres-
sures. The Rayleigh number is given by Ra ¼
#g!TL3="!. Here the isobaric thermal expansion coeffi-
cient #, as well as " and !, were evaluated at Tm, and g is
the acceleration of gravity.

There was a small effect of Tm ' TU on Nu which is
described in Supplemental Material [26] submitted with
this Letter, but the overall shape of Nu(Ra) was not influ-
enced by Tm ' TU. The reduced Nusselt numbers Nured #
Nu=Ra0:312 obtained with Tm ' TU & '3 K are shown as
solid black circles in Fig. 1. For Ra< Ra(1 ’ 1013 they are
described well by a power law with $eff ¼ 0:312. As can
be seen in the figure, that power law agrees extremely well
with data from [16–18] (stars, red) for 109 & Ra & 3!
1012, and with data from [9] (small open circles, blue) for
109 & Ra & 1011. It also agrees well with recent DNS
results [14] (open circles with pluses and error bars, purple
online). For Ra * 1013 the slope of our NuredðRaÞ in the
logarithmic plot, corresponding to $eff ' 0:312, gradually
increased with increasing Ra and reached values corre-
sponding to $eff ’ 0:38 at Ra ¼ Ra(2 ’ 5! 1014. The
value of $eff above Ra(2 is consistent with the prediction
for the ultimate state [5–7]. An extrapolation from the
largest-Ra data of a power law with $eff ¼ 0:38 [solid
slanting line in Fig. 1(a)] yields an estimate for a transition
point of Ra( ’ 1:4! 1014.

The data of Niemela et al. [16–18] also show a slight
increase of Nu above the Ra0:312 dependence, starting at Ra
just below 1013. However, they do not seem to have the
resolution to clearly reveal a transition. Indeed the original
authors interpreted them in terms of a single power law
with a classical exponent $eff ’ 0:32 [18] up to the highest
Ra of their experiment. The Chavanne et al. data [9] clearly
show a transition near Ra ¼ 2! 1011, but its origin is still
unknown to us. The DNS data [14] do not show any
transition up to their largest Ra ¼ 2! 1012.
For the determinations of Reeff , two thermistors were

mounted, one above the other and separated by r0 ¼
3:0 cm, at an average height L=4 above the bottom plate.
The thermistors were placed about 1 cm from the side wall
inside the sample. They were used to measure the local
temperatures at a rate of 40 Hz, and it was assumed that
temperature locally is a passive scalar so that its correlation
function is the same as that of the velocity. The two time
autocorrelation functions Cð0; %Þ and the cross-correlation
function Cðr0; %Þ were determined with high precision by
averaging over time intervals of many hours for a given data
point. The correlation functions were used to determine

Veff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ V2

p
and the corresponding Reeff ¼ VeffL=!,

using the elliptic approximation (EA). The EAwas derived
from a systematic second-order Taylor-series expansion of
the space-time velocity correlation function [27,28] and is
well supported by experimental data [29–31]. The contri-
bution U is the time-averaged vertical velocity component
which turns out to be small compared toV, andV is the sum
of v0 [v

2
0 ¼ 2

R
EðkÞdk and EðkÞ is the energy spectrum of
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FIG. 1 (color online). Nured # Nu=Ra0:312 as a function of Ra
for the ‘‘closed’’ sample. Black solid circles: Tm ' TU & '3 K.
Solid line (blue) through the data at the largest Ra corresponds to
$eff ¼ 0:38. Vertical dotted lines: Ra(1 ¼ 1:3! 1013 and Ra(2 ¼
5! 1014. Small stars (red): Ref. [16]. Small open circles (blue):
Ref. [9]. Circles with pluses and error bars (purple): DNS [14].
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Building on a method of analysis for the Navier-Stokes equations introduced by Hopf ⇥Math. Ann. 117, 764
⇤1941 �, a variational principle for upper bounds on the largest possible time averaged convective heat flux is
derived from the Boussinesq equations of motion. When supplied with appropriate test background fields

satisfying a spectral constraint, reminiscent of an energy stability condition, the variational formulation pro-

duces rigorous upper bounds on the Nusselt number ⇤Nu as a function of the Rayleigh number ⇤Ra . For the
case of vertical heat convection between parallel plates in the absence of sidewalls, a simplified ⇤but rigorous 
formulation of the optimization problem yields the large Rayleigh number bound Nu⌅0.167 Ra1/2⌅1. Non-
linear Euler-Lagrange equations for the optimal background fields are also derived, which allow us to make

contact with the upper bound theory of Howard ⇥J. Fluid Mech. 17, 405 ⇤1963 � for statistically stationary
flows. The structure of solutions of the Euler-Lagrange equations are elucidated from the geometry of the

variational constraints, which sheds light on Busse’s ⇥J. Fluid Mech. 37, 457 ⇤1969 � asymptotic analysis of
general solutions to Howard’s Euler-Lagrange equations. The results of our analysis are discussed in the

context of theory, recent experiments, and direct numerical simulations. ⇥S1063-651X⇤96 06106-5�
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I. INTRODUCTION

Conventional theoretical approaches to turbulence include

approximate treatments ranging from the imposition of sta-

tistical assumptions and moment hierarchy truncations to the

introduction of scaling hypotheses ⇥1�. Rigorous analyses
based solely on the equations of motion are typically less
ambitious, hindered in part by the lack of a regularity proof
for solutions of the three-dimensional Navier-Stokes equa-
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Navier-Stokes equations with inhomogeneous boundary con-
ditions ⇥3� and, as shown in the following sections, it appears
more closely related to nonlinear hydrodynamic stability
theory, i.e., the energy method ⇥4�, than to statistical turbu-
lence theory. It applies equally to both laminar ⇤stationary or
time varying and turbulent flows, yielding rigorous predic-
tions free from uncontrolled approximations, and an interest-
ing a posteriori relationship with statistical turbulence theory
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Consider an incompressible Newtonian fluid confined to

the rectangular volume between rigid isothermal plates as
illustrated in Fig. 1. A vertical temperature gradient of mag-
nitude ⇧T is imposed. In the usual nondimensional units the
fluid’s velocity vector field u⇤x,t ⇥(u1 ,u2 ,u3) and tempera-
ture field T⇤x,t satisfy the Boussinesq equations

⌃u

⌃t
⇤u•“u⇤“p⇥�⌥u⇤� RakT , ⇤1.1 

“•u⇥0, ⇤1.2 
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FIG. 1. Fluid is confined between parallel plates of dimension

Lx�Ly , separated by gap of height h in the z direction. Boundary

conditions are periodic in the x and y directions and T⇥⇧T for

z⇥0, T⇥0 for z⇥h , and u⇥0 for z⇥0 and h .
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Turbulent transport bounds: 

Nu ≤ .02634 Ra1/2 

 

uniformly in Pr 
 

in 2-d & 3-d 
 



Numerical evidence: 
  Nu ≤ c  Ra1/3   

at  Pr = ∞ 

Theorem:   

Nu ≤ .644 × Ra1/3 [ln(Ra)]1/3  
at  Pr = ∞ 

Theorem: 
Nu ≤ C Ra1/3ln[ln(Ra)]1/3 

at Pr = ∞ 



Numerical evidence:  “In the case of free-slip, we 
find an asymptotic scaling [bound] of Nu ≤ c  Ra5/12

  ” 
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ments regarding asymptotic high Rayleigh number heat transport by turbulent convection.
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Rayleigh-Bénard convection is the buoyancy-driven
flow of a fluid heated from below and cooled from above.
It is important for a variety of systems in the engineering,
geophysical, and astrophysical sciences, and it has long
served as a fundamental paradigm of nonlinear science,
chaos, and pattern formation. Indeed, the Boussinesq
approximation to the Navier-Stokes equations with the
boundary conditions analyzed in this Letter was
Rayleigh’s original model for calculating conditions for
onset [1], it is the basis of the Lorenz equations [2], and it
formed the foundation of developments in the modern
mathematical theory of amplitude [3] and modulation [4]
equations. Most recently, Rayleigh-Bénard convection has
been the focus of a large body of experimental, computa-
tional, theoretical, and mathematical research aimed at
characterizing the fully turbulent dynamics for application
in geophysical and astrophysical regimes [5].

Convective fluid flow increases vertical heat transport
beyond the purely conductive flux. The dimensionless
enhancement factor, the Nusselt number Nu, is both of
fundamental interest for applications and the natural and
widely recognized measure of the intensity and effective-
ness of the motion. The most basic question for Rayleigh-
Bénard convection is the dependence of Nu on (i) the
strength of the thermal forcing, commonly expressed in
terms of a dimensionless Rayleigh number Ra, (ii) the
material properties of the fluid, which within the
Boussinesq approximation is set by the dimensionless
Prandtl number Pr, the ratio of the fluid’s momentum and
thermal diffusion coefficients, (iii) the geometry, typically
the aspect ratio of the container, and (iv) the boundary
conditions. The connection between these variables is
generally complex and often not even unique, but in the
‘‘ultimate’’ high Rayleigh number regime when the flow is
turbulent, the presumed functional relation between the
Nu, Pr, and Ra is Nu" Pr!Ra". Experiments and simula-
tions with Pr ¼ Oð1Þ and no-slip boundary conditions

suggest a scaling exponent 0:27 & " & 0:40 at the highest
available Ra [5,6]. Various theories suggest (modulo pos-
sible logarithmic corrections) that Nu" Pr1=2Ra1=2 as
Ra ! 1 [7–9]. Rigorous analyses of the Boussinesq model
with no-slip velocity and isothermal (fixed temperature)
[10,11] or fixed heat flux [12] or mixed temperature [13]
boundary conditions yield upper bounds of the form
Nu ! cRa1=2 with prefactors 0< c <1 independent of
Pr, so " ¼ 1

2 and ! ¼ 1
2 cannot both hold for very large

Pr. The Nu-Ra relation is certainly different at Pr ¼ 1
where theory suggests [14] and analysis proves [15] (mod-
ulo possible logarithmic corrections) that Nu & Ra1=3.
Two-dimensional Rayleigh-Bénard convection displays

many of the physical and turbulent transport features of
three dimensional convection and has long been utilized as
a test-bed for theoretical concepts [16,17]. The effect of
free-slip (no-stress) velocity boundary conditions on de-
veloped turbulent convection has largely been unexplored
although we note that the rigorous scaling bound reported
here was anticipated by recent numerical and perturbative
investigations of transport limits for finite [18] and infinite
[19,20] Prandtl numbers. This Letter bridges that gap with
a proof that Nu ! 0:2891Ra5=12 uniformly in 0< Pr ! 1
for the Boussinesq model in two spatial dimensions with
fixed-temperature and free-slip boundaries. This result
refutes predictions of aNu" Ra1=2 ultimate regime insofar
as the theoretical arguments do not refer specifically to the
boundary conditions or the spatial dimension. This issue is
discussed further in the conclusion section at the end of the
Letter. Meanwhile the proof of the bound is presented in
sufficient detail immediately below for motivated readers
to reproduce the calculation in its entirety. The key new
idea used to derive the result emerged from intuition
developed in numerical studies of upper bounds [18,19]:
implement and exploit the bulk averaged enstrophy
balance available for two-dimensional flows with free-
slip boundaries to decrease the upper bound.
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Background method: 
The dimensionless equations of motion for the

Boussinesq approximation are

1

Pr

!
@u

@t
þ u "ru

"
þrp ¼ r2uþ RaĵT; (1)

r " u ¼ 0; (2)

@T

@t
þ u "rT ¼ r2T; (3)

where the Prandtl number Pr ¼ !=" is the ratio of the
fluid’s kinematic viscosity ! to its thermal diffusivity ",
and the Rayleigh number Ra ¼ g#!Th3=!" where g is
the acceleration of gravity, # is the fluid’s thermal expan-
sion coefficient, and !T is the imposed temperature drop
across the layer of thickness h. Lengths are measured in
units of h, time in units of h2=", and temperature in units
of !T. The velocity vector field uðx; y; tÞ ¼ îuðx; y; tÞþ
ĵvðx; y; tÞ satisfies no-penetration and free-slip (stress-
free) boundary conditions, and the temperature field
Tðx; y; tÞ is isothermal on the vertical boundaries at y ¼ 0
and y ¼ 1 as shown in Fig. 1. All dependent variables, u, v,
T, and the pressure field pðx; y; tÞ, are periodic in the
horizontal direction x with period " (the aspect ratio).

Taking the curl of (1) one obtains the evolution equation
for the scalar vorticity ! ¼ @v=@x& @u=@y,

1

Pr

!
@!

@t
þ u "r!

"
¼ r2!þ Ra

@T

@x
: (4)

The boundary conditions on u and v imply that ! ¼ 0 on
the vertical boundaries at y ¼ 0 and y ¼ 1.

The goal of the analysis is to use the equations of motion
to derive upper bounds on the Nusselt number defined as
Nu ¼ 1þ hvTi, where h"i represents the spatial and long
time average, in terms of Ra, Pr, and ". Toward this end we
utilize the background method [21], a mathematical device
introduced by Hopf to establish the existence of weak
solutions to the Navier-Stokes equations in bounded
domains [22]. For convection problems the background
method involves decomposing the temperature field into
a background profile $ðyÞ which satisfies the vertical

boundary conditions [$ð0Þ ¼ 1 and $ð1Þ ¼ 0] and a per-
turbation term %ðx; y; tÞ satisfying homogeneous boundary
conditions [%ðx; 0; tÞ ¼ 0 ¼ %ðx; 1; tÞ] so that Tðx; y; tÞ ¼
$ðyÞ þ %ðx; y; tÞ [11]. Implementing this decomposition the
temperature Eq. (3) implies

@%

@t
þ u "r% ¼ r2%þ $00ðyÞ & v$0ðyÞ: (5)

Then the equations of motion together with the boundary
conditions and the background decomposition imply

1

2 Pr

d

dt
kuk22 ¼ &k!k22 þ Ra

Z
v%dxdy; (6)

1

2 Pr

d

dt
k!k22 ¼ &kr!k22 þ Ra

Z
!
@%

@x
dxdy; (7)

1

2

d

dt
k%k22 ¼ &kr%k22 &

Z #
$0
@%

@y
þ $0v%

$
dxdy; (8)

krTk22 ¼ kr%k22 þ 2
Z

$0
@%

@y
dxdyþ k$0k22; (9)

where k "k 2 is the L
2 norm on the spatial domain and the

elementary identity kruk22 ¼ k!k22 was used in (6).
It is well known that the equations of motion imply

Nu ¼ hkrTk2i [10,11]. Thus, given coefficients a and b
with precise values to be determined, combining (6)–(9)
according to

b

Ra
' ð6Þ þ a

Ra3=2
' ð7Þ þ 2' ð8Þ þ ð9Þ; (10)

applying the long time average—remarking that it can be
shown within the background method that the time aver-
ages of the time derivatives vanish [11,21]—and dividing
by ", the Nusselt number is expressed

Nu ¼ 1

1& b

!Z 1

0
$0ðyÞ2dy& b

"
& 1

1& b
Q; (11)

where

Q ¼
%
jr%j2 þ a

Ra3=2
jr!j2 þ b

Ra
j!j2 þ 2$0v%

& a

Ra1=2
!
@%

@x

&
: (12)

Hence if we can choose the background profile $ðyÞ and
coefficients a > 0 and 0< b< 1 so that Q ( 0 for all
relevant %, ! and v, then the first term on the right hand
side of (11) is an upper bound on Nu. For the problem at
hand we may use the piecewise linear profile shown in
Fig. 2 where the thickness & of the ‘‘boundary layers’’ is to
be determined as a function of Ra to satisfy Q ( 0. With
this choice of $ðyÞ the bound will be

Nu ) 1

2&ð1& bÞ &
b

1& b
: (13)
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FIG. 1. Geometry for the 2d stress-free convection problem.
Boundary conditions for T, u, v, and the vorticity ! at the
isothermal no-slip vertical boundaries are shown. All these
variables as well as the pressure p are periodic in the horizontal
direction with period ".
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The dimensionless equations of motion for the
Boussinesq approximation are
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Hence if we can choose the background profile $ðyÞ and
coefficients a > 0 and 0< b< 1 so that Q ( 0 for all
relevant %, ! and v, then the first term on the right hand
side of (11) is an upper bound on Nu. For the problem at
hand we may use the piecewise linear profile shown in
Fig. 2 where the thickness & of the ‘‘boundary layers’’ is to
be determined as a function of Ra to satisfy Q ( 0. With
this choice of $ðyÞ the bound will be
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The dimensionless equations of motion for the
Boussinesq approximation are
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where the Prandtl number Pr ¼ !=" is the ratio of the
fluid’s kinematic viscosity ! to its thermal diffusivity ",
and the Rayleigh number Ra ¼ g#!Th3=!" where g is
the acceleration of gravity, # is the fluid’s thermal expan-
sion coefficient, and !T is the imposed temperature drop
across the layer of thickness h. Lengths are measured in
units of h, time in units of h2=", and temperature in units
of !T. The velocity vector field uðx; y; tÞ ¼ îuðx; y; tÞþ
ĵvðx; y; tÞ satisfies no-penetration and free-slip (stress-
free) boundary conditions, and the temperature field
Tðx; y; tÞ is isothermal on the vertical boundaries at y ¼ 0
and y ¼ 1 as shown in Fig. 1. All dependent variables, u, v,
T, and the pressure field pðx; y; tÞ, are periodic in the
horizontal direction x with period " (the aspect ratio).
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turbation term %ðx; y; tÞ satisfying homogeneous boundary
conditions [%ðx; 0; tÞ ¼ 0 ¼ %ðx; 1; tÞ] so that Tðx; y; tÞ ¼
$ðyÞ þ %ðx; y; tÞ [11]. Implementing this decomposition the
temperature Eq. (3) implies

@%

@t
þ u "r% ¼ r2%þ $00ðyÞ & v$0ðyÞ: (5)

Then the equations of motion together with the boundary
conditions and the background decomposition imply

1

2 Pr

d

dt
kuk22 ¼ &k!k22 þ Ra

Z
v%dxdy; (6)

1

2 Pr

d

dt
k!k22 ¼ &kr!k22 þ Ra

Z
!
@%

@x
dxdy; (7)

1

2

d

dt
k%k22 ¼ &kr%k22 &

Z #
$0
@%

@y
þ $0v%

$
dxdy; (8)

krTk22 ¼ kr%k22 þ 2
Z

$0
@%

@y
dxdyþ k$0k22; (9)

where k "k 2 is the L
2 norm on the spatial domain and the

elementary identity kruk22 ¼ k!k22 was used in (6).
It is well known that the equations of motion imply

Nu ¼ hkrTk2i [10,11]. Thus, given coefficients a and b
with precise values to be determined, combining (6)–(9)
according to

b

Ra
' ð6Þ þ a

Ra3=2
' ð7Þ þ 2' ð8Þ þ ð9Þ; (10)

applying the long time average—remarking that it can be
shown within the background method that the time aver-
ages of the time derivatives vanish [11,21]—and dividing
by ", the Nusselt number is expressed

Nu ¼ 1

1& b

!Z 1

0
$0ðyÞ2dy& b

"
& 1

1& b
Q; (11)

where

Q ¼
%
jr%j2 þ a

Ra3=2
jr!j2 þ b

Ra
j!j2 þ 2$0v%

& a

Ra1=2
!
@%

@x

&
: (12)

Hence if we can choose the background profile $ðyÞ and
coefficients a > 0 and 0< b< 1 so that Q ( 0 for all
relevant %, ! and v, then the first term on the right hand
side of (11) is an upper bound on Nu. For the problem at
hand we may use the piecewise linear profile shown in
Fig. 2 where the thickness & of the ‘‘boundary layers’’ is to
be determined as a function of Ra to satisfy Q ( 0. With
this choice of $ðyÞ the bound will be
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Boussinesq approximation are
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where the Prandtl number Pr ¼ !=" is the ratio of the
fluid’s kinematic viscosity ! to its thermal diffusivity ",
and the Rayleigh number Ra ¼ g#!Th3=!" where g is
the acceleration of gravity, # is the fluid’s thermal expan-
sion coefficient, and !T is the imposed temperature drop
across the layer of thickness h. Lengths are measured in
units of h, time in units of h2=", and temperature in units
of !T. The velocity vector field uðx; y; tÞ ¼ îuðx; y; tÞþ
ĵvðx; y; tÞ satisfies no-penetration and free-slip (stress-
free) boundary conditions, and the temperature field
Tðx; y; tÞ is isothermal on the vertical boundaries at y ¼ 0
and y ¼ 1 as shown in Fig. 1. All dependent variables, u, v,
T, and the pressure field pðx; y; tÞ, are periodic in the
horizontal direction x with period " (the aspect ratio).

Taking the curl of (1) one obtains the evolution equation
for the scalar vorticity ! ¼ @v=@x& @u=@y,
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The boundary conditions on u and v imply that ! ¼ 0 on
the vertical boundaries at y ¼ 0 and y ¼ 1.

The goal of the analysis is to use the equations of motion
to derive upper bounds on the Nusselt number defined as
Nu ¼ 1þ hvTi, where h"i represents the spatial and long
time average, in terms of Ra, Pr, and ". Toward this end we
utilize the background method [21], a mathematical device
introduced by Hopf to establish the existence of weak
solutions to the Navier-Stokes equations in bounded
domains [22]. For convection problems the background
method involves decomposing the temperature field into
a background profile $ðyÞ which satisfies the vertical

boundary conditions [$ð0Þ ¼ 1 and $ð1Þ ¼ 0] and a per-
turbation term %ðx; y; tÞ satisfying homogeneous boundary
conditions [%ðx; 0; tÞ ¼ 0 ¼ %ðx; 1; tÞ] so that Tðx; y; tÞ ¼
$ðyÞ þ %ðx; y; tÞ [11]. Implementing this decomposition the
temperature Eq. (3) implies

@%

@t
þ u "r% ¼ r2%þ $00ðyÞ & v$0ðyÞ: (5)

Then the equations of motion together with the boundary
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where k "k 2 is the L
2 norm on the spatial domain and the

elementary identity kruk22 ¼ k!k22 was used in (6).
It is well known that the equations of motion imply

Nu ¼ hkrTk2i [10,11]. Thus, given coefficients a and b
with precise values to be determined, combining (6)–(9)
according to
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applying the long time average—remarking that it can be
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ages of the time derivatives vanish [11,21]—and dividing
by ", the Nusselt number is expressed

Nu ¼ 1

1& b

!Z 1

0
$0ðyÞ2dy& b

"
& 1

1& b
Q; (11)

where

Q ¼
%
jr%j2 þ a

Ra3=2
jr!j2 þ b

Ra
j!j2 þ 2$0v%

& a

Ra1=2
!
@%

@x

&
: (12)

Hence if we can choose the background profile $ðyÞ and
coefficients a > 0 and 0< b< 1 so that Q ( 0 for all
relevant %, ! and v, then the first term on the right hand
side of (11) is an upper bound on Nu. For the problem at
hand we may use the piecewise linear profile shown in
Fig. 2 where the thickness & of the ‘‘boundary layers’’ is to
be determined as a function of Ra to satisfy Q ( 0. With
this choice of $ðyÞ the bound will be
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where the Prandtl number Pr ¼ !=" is the ratio of the
fluid’s kinematic viscosity ! to its thermal diffusivity ",
and the Rayleigh number Ra ¼ g#!Th3=!" where g is
the acceleration of gravity, # is the fluid’s thermal expan-
sion coefficient, and !T is the imposed temperature drop
across the layer of thickness h. Lengths are measured in
units of h, time in units of h2=", and temperature in units
of !T. The velocity vector field uðx; y; tÞ ¼ îuðx; y; tÞþ
ĵvðx; y; tÞ satisfies no-penetration and free-slip (stress-
free) boundary conditions, and the temperature field
Tðx; y; tÞ is isothermal on the vertical boundaries at y ¼ 0
and y ¼ 1 as shown in Fig. 1. All dependent variables, u, v,
T, and the pressure field pðx; y; tÞ, are periodic in the
horizontal direction x with period " (the aspect ratio).

Taking the curl of (1) one obtains the evolution equation
for the scalar vorticity ! ¼ @v=@x& @u=@y,
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The boundary conditions on u and v imply that ! ¼ 0 on
the vertical boundaries at y ¼ 0 and y ¼ 1.

The goal of the analysis is to use the equations of motion
to derive upper bounds on the Nusselt number defined as
Nu ¼ 1þ hvTi, where h"i represents the spatial and long
time average, in terms of Ra, Pr, and ". Toward this end we
utilize the background method [21], a mathematical device
introduced by Hopf to establish the existence of weak
solutions to the Navier-Stokes equations in bounded
domains [22]. For convection problems the background
method involves decomposing the temperature field into
a background profile $ðyÞ which satisfies the vertical

boundary conditions [$ð0Þ ¼ 1 and $ð1Þ ¼ 0] and a per-
turbation term %ðx; y; tÞ satisfying homogeneous boundary
conditions [%ðx; 0; tÞ ¼ 0 ¼ %ðx; 1; tÞ] so that Tðx; y; tÞ ¼
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side of (11) is an upper bound on Nu. For the problem at
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Fig. 2 where the thickness & of the ‘‘boundary layers’’ is to
be determined as a function of Ra to satisfy Q ( 0. With
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Applying the horizontal Fourier transform and introduc-
ing the shorthand D ¼ d

dy , it is evident that positivity ofQ
is equivalent to the positivity of
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for each horizontal wave number k where k %k is now the
L2 norm on complex valued functions of y 2 ½0; 1' and
Ref%g indicates the real part of a complex quantity. The
Cauchy-Schwarz and Young inequalities imply
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Restricting a2 < 4b, the task is to dominate the indefinite
boundary layer integrals by the positive definite terms.

The Fourier coefficients of the vertical velocity and
vorticity (suppressing the time dependence) are related by

ik!̂kðyÞ ¼ D2v̂kðyÞ $ k2v̂kðyÞ: (17)

Integrating the modulus squared of both sides with a
simple integration by parts implies

k2k!̂kk22 ¼ kD2vkk2 þ 2k2kDvkk2 þ k4kvkk2: (18)

On the other hand, integration by parts and the Cauchy-
Schwarz and Young inequalities yield
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so that, combining (18) and (19),
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mental theorem of calculus followed by application of
the Cauchy-Schwarz and Young inequalities imply
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A similar pointwise bound holds for the imaginary part of
Dv̂kðyÞ so its modulus squared satisfies
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Thus, integrating Dv̂k from 0 to y or from 1$ y to 1 and
applying Hölder’s inequality, it is evident that
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Because !̂kðyÞ vanishes at y ¼ 0 and 1, applications of
the fundamental theorem of calculus and Cauchy-Schwarz
inequality yield the pointwise bounds
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Using (24)–(26), we conclude
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Inserting a ¼ 2ffiffiffiffi
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p and b ¼ 1
5 into (28)—chosen to minimize

the prefactor in the bound—and minimizing the suitable #
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FIG. 2. Background profile with boundary layers of thickness
0< # ( 1

2 in which "0ðyÞ ¼ $ 1
2# ; "

0ðyÞ - 0 for #<y< 1$ #.
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The dimensionless equations of motion for the
Boussinesq approximation are
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where the Prandtl number Pr ¼ !=" is the ratio of the
fluid’s kinematic viscosity ! to its thermal diffusivity ",
and the Rayleigh number Ra ¼ g#!Th3=!" where g is
the acceleration of gravity, # is the fluid’s thermal expan-
sion coefficient, and !T is the imposed temperature drop
across the layer of thickness h. Lengths are measured in
units of h, time in units of h2=", and temperature in units
of !T. The velocity vector field uðx; y; tÞ ¼ îuðx; y; tÞþ
ĵvðx; y; tÞ satisfies no-penetration and free-slip (stress-
free) boundary conditions, and the temperature field
Tðx; y; tÞ is isothermal on the vertical boundaries at y ¼ 0
and y ¼ 1 as shown in Fig. 1. All dependent variables, u, v,
T, and the pressure field pðx; y; tÞ, are periodic in the
horizontal direction x with period " (the aspect ratio).

Taking the curl of (1) one obtains the evolution equation
for the scalar vorticity ! ¼ @v=@x& @u=@y,
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side of (11) is an upper bound on Nu. For the problem at
hand we may use the piecewise linear profile shown in
Fig. 2 where the thickness & of the ‘‘boundary layers’’ is to
be determined as a function of Ra to satisfy Q ( 0. With
this choice of $ðyÞ the bound will be

Nu ) 1

2&ð1& bÞ &
b

1& b
: (13)

v=0,  u/  y = 0

T=0

T=1
0

y

1

0
x

T = 0

T = 1
x

y v = 0,
?u
?y

= 0

1

T = 0

T =1

= 0

u
y

= 0

= 0

!!" x !!"!!"

0
0

!!"
1

y

FIG. 1. Geometry for the 2d stress-free convection problem.
Boundary conditions for T, u, v, and the vorticity ! at the
isothermal no-slip vertical boundaries are shown. All these
variables as well as the pressure p are periodic in the horizontal
direction with period ".

PRL 106, 244501 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
17 JUNE 2011

244501-2

The dimensionless equations of motion for the
Boussinesq approximation are

1

Pr

!
@u

@t
þ u "ru

"
þrp ¼ r2uþ RaĵT; (1)
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and the Rayleigh number Ra ¼ g#!Th3=!" where g is
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sion coefficient, and !T is the imposed temperature drop
across the layer of thickness h. Lengths are measured in
units of h, time in units of h2=", and temperature in units
of !T. The velocity vector field uðx; y; tÞ ¼ îuðx; y; tÞþ
ĵvðx; y; tÞ satisfies no-penetration and free-slip (stress-
free) boundary conditions, and the temperature field
Tðx; y; tÞ is isothermal on the vertical boundaries at y ¼ 0
and y ¼ 1 as shown in Fig. 1. All dependent variables, u, v,
T, and the pressure field pðx; y; tÞ, are periodic in the
horizontal direction x with period " (the aspect ratio).
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The boundary conditions on u and v imply that ! ¼ 0 on
the vertical boundaries at y ¼ 0 and y ¼ 1.
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Nu ¼ 1þ hvTi, where h"i represents the spatial and long
time average, in terms of Ra, Pr, and ". Toward this end we
utilize the background method [21], a mathematical device
introduced by Hopf to establish the existence of weak
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domains [22]. For convection problems the background
method involves decomposing the temperature field into
a background profile $ðyÞ which satisfies the vertical
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turbation term %ðx; y; tÞ satisfying homogeneous boundary
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Hence if we can choose the background profile $ðyÞ and
coefficients a > 0 and 0< b< 1 so that Q ( 0 for all
relevant %, ! and v, then the first term on the right hand
side of (11) is an upper bound on Nu. For the problem at
hand we may use the piecewise linear profile shown in
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where the Prandtl number Pr ¼ !=" is the ratio of the
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and the Rayleigh number Ra ¼ g#!Th3=!" where g is
the acceleration of gravity, # is the fluid’s thermal expan-
sion coefficient, and !T is the imposed temperature drop
across the layer of thickness h. Lengths are measured in
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of !T. The velocity vector field uðx; y; tÞ ¼ îuðx; y; tÞþ
ĵvðx; y; tÞ satisfies no-penetration and free-slip (stress-
free) boundary conditions, and the temperature field
Tðx; y; tÞ is isothermal on the vertical boundaries at y ¼ 0
and y ¼ 1 as shown in Fig. 1. All dependent variables, u, v,
T, and the pressure field pðx; y; tÞ, are periodic in the
horizontal direction x with period " (the aspect ratio).
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The boundary conditions on u and v imply that ! ¼ 0 on
the vertical boundaries at y ¼ 0 and y ¼ 1.
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to derive upper bounds on the Nusselt number defined as
Nu ¼ 1þ hvTi, where h"i represents the spatial and long
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introduced by Hopf to establish the existence of weak
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a background profile $ðyÞ which satisfies the vertical
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r " u ¼ 0; (2)

@T

@t
þ u " rT ¼ r2T; (3)

where the Prandtl number Pr ¼ !=" is the ratio of the
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and y ¼ 1 as shown in Fig. 1. All dependent variables, u, v,
T, and the pressure field pðx; y; tÞ, are periodic in the
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The boundary conditions on u and v imply that ! ¼ 0 on
the vertical boundaries at y ¼ 0 and y ¼ 1.

The goal of the analysis is to use the equations of motion
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time average, in terms of Ra, Pr, and ". Toward this end we
utilize the background method [21], a mathematical device
introduced by Hopf to establish the existence of weak
solutions to the Navier-Stokes equations in bounded
domains [22]. For convection problems the background
method involves decomposing the temperature field into
a background profile $ðyÞ which satisfies the vertical

boundary conditions [$ð0Þ ¼ 1 and $ð1Þ ¼ 0] and a per-
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temperature Eq. (3) implies

@%

@t
þ u "r% ¼ r2%þ $00ðyÞ & v$0ðyÞ: (5)

Then the equations of motion together with the boundary
conditions and the background decomposition imply

1

2 Pr

d

dt
kuk22 ¼ &k!k22 þ Ra

Z
v%dxdy; (6)

1

2 Pr

d

dt
k!k22 ¼ &kr!k22 þ Ra

Z
!
@%

@x
dxdy; (7)

1

2

d

dt
k%k22 ¼ &kr%k22 &

Z #
$0
@%

@y
þ $0v%

$
dxdy; (8)

krTk22 ¼ kr%k22 þ 2
Z

$0
@%

@y
dxdyþ k$0k22; (9)

where k "k 2 is the L
2 norm on the spatial domain and the

elementary identity kruk22 ¼ k!k22 was used in (6).
It is well known that the equations of motion imply

Nu ¼ hkrTk2i [10,11]. Thus, given coefficients a and b
with precise values to be determined, combining (6)–(9)
according to

b

Ra
' ð6Þ þ a

Ra3=2
' ð7Þ þ 2' ð8Þ þ ð9Þ; (10)

applying the long time average—remarking that it can be
shown within the background method that the time aver-
ages of the time derivatives vanish [11,21]—and dividing
by ", the Nusselt number is expressed

Nu ¼ 1

1& b

!Z 1

0
$0ðyÞ2dy& b

"
& 1

1& b
Q; (11)

where

Q ¼
%
jr%j2 þ a

Ra3=2
jr!j2 þ b

Ra
j!j2 þ 2$0v%

& a

Ra1=2
!
@%

@x

&
: (12)

Hence if we can choose the background profile $ðyÞ and
coefficients a > 0 and 0< b< 1 so that Q ( 0 for all
relevant %, ! and v, then the first term on the right hand
side of (11) is an upper bound on Nu. For the problem at
hand we may use the piecewise linear profile shown in
Fig. 2 where the thickness & of the ‘‘boundary layers’’ is to
be determined as a function of Ra to satisfy Q ( 0. With
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ĵvðx; y; tÞ satisfies no-penetration and free-slip (stress-
free) boundary conditions, and the temperature field
Tðx; y; tÞ is isothermal on the vertical boundaries at y ¼ 0
and y ¼ 1 as shown in Fig. 1. All dependent variables, u, v,
T, and the pressure field pðx; y; tÞ, are periodic in the
horizontal direction x with period " (the aspect ratio).

Taking the curl of (1) one obtains the evolution equation
for the scalar vorticity ! ¼ @v=@x& @u=@y,

1

Pr

!
@!

@t
þ u "r!

"
¼ r2!þ Ra

@T

@x
: (4)
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coefficients a > 0 and 0< b< 1 so that Q ( 0 for all
relevant %, ! and v, then the first term on the right hand
side of (11) is an upper bound on Nu. For the problem at
hand we may use the piecewise linear profile shown in
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be determined as a function of Ra to satisfy Q ( 0. With
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where the Prandtl number Pr ¼ !=" is the ratio of the
fluid’s kinematic viscosity ! to its thermal diffusivity ",
and the Rayleigh number Ra ¼ g#!Th3=!" where g is
the acceleration of gravity, # is the fluid’s thermal expan-
sion coefficient, and !T is the imposed temperature drop
across the layer of thickness h. Lengths are measured in
units of h, time in units of h2=", and temperature in units
of !T. The velocity vector field uðx; y; tÞ ¼ îuðx; y; tÞþ
ĵvðx; y; tÞ satisfies no-penetration and free-slip (stress-
free) boundary conditions, and the temperature field
Tðx; y; tÞ is isothermal on the vertical boundaries at y ¼ 0
and y ¼ 1 as shown in Fig. 1. All dependent variables, u, v,
T, and the pressure field pðx; y; tÞ, are periodic in the
horizontal direction x with period " (the aspect ratio).

Taking the curl of (1) one obtains the evolution equation
for the scalar vorticity ! ¼ @v=@x& @u=@y,
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The boundary conditions on u and v imply that ! ¼ 0 on
the vertical boundaries at y ¼ 0 and y ¼ 1.

The goal of the analysis is to use the equations of motion
to derive upper bounds on the Nusselt number defined as
Nu ¼ 1þ hvTi, where h"i represents the spatial and long
time average, in terms of Ra, Pr, and ". Toward this end we
utilize the background method [21], a mathematical device
introduced by Hopf to establish the existence of weak
solutions to the Navier-Stokes equations in bounded
domains [22]. For convection problems the background
method involves decomposing the temperature field into
a background profile $ðyÞ which satisfies the vertical

boundary conditions [$ð0Þ ¼ 1 and $ð1Þ ¼ 0] and a per-
turbation term %ðx; y; tÞ satisfying homogeneous boundary
conditions [%ðx; 0; tÞ ¼ 0 ¼ %ðx; 1; tÞ] so that Tðx; y; tÞ ¼
$ðyÞ þ %ðx; y; tÞ [11]. Implementing this decomposition the
temperature Eq. (3) implies
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where k "k 2 is the L
2 norm on the spatial domain and the

elementary identity kruk22 ¼ k!k22 was used in (6).
It is well known that the equations of motion imply

Nu ¼ hkrTk2i [10,11]. Thus, given coefficients a and b
with precise values to be determined, combining (6)–(9)
according to
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applying the long time average—remarking that it can be
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ages of the time derivatives vanish [11,21]—and dividing
by ", the Nusselt number is expressed
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Hence if we can choose the background profile $ðyÞ and
coefficients a > 0 and 0< b< 1 so that Q ( 0 for all
relevant %, ! and v, then the first term on the right hand
side of (11) is an upper bound on Nu. For the problem at
hand we may use the piecewise linear profile shown in
Fig. 2 where the thickness & of the ‘‘boundary layers’’ is to
be determined as a function of Ra to satisfy Q ( 0. With
this choice of $ðyÞ the bound will be

Nu ) 1

2&ð1& bÞ &
b

1& b
: (13)

v=0,  u/  y = 0

T=0

T=1
0

y

1

0
x

T = 0

T = 1
x

y v = 0,
?u
?y

= 0

1

T = 0

T =1

= 0

u
y

= 0

= 0

!!" x !!"!!"

0
0

!!"
1

y

FIG. 1. Geometry for the 2d stress-free convection problem.
Boundary conditions for T, u, v, and the vorticity ! at the
isothermal no-slip vertical boundaries are shown. All these
variables as well as the pressure p are periodic in the horizontal
direction with period ".

PRL 106, 244501 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
17 JUNE 2011

244501-2

The dimensionless equations of motion for the
Boussinesq approximation are

1

Pr

!
@u

@t
þ u "ru

"
þrp ¼ r2uþ RaĵT; (1)
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where the Prandtl number Pr ¼ !=" is the ratio of the
fluid’s kinematic viscosity ! to its thermal diffusivity ",
and the Rayleigh number Ra ¼ g#!Th3=!" where g is
the acceleration of gravity, # is the fluid’s thermal expan-
sion coefficient, and !T is the imposed temperature drop
across the layer of thickness h. Lengths are measured in
units of h, time in units of h2=", and temperature in units
of !T. The velocity vector field uðx; y; tÞ ¼ îuðx; y; tÞþ
ĵvðx; y; tÞ satisfies no-penetration and free-slip (stress-
free) boundary conditions, and the temperature field
Tðx; y; tÞ is isothermal on the vertical boundaries at y ¼ 0
and y ¼ 1 as shown in Fig. 1. All dependent variables, u, v,
T, and the pressure field pðx; y; tÞ, are periodic in the
horizontal direction x with period " (the aspect ratio).

Taking the curl of (1) one obtains the evolution equation
for the scalar vorticity ! ¼ @v=@x& @u=@y,
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The boundary conditions on u and v imply that ! ¼ 0 on
the vertical boundaries at y ¼ 0 and y ¼ 1.

The goal of the analysis is to use the equations of motion
to derive upper bounds on the Nusselt number defined as
Nu ¼ 1þ hvTi, where h"i represents the spatial and long
time average, in terms of Ra, Pr, and ". Toward this end we
utilize the background method [21], a mathematical device
introduced by Hopf to establish the existence of weak
solutions to the Navier-Stokes equations in bounded
domains [22]. For convection problems the background
method involves decomposing the temperature field into
a background profile $ðyÞ which satisfies the vertical

boundary conditions [$ð0Þ ¼ 1 and $ð1Þ ¼ 0] and a per-
turbation term %ðx; y; tÞ satisfying homogeneous boundary
conditions [%ðx; 0; tÞ ¼ 0 ¼ %ðx; 1; tÞ] so that Tðx; y; tÞ ¼
$ðyÞ þ %ðx; y; tÞ [11]. Implementing this decomposition the
temperature Eq. (3) implies
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where k "k 2 is the L
2 norm on the spatial domain and the

elementary identity kruk22 ¼ k!k22 was used in (6).
It is well known that the equations of motion imply
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with precise values to be determined, combining (6)–(9)
according to
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by ", the Nusselt number is expressed

Nu ¼ 1

1& b

!Z 1

0
$0ðyÞ2dy& b

"
& 1

1& b
Q; (11)

where

Q ¼
%
jr%j2 þ a

Ra3=2
jr!j2 þ b

Ra
j!j2 þ 2$0v%

& a

Ra1=2
!
@%

@x

&
: (12)

Hence if we can choose the background profile $ðyÞ and
coefficients a > 0 and 0< b< 1 so that Q ( 0 for all
relevant %, ! and v, then the first term on the right hand
side of (11) is an upper bound on Nu. For the problem at
hand we may use the piecewise linear profile shown in
Fig. 2 where the thickness & of the ‘‘boundary layers’’ is to
be determined as a function of Ra to satisfy Q ( 0. With
this choice of $ðyÞ the bound will be
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Boundary conditions for T, u, v, and the vorticity ! at the
isothermal no-slip vertical boundaries are shown. All these
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where the Prandtl number Pr ¼ !=" is the ratio of the
fluid’s kinematic viscosity ! to its thermal diffusivity ",
and the Rayleigh number Ra ¼ g#!Th3=!" where g is
the acceleration of gravity, # is the fluid’s thermal expan-
sion coefficient, and !T is the imposed temperature drop
across the layer of thickness h. Lengths are measured in
units of h, time in units of h2=", and temperature in units
of !T. The velocity vector field uðx; y; tÞ ¼ îuðx; y; tÞþ
ĵvðx; y; tÞ satisfies no-penetration and free-slip (stress-
free) boundary conditions, and the temperature field
Tðx; y; tÞ is isothermal on the vertical boundaries at y ¼ 0
and y ¼ 1 as shown in Fig. 1. All dependent variables, u, v,
T, and the pressure field pðx; y; tÞ, are periodic in the
horizontal direction x with period " (the aspect ratio).

Taking the curl of (1) one obtains the evolution equation
for the scalar vorticity ! ¼ @v=@x& @u=@y,
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The boundary conditions on u and v imply that ! ¼ 0 on
the vertical boundaries at y ¼ 0 and y ¼ 1.

The goal of the analysis is to use the equations of motion
to derive upper bounds on the Nusselt number defined as
Nu ¼ 1þ hvTi, where h"i represents the spatial and long
time average, in terms of Ra, Pr, and ". Toward this end we
utilize the background method [21], a mathematical device
introduced by Hopf to establish the existence of weak
solutions to the Navier-Stokes equations in bounded
domains [22]. For convection problems the background
method involves decomposing the temperature field into
a background profile $ðyÞ which satisfies the vertical

boundary conditions [$ð0Þ ¼ 1 and $ð1Þ ¼ 0] and a per-
turbation term %ðx; y; tÞ satisfying homogeneous boundary
conditions [%ðx; 0; tÞ ¼ 0 ¼ %ðx; 1; tÞ] so that Tðx; y; tÞ ¼
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temperature Eq. (3) implies
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It is well known that the equations of motion imply

Nu ¼ hkrTk2i [10,11]. Thus, given coefficients a and b
with precise values to be determined, combining (6)–(9)
according to

b

Ra
' ð6Þ þ a

Ra3=2
' ð7Þ þ 2' ð8Þ þ ð9Þ; (10)

applying the long time average—remarking that it can be
shown within the background method that the time aver-
ages of the time derivatives vanish [11,21]—and dividing
by ", the Nusselt number is expressed

Nu ¼ 1

1& b

!Z 1

0
$0ðyÞ2dy& b

"
& 1

1& b
Q; (11)

where

Q ¼
%
jr%j2 þ a

Ra3=2
jr!j2 þ b

Ra
j!j2 þ 2$0v%

& a

Ra1=2
!
@%

@x

&
: (12)

Hence if we can choose the background profile $ðyÞ and
coefficients a > 0 and 0< b< 1 so that Q ( 0 for all
relevant %, ! and v, then the first term on the right hand
side of (11) is an upper bound on Nu. For the problem at
hand we may use the piecewise linear profile shown in
Fig. 2 where the thickness & of the ‘‘boundary layers’’ is to
be determined as a function of Ra to satisfy Q ( 0. With
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FIG. 1. Geometry for the 2d stress-free convection problem.
Boundary conditions for T, u, v, and the vorticity ! at the
isothermal no-slip vertical boundaries are shown. All these
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Applying the horizontal Fourier transform and introduc-
ing the shorthand D ¼ d

dy , it is evident that positivity ofQ
is equivalent to the positivity of
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for each horizontal wave number k where k %k is now the
L2 norm on complex valued functions of y 2 ½0; 1' and
Ref%g indicates the real part of a complex quantity. The
Cauchy-Schwarz and Young inequalities imply
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Restricting a2 < 4b, the task is to dominate the indefinite
boundary layer integrals by the positive definite terms.

The Fourier coefficients of the vertical velocity and
vorticity (suppressing the time dependence) are related by
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Integrating the modulus squared of both sides with a
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A similar pointwise bound holds for the imaginary part of
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the prefactor in the bound—and minimizing the suitable #

over k, this is satisfied by choosing # ¼ 24=3%55=12
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where k ¼ 1
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Inserting these # and b into (13) we see that for Ra> 33:57
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FIG. 2. Background profile with boundary layers of thickness
0< # ( 1

2 in which "0ðyÞ ¼ $ 1
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0ðyÞ - 0 for #<y< 1$ #.
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Restricting a2 < 4b, the task is to dominate the indefinite
boundary layer integrals by the positive definite terms.

The Fourier coefficients of the vertical velocity and
vorticity (suppressing the time dependence) are related by
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applying Hölder’s inequality, it is evident that

jv̂kðyÞj (
33=4

23=2
k1=2 minfy; 1$ ygk!̂kk: (24)

Because !̂kðyÞ vanishes at y ¼ 0 and 1, applications of
the fundamental theorem of calculus and Cauchy-Schwarz
inequality yield the pointwise bounds

j!̂kðyÞj ( y1=2
%Z 1=2

0
kD!̂kðy0Þk2dy0

&
1=2

(25)

for 0 ( y ( 1=2 and, for 1=2 ( y ( 1,

j!̂kðyÞj ( ð1$ yÞ1=2
%Z 1

1=2
jD!̂kðy0Þj2dy0

&
1=2

: (26)

Using (24)–(26), we conclude

1

#

########
Z #

0
v̂kðyÞ!̂#kðyÞdyþ

Z 1

1$#
v̂kðyÞ!̂#kðyÞdy

########

( 33=2

52 , 22
k#3k!̂kk2 þ kD!̂kk2: (27)

Hence Qk ) 0 is guaranteed by a # small enough that

ak2

Ra3=2
þ 1

Ra

%
b$ a2

4

&
$ 33=2k

52 , 22
#3 ) 0: (28)

Inserting a ¼ 2ffiffiffiffi
15

p and b ¼ 1
5 into (28)—chosen to minimize

the prefactor in the bound—and minimizing the suitable #

over k, this is satisfied by choosing # ¼ 24=3%55=12
33=4

Ra$5=12

where k ¼ 1
31=4%51=4 Ra

1=4 is the minimizing wave number.

Inserting these # and b into (13) we see that for Ra> 33:57
(actually for Ra> 27

4 $
4)

Nu ( 57=12 , 33=4

213=3
Ra5=12 $ 1

4
& 0:2891Ra5=12: (29)

FIG. 2. Background profile with boundary layers of thickness
0< # ( 1

2 in which "0ðyÞ ¼ $ 1
2# ; "

0ðyÞ - 0 for #<y< 1$ #.

PRL 106, 244501 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
17 JUNE 2011

244501-3

  . 



Applying the horizontal Fourier transform and introduc-
ing the shorthand D ¼ d

dy , it is evident that positivity ofQ
is equivalent to the positivity of

Q k ¼ kD!̂kk2 þ k2k!̂kk2 þ
a

Ra3=2
kD!̂kk2

þ a

Ra3=2
k2k!̂kk2 þ

b

Ra
k!̂kk2

þ Re
!
2
Z 1

0
"0v̂k!̂

#
kdy$

aik

Ra1=2

Z 1

0
!̂k!̂

#
kdy

"
(14)

for each horizontal wave number k where k %k is now the
L2 norm on complex valued functions of y 2 ½0; 1' and
Ref%g indicates the real part of a complex quantity. The
Cauchy-Schwarz and Young inequalities imply

########
aik

Ra1=2

Z 1

0
!̂k!̂

#
kdy

########(
a2

4Ra
k!̂kk2 þ k2k!̂kk2 (15)

so dropping the manifestly non-negative term kD!̂kk2,

Q k ) kD!̂kk2 þ
$
ak2

Ra3=2
þ 1

Ra

%
b$ a2

4

&'
k!̂kk2

$ 1

#
Re

!Z #

0
v̂kðyÞ!̂#kðyÞdyþ

Z 1

1$#
v̂kðyÞ!̂#kðyÞdy

"
:

(16)

Restricting a2 < 4b, the task is to dominate the indefinite
boundary layer integrals by the positive definite terms.

The Fourier coefficients of the vertical velocity and
vorticity (suppressing the time dependence) are related by

ik!̂kðyÞ ¼ D2v̂kðyÞ $ k2v̂kðyÞ: (17)

Integrating the modulus squared of both sides with a
simple integration by parts implies

k2k!̂kk22 ¼ kD2vkk2 þ 2k2kDvkk2 þ k4kvkk2: (18)

On the other hand, integration by parts and the Cauchy-
Schwarz and Young inequalities yield

2

3
k2kDv̂kk2 (

1

9
kD2v̂kk22 þ k4kv̂kk2 (19)

so that, combining (18) and (19),

k2k!̂kk22 )
8

9
kD2v̂kk2 þ

8

3
k2kDv̂kk2: (20)

Boundary conditions on v̂kðyÞ dictate that
Z 1

0
RefDv̂kðyÞgdy ¼ Refv̂kðyÞgky¼1

y¼0 ¼ 0 (21)

so 9y0 2 ð0; 1Þ such that RefDv̂kðy0Þg ¼ 0. The funda-
mental theorem of calculus followed by application of
the Cauchy-Schwarz and Young inequalities imply

ðRefDv̂kðyÞgÞ2¼2
Z y

y0

RefD2v̂kðy0ÞgRefDv̂kðy0Þgdy0

(
ffiffiffiffiffiffi
27

p

8k

%
8

9
kRefD2v̂kgk2þ

8

3
k2kRefDv̂kgk2

&
:

(22)

A similar pointwise bound holds for the imaginary part of
Dv̂kðyÞ so its modulus squared satisfies

jDv̂kðyÞj2 (
ffiffiffiffiffiffi
27

p

8k

%
8

9
kD2v̂kk2 þ

8

3
k2kDv̂kk2

&

( 33=2

8
kk!̂kk2: (23)

Thus, integrating Dv̂k from 0 to y or from 1$ y to 1 and
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Applying the horizontal Fourier transform and intro-
ducing the shorthandD = d

dy , it is evident that positivity
of Q is equivalent to the positivity of

Qk = kD✓̂kk2 + k

2k✓̂kk2 +
a

Ra3/2
kD!̂kk2

+
a

Ra3/2
k

2k!̂kk2 +
b

Ra
k!̂kk2 (14)

+ Re

⇢
2

Z 1

0
⌧

0
v̂k ✓̂

⇤
kdy � aik

Ra1/2

Z 1

0
!̂k ✓̂

⇤
kdy

�

for each horizontal wavenumber k where k · k is now the
L

2 norm on complex valued functions of y 2 [0, 1] and
Re {·} indicates the real part of a complex quantity. The
Cauchy-Schwarz and Young inequalities imply
����
a i k

Ra1/2

Z 1

0
!̂k✓̂

⇤
kdy

����  a

2

4Ra
k !̂kk2 + k

2k✓̂kk2 (15)

so dropping the manifestly non-negative term kD!̂kk2,

Qk � kD✓̂kk2 +


ak

2

Ra3/2
+

1

Ra

✓
b � a

2

4

◆�
k !̂kk2

�1

�

Re

(Z �

0
v̂k(y)✓̂

⇤
k(y)dy +

Z 1

1��
v̂k(y)✓̂

⇤
k(y)dy

�
.(16)

Restricting a2 < 4b, the task is to dominate the indefinite
boundary layer integrals by the positive definite terms.

The Fourier coe�cients of the vertical velocity and vor-
ticity (suppressing the time dependence) are related by
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A similar pointwise bound holds for the imaginary part
of Dv̂k(y) so its modulus squared satisfies

|Dv̂k(y)|2 
p
27

8k

�
8
9kD2

v̂kk2 + 8
3k

2kDv̂kk2
�

 33/2

8 kk !̂kk2. (23)
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Applying the horizontal Fourier transform and introduc-
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for each horizontal wave number k where k %k is now the
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Restricting a2 < 4b, the task is to dominate the indefinite
boundary layer integrals by the positive definite terms.

The Fourier coefficients of the vertical velocity and
vorticity (suppressing the time dependence) are related by
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Rigorous bounds on heat transport are derived for thermal convection between9

stress-free horizontal plates. For three-dimensional Rayleigh–Bénard convection at10

infinite Prandtl number (Pr), the Nusselt number (Nu) is bounded according to11

Nu 6 0.28764Ra5/12 where Ra is the standard Rayleigh number. For convection driven12

by a uniform steady internal heat source between isothermal boundaries, the spatially13

and temporally averaged (non-dimensional) temperature is bounded from below by14

hTi > 0.6910R�5/17 in three dimensions at infinite Pr and by hTi > 0.8473R�5/17 in15

two dimensions at arbitrary Pr , where R is the heat Rayleigh number proportional to16

the injected flux.17

1. Introduction18
Q1

The fundamental mathematical model of thermal convection, i.e. b̂uoyancy driven19

flows sustained by temperature fluctuations, uses the B̂oussinesq approximation to the20

Navier–Stokes equations as employed in Lord Rayleigh’s (Rayleigh 1916) analysis of21

conditions for onset in a fluid confined between fixed-temperature boundaries. Strongly22

forced thermal convection is of great interest for geophysical and astrophysical23

applications (Ahlers 2009; Ahlers, Grossmann & Lohse 2009b) but the model24

cannot be solved analytically in the turbulent regime. Competing theories for the25

enhancement of vertical heat transport by turbulent convection emerged decades26

ago (Malkus 1954; Kraichnan 1962; Spiegel 1971), and more recently Grossmann27

& Lohse (2000, 2001, 2002, 2011) introduced a theoretical approach that contains,28

and to some extent unifies, some of those predictions. However, recent experimental29

studies of turbulent convection report conflicting results (Funfschilling, Bodenschatz &30

Ahlers 2009; Ahlers, Funfschilling & Bodenschatz 2009a; Roche et al. 2010; Urban,31

Musilová & Skrbek 2011; He et al. 2012) and the basic model still presents great32

challenges for direct numerical simulation in the asymptotic turbulent regime due to33

finite computational resource (i.e. resolution) limitations (Johnston & Doering 2009;34

Stevens, Verzicco & Lohse 2010; Stevens, Lohse & Verzicco 2011). Nevertheless,35

r̂igorous bounds on the heat transport in turbulent solutions of the basic model can36
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This 5
12 exponent for the Nu-Ra upper bound scaling,

albeit with a prefactor 0.142, was conjectured by Otero
from a numerical study nearly a decade ago [18]. The proof
here puts that result on firm analytical ground. The Nu-Ra
scaling and the distinguished horizontal wave number
scaling k! Ra1=4 also agree with those conjectured by
Ierley, Plasting, and Kerswell following a careful combi-
nation of numerical and asymptotic analyses of the upper
bound problem for infinite Prandtl number Rayleigh-
Bénard convection in three spatial dimensions with free-
slip boundaries [20]. In fact the analysis in this Letter can
be extended to that case because there is no vortex stretch-
ing at Pr ¼ 1 so an enstrophy balance akin to (7) is
realized for free-slip boundaries [23].

While the rigorous bound ! # 5
12 $ 0:4167 for the

model of Rayleigh-Bénard convection considered here is
still well above that observed in most experiments and
direct numerical simulations, it has significant ramifica-
tions from a theoretical point of view. There are several
theoretical predictions of Ra1=2 scaling of the heat trans-
port in the ultimate regime of asymptotically high Raleigh
numbers [7–9] and the result proved here shows that those
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g$!Th

p
and their heat con-
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2 exponent will
appear if the physical boundary layers are negligible (as
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gether. This leads to the consideration of ‘‘homogeneous’’
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tions with a linear background profile are posed on a fully
periodic domain. Direct numerical simulations in three
dimensions and a closure theory have indicated that this
scaling emerges for some aspect ratios [24,25] although no
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The Nu & Ra5=12 bound derived here raises questions of
precisely how the spatial dimension and the nature of even
very thin boundary layers enter into the problem at high
Rayleigh numbers. At least in two dimensions with free-
slip boundaries, no matter how high the Rayleigh number
is it is apparent that boundary layers continue to play a
limiting role in the turbulent heat transport.
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Rayleigh-Bénard convection is the buoyancy-driven
flow of a fluid heated from below and cooled from above.
It is important for a variety of systems in the engineering,
geophysical, and astrophysical sciences, and it has long
served as a fundamental paradigm of nonlinear science,
chaos, and pattern formation. Indeed, the Boussinesq
approximation to the Navier-Stokes equations with the
boundary conditions analyzed in this Letter was
Rayleigh’s original model for calculating conditions for
onset [1], it is the basis of the Lorenz equations [2], and it
formed the foundation of developments in the modern
mathematical theory of amplitude [3] and modulation [4]
equations. Most recently, Rayleigh-Bénard convection has
been the focus of a large body of experimental, computa-
tional, theoretical, and mathematical research aimed at
characterizing the fully turbulent dynamics for application
in geophysical and astrophysical regimes [5].

Convective fluid flow increases vertical heat transport
beyond the purely conductive flux. The dimensionless
enhancement factor, the Nusselt number Nu, is both of
fundamental interest for applications and the natural and
widely recognized measure of the intensity and effective-
ness of the motion. The most basic question for Rayleigh-
Bénard convection is the dependence of Nu on (i) the
strength of the thermal forcing, commonly expressed in
terms of a dimensionless Rayleigh number Ra, (ii) the
material properties of the fluid, which within the
Boussinesq approximation is set by the dimensionless
Prandtl number Pr, the ratio of the fluid’s momentum and
thermal diffusion coefficients, (iii) the geometry, typically
the aspect ratio of the container, and (iv) the boundary
conditions. The connection between these variables is
generally complex and often not even unique, but in the
‘‘ultimate’’ high Rayleigh number regime when the flow is
turbulent, the presumed functional relation between the
Nu, Pr, and Ra is Nu" Pr!Ra". Experiments and simula-
tions with Pr ¼ Oð1Þ and no-slip boundary conditions

suggest a scaling exponent 0:27 & " & 0:40 at the highest
available Ra [5,6]. Various theories suggest (modulo pos-
sible logarithmic corrections) that Nu" Pr1=2Ra1=2 as
Ra ! 1 [7–9]. Rigorous analyses of the Boussinesq model
with no-slip velocity and isothermal (fixed temperature)
[10,11] or fixed heat flux [12] or mixed temperature [13]
boundary conditions yield upper bounds of the form
Nu ! cRa1=2 with prefactors 0< c <1 independent of
Pr, so " ¼ 1

2 and ! ¼ 1
2 cannot both hold for very large

Pr. The Nu-Ra relation is certainly different at Pr ¼ 1
where theory suggests [14] and analysis proves [15] (mod-
ulo possible logarithmic corrections) that Nu & Ra1=3.
Two-dimensional Rayleigh-Bénard convection displays

many of the physical and turbulent transport features of
three dimensional convection and has long been utilized as
a test-bed for theoretical concepts [16,17]. The effect of
free-slip (no-stress) velocity boundary conditions on de-
veloped turbulent convection has largely been unexplored
although we note that the rigorous scaling bound reported
here was anticipated by recent numerical and perturbative
investigations of transport limits for finite [18] and infinite
[19,20] Prandtl numbers. This Letter bridges that gap with
a proof that Nu ! 0:2891Ra5=12 uniformly in 0< Pr ! 1
for the Boussinesq model in two spatial dimensions with
fixed-temperature and free-slip boundaries. This result
refutes predictions of aNu" Ra1=2 ultimate regime insofar
as the theoretical arguments do not refer specifically to the
boundary conditions or the spatial dimension. This issue is
discussed further in the conclusion section at the end of the
Letter. Meanwhile the proof of the bound is presented in
sufficient detail immediately below for motivated readers
to reproduce the calculation in its entirety. The key new
idea used to derive the result emerged from intuition
developed in numerical studies of upper bounds [18,19]:
implement and exploit the bulk averaged enstrophy
balance available for two-dimensional flows with free-
slip boundaries to decrease the upper bound.
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