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@© Deep Water Formation

1. Convection

Hot rock rises and cooler

rock falls in a mantle

convection cell. 2. Conduction
After convection brings
heat to the base of the
lithosphere, conduction
carries heat through the
rigid lithosphere to the
surface.

3. Radiation
At the surface, energy
is radiated into space.
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~ The calculations which follow are based upon equations
given by Boussinesq, who has applied them to one or two
particular problems. The special limitation which charac-
terizes them is the neglect of variations of density, except in
s0 far as they modify the action of gravity. Of course, such
neglect can be justified only under certain conditions, which
Boussinesq has discussed. They are not so restrictive as to
exclude the approximate treatment of many problems of
interest.

In the present problem the case is much more compli-
cated, unless we arbitrarily limit it to two dimensions.



Minimal mathematical model:

h

i

Dynamaical variables: Temperature field T(x,t)

Velocity field a(i,) = fu+ ju + J§
Pressure field p(Xx,1)

Boundary conditions: T=1,, and jri=v=0 at y=0

I'=T ,and jru=v=0 at y=nh



Boussinesq equations:

D = .
U+ U Vu+; p vAu+ga](T T)
0=V-i %,
Q) ®
b@,, %
We want to compute the ] B, o
vertical heat flux : J, = <pc(—K£+UT)>
0y
pCK hot cold +pC UT>

/

conduction  convection
heat flux heat flux



Boussinesq equations:

We want to compute the

vertical heat flux: J = pc(_Ki’y_T + UT)>

7-;zot B 7-'cold
= CK
P h

+ pc<UT>

Lots of parameters! h, L, 1,,T,,-T.,,.8 K, P, V, Q,c



Dimensionless variables:

3
Rayleigh number : Ra = 8 sor ~ o) Prandtl number : Pr =~
VK K
| T T T+ ii-VT = AT
T=0 v=0 -
1 /= _ =_\ = - A
Y —( +u°Vu)+Vp=Au+Ra]T
Pr
T=1 L
0 l l 0 =V-u
0 P T
J
Nusselt number : Nu = » = 1+ (vT)
Jconduction Challenge:

find Nu(Ra,Pr)

~ 2 1 ~ 2
Facts: Nu = <‘VT‘ > =1+ R—a<‘Vﬁ‘> > ]
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We have also to reconsider the boundary conditions at z=0
and z=§ We may still suppose §=0 and w=0; but for a
further condition we should probably prefer dw/dz=0,
corresponding to a fixed solid wall. But this entails much
complication, and we may content ourselves with the
supposition d*w|dz*=0, which (with w=0) 18 satisfied by
taking as bhefore w proportional to sin sz with s=¢m[{. This
is equivalent to the annulment of lateral forces at the wall.



Dimensionless variables:

3
Rayleigh number : Ra = 8§y = Tepia)1 Prandtl number : Pr =~
VK K
| ! ! T+ ii-VT = AT
T=0 v=0 -
y ou ~0 1 i - = — — = ~
oy E( +u°Vu)+Vp=Au+Ra]T
T=1 w=0 ~
0 l | 0=V-u
0 P T
J
Nusselt number : Nu = ) = 1+(vT)
‘,conduction C ha l l en ge:
find Nu(Ra,Pr)

~ 2 1 ~ 2
Facts: Nu = <‘VT‘ > =1+ R—a<‘Vﬁ‘> > ]



Stability & instability
Conduction solution: u =0 T=1-y Nu=l1
* Linear analysis — sufficient condition for instability.
* Write T (x,y,t) = 1— y + 6(x,y,t) and linearize in 6....
« with 6 and v~ (6,,v,) - e *e** — eigenvalue problem:
10, (3) = (@ kDO, + D, (y) = M3 - kD, =Pr(d? — k*)*D, —PrRak? 6,
* with 6,=0 & v,=0=4 v, at boundaries y = 0,1.
« If any A has real part <0, then there 1s an instability.

* Lord R. '16: Ra>Ra,=27a%4 — A <0 — convection



Stability & instability

Conduction solution: u =0 T=1-y Nu=l1

« “Energy” analysis — sufficient condition for stability.

* Let T (x,y,t)=1—y + O(x,y,t) ... then without linearization,

d1
dt 2

1
PrRa

2

0% + ‘u

dedy = - [ l\%e\ﬁé\%faw

dxdy

= —Q{0,v}
- Q0,0 =](6,v)- S-(6,v) with symmetric linear operator S.

- If Q{6,0}>0, 1.e., all A>0for S-(6,v) =A(6,v) = stability.

Fact: Ra<Ra,=27n%4 — A_. > 0 — no convection.



Nu vs. Ra ... the big picture:

J. Fluid Mech. (1958), vol. 4, part 3, pp. 225-260

Finite amplitude cellular convection

By W. V. R. MALKUS and G. VERONIS
Woods Hole Oceanographic Institution, Woods Hole, Massachusetis

(Received 22 November 1957)

JOURNAL OF THE ATMOSPHERIC SCIENCES

Deterministic Nonperiodic Flow!

1
Z 10
EpwarD N. LORENZ
Massachusetts Institute of Technology
(Manuscript received 18 November 1962, in revised form 7 January 1963)
J. Fluid Mech. (1969), vol. 38, part 2, pp. 225-260
| Finite bandwidth, finite amplitude convection

s N\ /TN |

O By ALAN C. NEWELL

2w N Department of Planetary and Space Science,
10:1 ________________ d X?"' W—W2W*=0 Department of Mathematics
o 0 & | I \ [ \ I | 'AND J. A V}’HITEHEAD -
10 \ \ f | Institute of Geophysics and Planetary Physics,

University of California, Los Angeles
| L |
i 1

(Received 19 July 1968 and in revised form 4 March 1969)

* Nu=>1forall Ra
* Nu =1 for all Ra <Ra, = 657
*  What's the behavior of Nu for Ra>Ra_?



Nu vs. Ra ... the big picture:

T

102

Nu
101

* Nu=>1forall Ra
* Nu=1forall Ra<Ra,= 657
*  What is the behavior of Nu for Ra>>>Ra_?



Source: Proceedings of the Royal Society of London. Series A, Mathematical and Physical
Sciences, Vol. 225, No. 1161 (Aug. 31, 1954), pp. 196-212

The heat transport and spectrum of thermal turbulence*

By W. V. R. MALKUS
Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

(Communicated by S. Chandrasekhar, F.R.S.—Received 26 November 1953—
Revised 13 April 1954)
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Fig. 1. Structure of MALEUS’ 1054 theory



Malkus’ argument:

For turbulent convection, the mean
temperature profile should look like:

Nu~o6-1 ... d=f(Ra)

Assume boundary layer
thickness 1s determined by a

Horizontally & time averaged temperature

marginal stability condition:

0 1
o y 1-d

1 3
80 3 (T, =T (0h) 1 ga(T,, -T,,)h <5 = LRas?
VK 2 VK 2

Ra_, =Ra, =

_1 |
= O~Ra /s = Nu~ Raé uniformly in Pr



JourNAL oF GEOPHYSICAL RESEARCH VoLuME 67, No. 8 JuLy 1962

Thermal Turbulence at Very Small Prandtl Number*

EpwaArD A. SPIEGEL

Courant Institute of Mathematical Sciences
New York University, New York

Pr Further, in the
limit as ¢ > 0 ...

... the well-known R dependence of heat
transfer should not hold. Yet this does not seem
deducible from the Malkus approach, which
shows no Prandtl-number dependence ...



THE PHYSICS OF FLUIDS VOLUME 5, NUMBER 11 NOVEMBER 1962

Turbulent Thermal Convection at Arbitrary Prandtl Number

RoeErT H. KRAICHENAN

Courant Institute of Mathematical Sciences, New York University, New York
(Received May 24, 1962)

The mixing-length theory of turbulent thermal convection in a gravitationally unstable fluid is
extended to yield the dependence of Nusselt number H/H, on both Prandtl number ¢ and Rayleigh
number Ra. The analysis assumes a layer of Boussinesq fluid contained between infinite, horizontal,
perfectly conducting, rigid plates. Also obtained is the dependence of mean temperature deviation
T(z), rms temperature fluctuation ¥(z), and rms velocity upon height z above the bottom plate. The
theory gives H/H, « Ral’3 (high o), H/H, = (¢ Ra)??® (low o), and H/H, ~ 1 (very low o). The
boundaries of the several ¢ ranges are determined. At one intermediate Prandtl number only, the
behavior of 7(z) and {(z) reduces to that previously found by Priestley. At high ¢, there is a range
of z, outside the molecular conduction region, where 7(z) « 271, J(2) « 27t The results at very low o
reduce to those of Ledoux, Schwarzschild, and Spiegel. The dynamics are found to be importantly
modified at extremely large Ra because of the stirring action of small-scale turbulence generated in
shear boundary layers attached to the eddies of largest scale. The consequent corrected asymptotie
law of heat transport at fixed o i1s H/H, « [Ra/(In Ra)¥1’2,

Postulated “ultimate” high-Ra scaling: Nu ~ Ral/2



Spiegel s argument:

Assume transport across the bulk 1s rate-limiting factor
... 50 fluid elements ‘free-fall’ w/acceleration ~gaAT

... so vertical velocity scale 1s v ~ [ga AT h]1?

... so convective heat flux J,,,~pvcAT

conv

... and therefore Nu=1+J__/J

conv cond

~pcAT[gaAT h]V2 = (ock AT /h)

... so that Nu ~ (Pr Ra)2



J. Fluid Mech. (2000), vol. 407, pp. 27-56. Printed in the United Kingdom 27
(© 2000 Cambridge University Press

Scaling in thermal convection:
a unifying theory

By SIEGFRIED GROSSMANN! aAnND DETLEF LOHSE?

'Fachbereich Physik der Philipps-Universitit Marburg, Renthof 6, D-35032 Marburg, Germany
e-mail: grossmann(@physik.uni-marburg.de

2University of Twente, Department of Applied Physics, P.O. Box 217, 7500 AE Enschede,
The Netherlands
e-mail: lohse@tn.utwente.nl

(Received 30 April 1998 and in revised form 8 November 1999)
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F1GURE 1. Sketch of the boundary layers, (a) for low Pr where 4, < Z¢
and (b) for large Pr where 4, > Zg.
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Dominance of

€u,BL> €0,.BL

€ubulk > €0,BL

€u,BL> €0,bulk

€ubulk » €0.,bulk

BL Nu

< g 0.27Ra'/*pPr'/3

> o 0.33Ra /4 pr—1/12

< g 0.97Ra'pPr'/?

> /g (~ Ra 1/5)

< g 6.43 x 10~5Ra* 3 Pr'/3

> g 3.43 x 103 R Pr—17

< —4 1/2 1/2
“4.43 x 107*Ra'?PrV

0.038Ra '/’



week ending

PRL 103, 014503 (2009) PHYSICAL REVIEW LETTERS 3 JULY 2009

Search for the “Ultimate State” in Turbulent Rayleigh-Bénard Convection

Denis Funfschilling,l Eberhard Bodenschatz,” and Guenter Ahlers®
'LSGC CNRS - GROUPE ENSIC, BP 451, 54001 Nancy Cedex, France
*Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 Goettingen, Germany

*Department of Physics, University of California, Santa Barbara, California 93106, USA
(Received 16 April 2009; published 1 July 2009)

0-20 1 1 1 1 1 1
+++
o
0.18 f + + :F" *
*
<*>. + g
o *,Iﬂg%s
T 016} P - o> L % -
= *if:ti 3 ' i? '
++ SrxFx o
0.14 b+ W O R h&ﬂ_
g ot |
r*“M
012 1 L -+ L L L

10° 1010 1011 1012 1013 1014
Ra



Nu/Ra"®

PRL 107, 014302 (2011)

PHYSICAL REVIEW LETTERS

week ending
1 JULY 2011

Efficiency of Heat Transfer in Turbulent Rayleigh-Bénard Convection

P. Urban,! V. Musilova,' and L. Skrbek?

Unstitute of Scientific Instruments ASCR, v.v.i., Kralovopolska 147, Brno, Czech Republic
*Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague, Czech Republic
(Received 20 December 2010; published 1 July 2011)
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FIG. 2 (color online). The compensated NuRa~!/3 plot versus
Ra: our measured data (without wall correction) are shown as
(red filled) circles with error bars representing the total uncer-
tainty in NuRa~!/3 caused by uncertainties in the determination
of T,, (4 mK), p (0.1%), AT (2 mK) and heat power to the
bottom plate (0.5%); (red, yellow filled) circles are our data with
the wall corrections applied as described in the text; (olive)
triangles and open (olive) triangles represent the uncorrected
and corrected (I' = 1.14) Grenoble data set [7]; solid (blue)
squares and open (blue) squares are the uncorrected and
corrected (I' = 1) data sets from Trieste (7,, = 5.34 = 0.02 K)
[9]. The dashed (red) line is functional dependence Nu =
0.172Ra*7, the dotted line Nu = 0.156Ra*’, and the solid
line Nu = 0.0508Ra'/3.



PRL 108, 024502 (2012)

|84 Selected for a Viewpoint in Physics

PHYSICAL REVIEW LETTERS

week ending
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£

Transition to the Ultimate State of Turbulent Rayleigh-Bénard Convection

Xiaozhou He,! Denis Funfschilling,2 Holger Nobach,1 Eberhard Bodenschatz,l’3’4

and Guenter Ahlers’

"Max Planck Institute for Dynamics and Self Organization, D-37073 Géttingen, Germany
LRGP CNRS - GROUPE ENSIC, BP 451, 54001 Nancy Cedex, France

3Institute for Nonlinear Dynamics, University of Gottingen, D-37073 Géttingen, Germany
*Laboratory of Atomic and Solid-State Physics and Sibley School of Mechanical and Aerospace Engineering,

Cornell University, Ithaca, New York 14853

>Department of Physics, University of California, Santa Barbara, California 93106, USA
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Turbulent transport bounds:

J. Fluid Mech. 17 (1963) 405-432 VOLUME 69, NUMBER 11 PHYSICAL REVIEW LETTERS 14 SEPTEMBER 1992

Energy Dissipation in Shear Driven Turbulence

Heat transport by turbulent convecti )
Charles R. Doering ™2

By LOUIS N. HOWARD Department of Physics and Institute for Nonlinear Studies, Clarkson University, Potsdam, New York, 13699-5820

Peter Constantin ®
Nu < C Ral/2 Department of Mathematics, University of Chicago, Chicago, Illinois 60637
(Received 21 February 1992; revised manuscript received 13 August 1992)

uniformly in Pr

PHYSICAL REVIEW E VOLUME 49, NUMBER 5 MAY 1994
J. Fluid Mech. 37 (1969) 457-477. Variational bounds on energy dissipation in incompressible flows: Shear flow
I (.

On Howard s upper bound for heat Charles R. Doering
. Department of Physics, Clarkson University, Potsdam, New York 13699-5820

transport by turbulent convection , L

eter Constantin
Department of Mathematics, University of Chicago, Chicago, Illinois 60637
By F. H. BUSSE (Received 18 October 1993)

Nu < cRal”2
uniformly in Pr

PHYSICAL REVIEW E VOLUME 53, NUMBER 6 JUNE 1996

Variational bounds on energy dissipation in incompressible flows. III. Convection

. . Charles R. Doering*
no—Sllp bO u nda rles, Center for Nonlinear Studies, MS-B258, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

2 -d an d 3 -d Peter Constantin®

Department of Mathematics, University of Chicago, Chicago, Illinois 60637 e

PHYSICA [

Unification of variational principles for turbulent shear flows:
the background method of Doering—Constantin and
the mean-fluctuation formulation of Howard-Busse

PHYSICA [

ELSEVIER Physica D 101 (1997) 178-190 —_—————— ELSEVIER Physica D 121 (1998) 175-192

(Received 8 May 1995; revised manuscript received 16 January 1996)

Improved variational principle for bounds on energy dissipation in
turbulent shear flow

Rolf Nicodemus !, Siegfried Grossmann 2, Martin Holthaus *
Fachbereich Physik der Philipps-Universitit, Renthof 6, D-35032 Marburg, Germany R.R. Kerswell 1

Received 18 July 1996; revised 2 September 1996; accepted 3 September 1996 Department of Mathematics, University of Bristol, Bristol, BS8 1TW, UK

Communicated by FH. Busse Received 15 October 1997; received in revised form 5 February 1998; accepted 27 March 1998
Communicated by F.H. Busse




Turbulent transport bounds:

J. Fluid Mech. (2003), vol. 477, pp. 363-379.  (© 2003 Cambridge University Press 363

Improved upper bound on the energy
dissipation rate in plane Couette flow: the
full solution to Busse’s problem and the
Constantin—Doering—Hopf problem with
one-dimensional background field

By S. C. PLASTING axp R. R. KERSWELL
Department of Mathematics, University of Bristol, Bristol, BS§ 1TW, UK

Nu <.02634Ral”?
uniformly in Pr

1n 2-d & 3-d



J. Fluid Mech. (2006), vol. 560, pp. 159-227. (© 2006 Cambridge University Press 159
doi:10.1017/S0022112006000450  Printed in the United Kingdom

idence:
1/3

Infinite-Prandtl-number convection. Part 2. Numeric

A singular limit of upper bound theory

By G. R. IERLEY!, R. R. KERSWELL?>AND S. C. PLASTING?®

J. Fluid Mech. (2006), vol. 560, pp. 229-241.  (© 2006 Cambridge University Press 9
doi:10.1017/S0022112006000097  Printed in the United Kingdom
Bounds on vertical heat transpor

A
Ke& Theorem:

1nﬁn1te—Prandtl-numbef Raylelﬂ‘\‘ Nu < .644xRa'® [In(Ra)]
convection \

at Pr=w
By CHARLES R. DOERING/, X OTTO?

AND MARIA G. i‘NI F23
&) "AL PHYSICS 52, 083702 (2011)
Theorem:

tion: Improved bounds
Nu < C Ra'®In[In(Ra)]'/?

at Pr = o

JOURNAL



J. Fluid Mech. (2006), vol. 560, pp. 159-227. (© 2006 Cambridge University Press 159
doi:10.1017/S0022112006000450  Printed in the United Kingdom

Infinite-Prandtl-number convection. Part 2.
A singular limit of upper bound theory

By G. R. IERLEY!, R. R. KERSWELL?AND S. C. PLASTING?

Numerical evidence: “In the case of free-slip, we
find an asymptotic scaling [bound] of Nu < ¢Ra®12”



Turbulent transport bounds:

BOUNDS FOR THE HEAT
TRANSPORT IN TURBULENT
CONVECTION

Q? '{‘
A A
Q{’ 60’{ ‘(0’ by
@ \y (\. Jesse Otero

&

@’\ 8 OQ
;\{Qz S

, O A dissertation submitted in partial fulfillment
V ¢ of the requirements for the degree of

\,’3\. Doctor of Philosophy
A\ (Mathematics)

in The University of Michigan
2002



Turbulent transport bounds:
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Figure 6.2: Semi-optimal bound. The dotted line shows the numerical bound.
The solid line is a graph of Nu = .142Ra”12,



week ending

PRL 106, 244501 (2011) PHYSICAL REVIEW LETTERS 17 JUNE 2011

Ultimate State of Two-Dimensional Rayleigh-Bénard Convection between
Free-Slip Fixed-Temperature Boundaries

Center for Nonlinear Studies (CNLS) and
Computational Physics Group (CCS-2),
Los Alamos National Laboratory
Jared P. Whitehead}\’>X< and Charles R. Doering"*>""

'Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1034, USA
“Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
3Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan 48109-1107, USA
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Background method:

! )
M _o
dy
T=1 w=0
y l
0 X r

w = dv/dx — du/dy,

Background decomposition:

T(x,y,1) = 7(y) + 0(x, y, 1)
7(0) =1 and 7(1) =0
G(x, 0,1)=0=060(x,1,1)

d A
1(—u—I—u-Vu)+Vp=V2u-|—RajT,

Pr\drs
V.u=0,
| VT =V,
ot
Jd oT

i(—w—ku'Vw):V%)—l—Ra—.
Pr\ ot 0x
00

- +u-V0=V?0+ 7'y —vry).

| =
T

T(y)

(D

2)

3)

4)

S)



Background method:

Then the equations of motion together with the boundary
conditions and the background decomposition imply

| d
ol = ol + Rafvﬁdxdy, (6)
1 d ) ) 00
4 - — + —
L Lol =~ 190l + Ra [0 2 avay, )

1 d 06
L1 = ~ VoI - j[wa—y+ T’vﬁ]dxdy, 8)

06
IV71 = 1961 + 2 [ 72 dxay + 171, ©)
y
where || -|| , is the L? norm on the spatial domain and the
elementary identity ||Vu||3 = |lol|5 was used in (6).
b a

— X (6) +

- S X (D +2XE)+ ), (10)



Q

Background method:

Nu =—<f1 T’(y)zdy—b> -—9

0

_ \ ¢ 2 [P ) 00
_ R V) : /

Hence if we can choose the background profile 7(y) and
coefficients a >0 and 0 < b <1 so that Q@ =0 for all
relevant 6, w and v, then the first term on the right hand
side of (11) is an upper bound on Nu. For the problem at
hand we may use the piecewise linear profile shown in
Fig. 2 where the thickness 6 of the ‘“boundary layers™ is to
be determined as a function of Ra to satisfy @ = 0. With
this choice of 7(y) the bound will be

1 b

Nu = — . |
YT -b) 1-b

() 3

-0




Background method:

Applying the horizontal Fourier transform and introduc-
ing the shorthand D = diy, it is evident that positivity of Q

is equivalent to the positivity of

DA 112 a
Q= D4yl @ Ra3/
a Y
+ A+

+Re{2[1 o605y — 1 /1 507d }
TV - w
. kvray Ra2 J, kvray

for each horizontal wave number k where || -|| is now the
L? norm on complex valued functions of y € [0, 1] and
Re{-} indicates the real part of a complex quantity.

Cauchy-Schwarz and Young inequalities imply

aik 1
Ral/ > a)ké?kdy
so dropping the manifestly non- negatlve ter

2
0, = Db, 2 + [ ||w ||2
k k Ra3/2 k

) % Re{ [05 ﬁk(y)é}i(y)dy + /1 1_5 ok(y)é;‘;(y)dy}.



Background method:

Because 6, (y) vanishes at y = 0 and 1, applications of
the fundamental theorem of calculus and Cauchy-Schwarz
inequality yield the pointwise bounds

12 1/2
0k (y)] < y*/? (/0 |D9k(y’)l2dy’>
forO=y=1/2and, for1/2=y=1,
2 1/2 I 2) 2 1/2
10,0 = (1= y)/ ( [ 1Dd0) dy')

The Fourier coefficients of the vertical velocity and
vorticity (suppressing the time dependence) are related by

ik (y) = D*0i(y) — kK*04(y)

3/4
9.0 = 22 minfy, 1 — yHloyl
Up\y 23/2 minmy, Yl Wy



Background method:

Hence Q, = 0 is guaranteed by a 6 small enough that

Clk2 1 (b B 612) 33/2k

_|__ —
4 52 x 22

5 =0
Ra3/2 Ra

Inserting a = %—5 and b = {into (28)—chosen to minimize

the prefactor in the bound—and minimizing the suitable 6

over k, this is satisfied by choosing § = 24/;?5/12 Ra=5/12

where k = srrles Ra!/* is the minimizing wave number.

Inserting these 6 and b into (13) we see that for Ra > 33.57
(actually for Ra > 2/ 7%)

57/12 X 33/4

I
Nu =—715 Ra*/!? — - < 0.2891Ra™"2




Turbulent transport bounds:
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Figure 6.2: Semi-optimal bound. The dotted line shows the numerical bound.
The solid line is a graph of Nu = .142Ra”12,



Background method: Pr =«

J. Fluid Mech., page 1 of 19. (© Cambridge University Press 2012 1
doi:10.1017/jfm.2012.274

Rigid bounds on heat transport by a fluid
between slippery boundaries

Jared P. Whitehead'?{ and Charles R. Doering'>+

1 Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043, USA
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Rigorous bounds on heat transport are derived for thermal convection between
stress-free horizontal plates. For three-dimensional Rayleigh—Bénard convection at
infinite Prandtl number (Pr), the Nusselt number (Nu) is bounded according to
Nu < 0.28764Ra’’'* where Ra is the standard Rayleigh number. For convection driven
by a uniform steady internal heat source between isothermal boundaries, the spatially
and temporally averaged (non-dimensional) temperature is bounded from below by
(T) > 0.6910R™>/'" in three dimensions at infinite Pr and by (T) > 0.8473R™>/7 in
two dimensions at arbitrary Pr, where R is the heat Rayleigh number proportional to
the injected flux.



The Nu < Ra*/'2 bound derived here raises questions of
precisely how the spatial dimension and the nature of even
very thin boundary layers enter into the problem at high
Rayleigh numbers. At least in two dimensions with free-
slip boundaries, no matter how high the Rayleigh number
1s 1t 1s apparent that boundary layers continue to play a
limiting role in the turbulent heat transport.

Take away : %? % ?

Split the difference : ( % + %) L2 = 2
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Comparison of Turbulent Thermal Convection between Conditions of Constant Temperature
and Constant Flux

Hans Johnston
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We report the results of high-resolution direct numerical simulations of two-dimensional Rayleigh-
Bénard convection for Rayleigh numbers up to Ra = 10! in order to study the influence of temperature
boundary conditions on turbulent heat transport. Specifically, we considered the extreme cases of fixed
heat flux (where the top and bottom boundaries are poor thermal conductors) and fixed temperature
(perfectly conducting boundaries). Both cases display identical heat transport at high Rayleigh numbers
fitting a power law Nu = 0.138 X Ra%?% with a scaling exponent indistinguishable from 2/7 =
0.2857 ... above Ra = 107. The overall flow dynamics for both scenarios, in particular, the time averaged
temperature profiles, are also indistinguishable at the highest Rayleigh numbers.
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Both cases display identical heat transport at high Rayleigh numbers

fitting a power law Nu =~ 0.138 X Ra%%%
with a scaling exponent indistinguishable from 2/7






