Modeling and analysis of turbulence in rotating flow

Paul Durbin
Iowa State University

Introduction

Rotation

Swirl

Curvature

Plan

Part I

- Elements of rotating turbulence
- Illustration via eddy resolving simulations
- Phenomenology
- Analytical concepts
- Linear stability of uniform gradient, rotating flow

Part II

- Reynolds stress transport equations
- Transformation to rotating coordinates
- Absolute and relative rotation
- Transformation and closure models
- Equilibrium analysis
- Second moment closure and bifurcation
- Modified coefficient, two equation models

Part I. Eddy Simulations Basic Concepts Phenomenology

Rotating grid turbulence

(b)
(d) intermediate Rossby numbers

Stress

 anisotopy???

Length scale Anisotropy at

Geurts et al (2007) DNS

Decay exponent

$$
k \propto t^{-n} \quad C_{\epsilon 2}=1+1 / n
$$

Low Re DNS

But $\mathrm{dk} / \mathrm{dt}=-\varepsilon$; no explicit effect of rotation
And standard return to isotropy says $\mathrm{b}_{\mathrm{ij}}=0$

Taylor columns

Taylor-Proudman reorganization?

$$
v=\frac{\partial_{x} p}{2 \rho \Omega^{F}}=\partial_{x} \Psi ; \quad u=-\frac{\partial_{y} p}{2 \rho \Omega^{F}}=-\partial_{y} \Psi
$$

Rossby number $=U / \Omega^{F} L$ or $\varepsilon / \Omega^{F} k$

Momentum equation in rotating frame

$$
\frac{\partial u_{i}}{\partial t}+u_{j} \partial_{j} u_{i}+2 \epsilon_{i j k} \Omega_{j}^{F} u_{k}=-\frac{1}{\rho} \partial_{i} p+\nu \nabla^{2} u_{i}
$$

The Coriolis acceleration $(2 \Omega \times \mathbf{u})$ conserves energy Arises by expressing equations in non-inertial frame

In x, y-component form, rotation about z

$$
\begin{aligned}
& \frac{\partial u}{\partial t}+u_{j} \partial_{j} u-2 \Omega^{F} v=-\frac{1}{\rho} \partial_{x} p+\nu \nabla^{2} u \\
& \frac{\partial v}{\partial t}+u_{j} \partial_{j} v+2 \Omega^{F} u=-\frac{1}{\rho} \partial_{y} p+\nu \nabla^{2} v
\end{aligned}
$$

How might Taylor-Proudman reorganization occur in turbulence?
P. Davidson (J. Fluid Mech.

557, 2006): turbulent eddies may generate transient Taylor Columns

But only seen in DNS at intermediate Rossby numbers
Ros $=\mathrm{U} / \Omega \mathrm{L}$

Relevance to engineering modeling unknown

Homogeneous shear

Figure defines positive rotation and positive shear N.B mean rotation is opposite to frame rotation

Linearized equations

$$
\begin{gathered}
\frac{\partial u}{\partial t}+U \frac{\partial u}{\partial x}+v S-2 \Omega^{F} v=-\frac{1}{\rho} \partial_{x} p \\
\frac{\partial v}{\partial t}+U \frac{\partial v}{\partial x} \begin{array}{r}
v \Omega^{F} u
\end{array}=-\frac{1}{\rho} \partial_{y} p
\end{gathered}
$$

Displacement produces 'streaks' or 'jets’

For x-independent perturbation (a.k.a 'streak'):

$$
\frac{\partial u}{\partial t} \sim\left(2 \Omega^{F}-s\right) v
$$

'displacement effect' is

$$
\begin{array}{r}
\Delta u \sim\left(2 \Omega^{F}-S\right) \int v d t=\left(2 \Omega^{F}-S\right) \Delta y \\
\text { If } S>2 \Omega^{F}(R>-1), \Delta y>0 \rightarrow \Delta u<0
\end{array}
$$

Brethouwer

u-contours

Streaky contours are jet like velocity perturbations: u' (y,z)

Side view

Admission: there are jets in transitional flow

Simple stability analysis

Consider an elongated disturbance:

t.k.e. in rotating homogeneous shear

Note $\mathrm{R}=0$ not same as $\mathrm{R}=-1$
Bradshaw parameter, $R(R+1)$ is not controlling

Symbols are DNS
Lines are linear, RDT solution

Rotating channel

Rotation is stabilizing on this side

Vorticity

$R o_{g}=\infty, R e=14000$ (LES)

$R o_{g}=18, R e=14000$ (LES)

$$
R o_{g}=6, R e=14000 \text { (LES) }
$$

$R o_{g}=2, R e=14000$ (LES)
Anticlockwise rotation

Lambalais (Theoretical and Comput. Fluid Dynam., 12, 1998)

Velocity, stress

Clockwise rotation

Relaminarization at high rotation

Grundestam etal (JFM 598,2008) DNS

$$
R e_{\tau}=180
$$

$$
R o=2 \Omega^{F} H / U_{\text {bulk }}
$$

for laminar Poiseuille flow $U_{c l}^{+}=R e_{\tau} / 2=90$

Couette flow

R is single signed

Streamwise rolls (Taylor-Goertler)
$\mathrm{U}_{\mathrm{w}}(2 \mathrm{~h})=\mathrm{U}$

instantaneous
Bari \& Andersson

Serpentine channel

Laskowski and
Durbin (Phys Fl. 19 2007)

Serpentine channel

Cross-section

Analogy between rotation and curvature

Analogy: $U / r_{c} \sim \Omega^{F}$ N.B. convex and concave curvature have opposite r_{c}

$$
C=2 U / r_{c} S
$$

The linearized equation for v^{2} is $1 / 2 \frac{d \overline{v^{2}}}{d \tau}=\overline{u v}(R+C)$
Curvature can enhance or counter rotation. In isolation it acts either with or against the shear.

Convex and concave curvature

concave
curvature

$$
\Omega \leftrightarrow \mathrm{U}_{\infty / \mathrm{r}}
$$

Curvature with ($\mathrm{R}>0$) and
against $(\mathrm{R}<0)$ shear

Goertler vortices

Convex curvature

Figure 1. Görtler vortices over a concave wall.

Persistent streamwise vortices?

Overview serpentine passage

Average Velocity, $\mathbf{R e}_{\tau}=\mathbf{1 8 0}, \mathbf{R o}=\mathbf{0}$

$$
\text { Average Velocity, } \mathbf{R e}_{\tau}=\mathbf{1 8 0}, \mathbf{R o}=\mathbf{5}
$$

Mean profiles

Overview fluctuations

Variance of Velocity, $\mathbf{R e}_{\tau}=180, \mathbf{R o}=0$

Variance of Velocity, $\operatorname{Re}_{\tau}=180, R o=5$

Kinetic energy

Enhancement and suppression of Reynolds stresses

Summary, part I

- Rotation reduces the rate of decay of grid turbulence
- Rotation in the direction of shear is stabilizing
- Moderate rotation against the shear is destabilizing; larger rotation is stabilizing
- Curvature is analogous to rotation - to a large extent
- In non-homogeneous flow the rotation number varies with position and can change sign. The net effect is not entirely obvious

Part II. Single point closures

Reynolds decomposition

Total velocity (V) = Average (U) + Fluctuation (u)
U is the mean flow
u is the turbulence

Navier-Stokes $\quad \frac{\partial V}{\partial t}+V \cdot \nabla V=-\nabla P+\nu \nabla^{2} V$
Let $\mathrm{V}=\mathrm{U}+\mathrm{u}$, substitute and average: Reynolds Averaged N-S (RANS)
Equation of the mean flow

$$
\partial_{t} U_{i}+U_{j} \partial_{j} U_{i}=-\frac{1}{\rho} \partial_{i} P+\nu \nabla^{2} U_{i} \underbrace{-\boldsymbol{\partial}_{j} \overline{\boldsymbol{u}_{j} \boldsymbol{u}_{i}}}
$$

Reynolds stress

Comment: eddy viscosity closure

Constitutive formula $\quad-\bar{u}_{i}{ }_{j}=\nu_{T} S_{i j}-\frac{2}{3} \delta_{i j}$ (mean flow closure):

$$
\nu_{T}=C_{\mu} k T ; \quad T=1 / \omega, \text { or }, T=k / \varepsilon
$$

Reynolds stress transport equation

Equation of the turbulent stress

$$
\begin{array}{r}
\partial_{t} \overline{u_{i} u_{j}}+U_{k} \partial_{k} \overline{u_{i} u_{j}}=--\frac{1}{\rho} \underbrace{\left(\overline{u_{j} \partial_{i} p}+\overline{u_{i} \partial_{j} p}\right)}_{\text {redistribution }}-\underbrace{2 \nu \overline{\partial_{k} u_{i} \partial_{k} u_{j}}}_{\text {dissipation }} \\
\underbrace{-\partial_{k} \overline{u_{k} u_{i} u_{j}}}_{\text {turbulent transport }} \underbrace{-\overline{u_{j} u_{k} \partial_{k} U_{i}-\overline{u_{i} u_{k}} \partial_{k} U_{j}}+\nu \nabla^{2} \overline{u_{i} u_{j}} .}_{\text {production }}
\end{array}
$$

These are unclosed equations: models are needed
The focus of second moment closure modeling is the redistribution tensor: make it a function of the Reynolds stress tensor

Rotation effects enter through production
and convection

$$
\begin{gathered}
\mathcal{P}_{i j}=-\bar{u}_{j} u_{k} \partial_{k} U_{i}-{\overline{u_{i}} u_{k} \partial_{k} U_{j} .}_{\partial_{t}{\bar{u} u_{i} u_{j}}+U_{k} \partial_{k}{\overline{u_{i} u}}_{j}} .
\end{gathered}
$$

Reynolds stress equations in rotating frame

If the unit directions rotate as

$$
e_{1}=\left(\cos \Omega^{F} t, \sin \Omega^{F} t, 0\right), \quad e_{2}=\left(-\sin \Omega^{F} t, \cos \Omega^{F} t, 0\right)
$$

then

$$
d_{t} \boldsymbol{e}_{1}=\Omega^{F}\left(-\sin \Omega^{F} t, \cos \Omega^{F} t, 0\right)=\Omega^{F} \boldsymbol{e}_{2}, \quad d_{t} \boldsymbol{e}_{2}=-\Omega^{F} \boldsymbol{e}_{1}
$$

and

$$
d_{t}\left(u_{i} \boldsymbol{e}_{i}\right)=\boldsymbol{e}_{i} d_{t} u_{i}+\boldsymbol{e}_{i} \epsilon_{i j k} \Omega_{j}^{\bar{F}} u_{k}
$$

Reynolds stress equations are

$$
d_{t}{\bar{u} \bar{u}_{i}}_{j}+\overline{u_{i} u_{l}} \varepsilon_{j k l} \Omega_{k}^{F}+\overline{u_{j} u_{l}} \varepsilon_{i k l} \Omega_{k}^{F}=P_{i j}-2 / 3 \delta_{i j} \varepsilon+\wp_{i j}
$$

Where is the 2Ω ?

Unclosed
pressure-strain

Production tensor

$$
\begin{gathered}
P_{i j}=-\bar{u}_{i} \bar{u}_{k} \partial_{j} U_{k}-{\bar{u} u_{k}}_{k} \partial_{i} U_{k} \\
\partial_{j} U_{k}=\underbrace{\frac{1}{2}\left[\partial_{j} U_{k}+\partial_{k} U_{j}\right]}_{S_{j k}}+\underbrace{\frac{1}{2}\left[\partial_{j} U_{k}-\partial_{k} U_{j}\right]}_{\Omega_{j k}}
\end{gathered}
$$

In terms of rate of strain and rate of rotation

$$
P_{i j}=-\bar{u}_{i} u_{k}\left(S_{k j}+\Omega_{k j}\right)-\bar{u}_{j} u_{k}\left(S_{k i}+\Omega_{k i}\right)
$$

The apparently missing factor of 2: $\underbrace{\partial_{k} U_{j}^{A}}_{\text {absolute }}=\underbrace{\partial_{k} U_{j}^{F}}_{\text {relative }}+\varepsilon_{j k l} \Omega_{l}^{F}$

Hence $P_{i j}^{A}=P_{i j}^{F}-\bar{u}_{i} u_{l} \varepsilon_{j k l} \Omega_{k}^{F}-\overline{u_{j} u_{l}} \varepsilon_{i k l} \Omega_{k}^{F}$
In closure modeling it is necessary to distinguish the production tensor. Production is frame independent:

$$
P_{i j}=-\bar{u}_{i} \bar{u}_{k}\left(S_{k j}+\Omega_{k j}^{A}\right)-{\overline{u_{j}}}_{k}\left(S_{k i}+\Omega_{k i}^{A}\right)
$$

Reynolds stress depends on both Ω^{F} and Ω^{A}. The former comes from evolution; the latter from production.
The notion that constitutive formulas depend only on absolute rotation is not right for turbulence.

Rotation effect via SMC

For IP model:
Homogeneous shear

$$
\begin{aligned}
d_{t} \overline{u^{2}}-2 \overline{u v} \Omega^{F} & =4 / 5 \Omega^{F} \overline{u v}-6 / 5 \overline{u v} \mathcal{S} \ldots \\
d_{t} \overline{v^{2}}+2 \overline{u v} \Omega^{F} & =-4 / 5 \Omega^{F} \overline{u v}-2 / 5 \overline{u v} \mathcal{S} \ldots \\
d_{t} \overline{u v} & =2 / 5 \Omega^{F}\left(\overline{v^{2}}-\overline{u^{2}}\right)-2 / 5 \overline{v^{2}} \mathcal{S} \ldots
\end{aligned}
$$

With $R=-2 \Omega^{F} / \mathcal{S}$ and $\tau=\mathcal{S t}$:

$$
\begin{aligned}
d_{\tau} \overline{u^{2}} & =-(7 / 5 R+6 / 5) \overline{u v} \ldots \\
d_{\tau} \overline{v^{2}} & =(7 / 5 R-2 / 5) \overline{u v} \ldots \\
d_{\tau} \overline{u v} & =1 / 5 R\left(\overline{v^{2}}-\overline{u^{2}}\right)-2 / 5 \overline{v^{2}} \ldots
\end{aligned}
$$

Note $\overline{u v}<0$ in shear flow. If $R>2 / 7, \overline{v^{2}}$ will be suppressed.
Reynolds stress equations capture the inviscid mechanism

Second moment closure

Rotating homogeneous shear

Background: Equilibria of $k-\varepsilon$ equations

Model in homogeneous shear

$$
\begin{aligned}
\frac{d k}{d t} & =\mathcal{P}-\varepsilon \\
\frac{d \varepsilon}{d t} & =\frac{C_{\varepsilon 1} \mathcal{P}-C_{\varepsilon 2} \varepsilon}{T} \\
\mathcal{P} & =-\bar{u}_{i} u_{j} S_{i j}
\end{aligned}
$$

With eddy viscosity

$$
\mathcal{P}=2 \nu_{T}|S|^{2} ; \quad \nu_{T}=C_{\mu} \frac{k}{\varepsilon}
$$

N.B. unaffected by rotation

Moving equilibrium: k grows, but k / ε and $\mathcal{P} / \varepsilon$ reach constant levels

Approaches to 2-equation modeling

Pragmatic motivation: this is the type of model used in turbomachinery analysis and design

Basic concept: rotation can alter growth rate and can stabilize shear flow turbulence: how can this be incorporated?
At 2-equation level it corresponds to dependence of production/dissipation : P/\&
on rotation
Do analysis to understand how models work:

Moving equilibrium

$$
\frac{d}{d t}\left(\frac{\varepsilon}{k}\right)=\left(\frac{\varepsilon}{k}\right)^{2}\left[\left(C_{\varepsilon 1}-1\right) \frac{\mathcal{P}}{\varepsilon}-\left(C_{\varepsilon 2}-1\right)\right] \rightarrow 0
$$

The 2 solutions are

$$
\begin{array}{ll}
\text { branch 1: } & \frac{\mathcal{P}}{\varepsilon}=\frac{C_{\varepsilon 2}-1}{C_{\varepsilon 1}-1}=\frac{2 C_{\mu}|S|^{2} k^{2}}{\varepsilon^{2}} \\
\text { branch 2: } & \frac{\varepsilon}{k}=0
\end{array}
$$

Roughly, these are growing (healthy) and decaying (unhealthy) states. Valid for Reynolds stress models if

$$
\mathcal{P}=-\bar{u}_{i} u_{j} S_{i j}
$$

Branch 1

$$
k=k_{\infty} e^{\lambda t}, \quad \varepsilon=\varepsilon_{\infty} e^{\lambda t}
$$

where

$$
\lambda=\frac{C_{\varepsilon 2}-C_{\varepsilon 1}}{C_{\varepsilon 1}-1}\left(\frac{\varepsilon}{k}\right)_{\infty}
$$

Finally

$$
\left(\frac{\varepsilon}{k}\right)_{\infty}=\sqrt{2 C_{\mu}|S|^{2}} \sqrt{\frac{C_{\varepsilon 1}-1}{C_{\varepsilon 2}-1}}
$$

and

$$
\lambda=\frac{C_{\varepsilon 2}-C_{\varepsilon 1}}{\sqrt{\left(C_{\varepsilon 1}-1\right)\left(C_{\varepsilon 2}-1\right)}} \sqrt{2 C_{\mu}|S|^{2}}
$$

Branch 2

$$
k=A_{\infty} t^{-m}, \quad \varepsilon=B_{\infty} t^{-m-1}
$$

N.B. $\varepsilon / k \propto 1 / t$ as $t \rightarrow \infty$.

$$
m=\frac{1-\mathcal{P} / \varepsilon}{\left(C_{\varepsilon 2}-1\right)-\mathcal{P} / \varepsilon\left(C_{\varepsilon 1}-1\right)}
$$

If $\mathcal{P}<\varepsilon$ then $m>0$ and turbulent energy decays

How can equilibrium analysis be used to develop models?

Modified coefficients

$$
C_{\varepsilon 1}, C_{\varepsilon 2}, C_{\mu}
$$

Recall the Bradshaw parameter from stability theory

$$
B r=R(R+1)
$$

Might parameterize rotation effects by functions of Br

$$
C_{\varepsilon 1}(B r), C_{\varepsilon 2}(B r), C_{\mu}(B r)
$$

$B r \geq-1 / 4$ and $B r<0$ is exponentially unstable range; but algebraic growth occurs at $B r=0$.

Analogue to instability: $\mathcal{P} / \varepsilon>1$. Equilibrium solution

$$
\frac{\mathcal{P}}{\varepsilon}=\frac{C_{\varepsilon 2}-1}{C_{\varepsilon 1}-1} \quad \text { Branch } 1
$$

provides connection to parameters. Introduce critical Bradshaw number, and parametric dependence:

$$
1=\frac{C_{\varepsilon 2}\left(B r_{c r i t}\right)-1}{C_{\varepsilon 1}\left(B r_{c r i t}\right)-1} \Longrightarrow C_{\varepsilon 2}\left(B r_{c r i t}\right)=C_{\varepsilon 1}\left(B r_{c r i t}\right)
$$

Standard values are $C_{\varepsilon 1}=1.44, C_{\varepsilon 2}=1.92$. An early propsal: $C_{\varepsilon 2}=C_{\varepsilon 2}^{0}\left(1-C_{s c} B r\right)$ with $C_{s c} \sim 2.5$. Then

$$
B r_{c r i t}=\frac{C_{\varepsilon 2}^{0}-C_{\varepsilon 1}}{C_{\varepsilon 2}^{0} C_{s c}}=0.1
$$

Hellsten - translated from $k-\omega$ - is

$$
\left(C_{\varepsilon 2}=C_{\omega 2}+1\right)
$$

$$
C_{\varepsilon 2}=\frac{C_{\varepsilon 2}^{0}+C_{s c} B r}{1+C_{s c} B r}
$$

with $C_{s c}=3.6$. So

$$
B r_{c r i t}=\frac{C_{\varepsilon 2}^{0}-C_{\varepsilon 1}}{\left(C_{\varepsilon 1}-1\right) C_{s c}}=\frac{12}{11 C_{s c}}=0.3
$$

Corresponding range of rotation numbers (i.e. $R(1+R)=0.3$)

$$
-1.24<R<0.24
$$

Rotating, homogeneous shear

Warning (c.f. LES, DNS data)

Comment on parameterization

To avoid singularity at $S=0, C_{\varepsilon 2}=C_{\varepsilon 2}^{0}\left(1-C_{s c} B r(|S| k / \varepsilon)^{2}\right)$ with $C_{s c}=0.4$ has been suggested (HBR model). Then

$$
B r_{c r i t}=\frac{C_{\varepsilon 2}^{0}-C_{\varepsilon 1}}{A\left(C_{\varepsilon 1}-1\right)}=0.026 . ; \quad A=\frac{C_{s c} C_{\varepsilon 2}^{0}}{2 C_{\mu}\left(C_{\varepsilon 1}-1\right)}
$$

However $S k / \varepsilon$ is imaginary for $\mathrm{C}_{\varepsilon 2}<1$ so this model is ill posed. In fact $\mathrm{C}_{\mathrm{\varepsilon} 2}<0$ for $\mathrm{Br}<1 / \mathrm{A}=-0.103$ (Cazalbou)

Various definitions

$$
\begin{aligned}
B r & =\frac{2 \Omega^{F}\left(2 \Omega^{F}-\partial_{y} U\right)}{\partial_{y} U^{2}} \\
\widetilde{B r} & =\frac{2 \Omega^{F}\left(2 \Omega^{F}-\partial_{y} U\right)}{(\varepsilon / k)^{2}}
\end{aligned}
$$

Consider rotor-stator: what is $\Omega^{\mathrm{F}}, 0$ or rotor velocity? Or, rotor computed in rotating (flow is steady) or inertial (flow is timedependent) frame.

How to define 'frame rotation'? Convective derivative of rate of strain (Spalart-Shur); if $\mathbf{e}^{(\mathrm{i})}$ are rate of strain eigenvectors

$$
\Omega_{i j}^{F}=e^{(i)} \cdot D_{t} e^{(j)}
$$

May be expensive, and is it right? More useable ansatz:

$$
\Omega_{i j}^{F} \leftrightarrow\left(\boldsymbol{S} \cdot D_{t} \boldsymbol{S}-D_{t} \boldsymbol{S} \cdot \boldsymbol{S}\right) / 2|\boldsymbol{S}|^{2}
$$

which is only frame rotation in 2-D

Rotating plane channel

$$
2 \Omega H / U_{b}=0.5
$$

Hellsten and Cazalbou are k -omega formulations

But: Physics are inviscid.
Modifying ε-equation coefficients is an artifice that increases dissipation (it probably should decrease with rotation).
P / ε should decrease because P is reduced by centrifugal stabilization

Bifurcation of SMC models

Recall equilibria of $k-\varepsilon$ system:

$$
\text { branch 1: } \quad \frac{\mathcal{P}}{\varepsilon}=\frac{C_{\varepsilon 2}-1}{C_{\varepsilon 1}-1}
$$

and

$$
\text { branch } 2: \quad \frac{\varepsilon}{k}=0 .
$$

But, instead of eddy viscosity (2-equation closure)

$$
\mathcal{P}=-\overline{u_{i} u_{j}} \partial_{j} U_{i}=-\overline{u_{i} u_{j}} S_{i j}
$$

Solve SMC for Reynolds stress tensor

Equilibrium, algebraic stress

Moving equilibrium

$$
d_{t}\left({\overline{u_{i} u}}_{j} / k\right)=0 \rightarrow d_{t} \bar{u}_{i} \bar{u}_{j}=\frac{-\bar{u}_{i} u_{j}}{k} d_{t} k=\frac{-\bar{u}_{i} u_{j}}{k}(\mathcal{P}-\varepsilon)
$$

[Aside: this gives a linear algebraic equation

$$
\left[\begin{array}{l}
0=\left(1-C_{1}-c P / \varepsilon\right) \boldsymbol{b}-\frac{8}{15} \mathcal{S}-\boldsymbol{b} \cdot \mathcal{S}-\mathcal{S} \cdot \boldsymbol{b}+\frac{2}{3} \boldsymbol{\delta} \operatorname{trace}(\boldsymbol{b} \cdot \mathcal{S})-\boldsymbol{b} \cdot \boldsymbol{W}+\boldsymbol{W} \cdot \boldsymbol{b} . \\
\text { for } b_{i j}=\overline{u_{i} u_{j}} / k-2 / \delta_{i j}
\end{array}\right.
$$

Gives algebraic stress approximation (ASM); solution is called an explicit algebraic stress model (EASM). Rotation effects are captured through Reynolds stress equations.
\exists closed form solution starting as

$$
{\overline{u_{i} u}}_{j}=-F_{\mu} \boldsymbol{S} k^{2} / \varepsilon+2 / 3 k \delta_{i j} \ldots
$$

Aside: For General Linear closure model

$$
F_{\mu}=\frac{8 / 15\left(C_{1}-1+\mathcal{P} / \varepsilon\right)}{\left(C_{1}-1+\mathcal{P} / \varepsilon\right)^{2}-2 / 3\left(1-C_{2}-C_{3}\right)^{2}|\boldsymbol{S} k / \varepsilon|^{2}+2|\boldsymbol{W} k / \varepsilon|^{2}}
$$

The remaining terms do not contribute to production:

$$
\mathcal{P}=F_{\mu}\left(\boldsymbol{S}, \Omega^{A}, \Omega^{F} ; k / \varepsilon\right)|\boldsymbol{S}|^{2} k^{2} / \varepsilon
$$

This 'constitutive' equation accompanies k and ε equations

On branch $1 \mathcal{P}_{R} \equiv \mathcal{P} / \varepsilon=\left(C_{\varepsilon 2}-1\right) /\left(C_{\varepsilon 1}-1\right) \Rightarrow$

$$
\begin{aligned}
(\varepsilon / S k)_{\infty}^{2}= & \frac{2\left(1-C_{2}-C_{3}\right)^{2}}{3\left(C_{1}-1+\mathcal{P}_{R}\right)^{2}}+\frac{8}{15\left(1-C_{2}-C_{3}\right)\left(C_{1}-1+\mathcal{P}_{R}\right) \mathcal{P}_{R}} \\
& -\frac{2|\boldsymbol{W}|^{2}}{\left(C_{1}-1+\mathcal{P}_{R}\right)^{2}|\boldsymbol{S}|^{2}}
\end{aligned}
$$

where

$$
\frac{|\boldsymbol{W}|}{|\boldsymbol{S}|}=\left(1-C_{2}+C_{3}\right)+\left(2-C_{2}+C_{3}\right) R
$$

The 'bifurcation curve' is of the form

$$
(\varepsilon / S k)_{\infty}^{2}=A+B(R+C)^{2}
$$

Where A, B and C are constants and R is the rotation number, as usual. Bifurcation points are $\mathrm{R}_{ \pm}$satisfying

$$
A+B(R+C)^{2}=0
$$

Bifurcation diagram for homogeneous shear

One might use $\nu_{T}=\mathrm{F}_{\mu} \mathbf{S} \mathrm{k}^{2} / \varepsilon$ to capture bifurcation in eddy viscosity framework
Caveat: EASM does not reproduce non-rotating k- ε solution. Modified F_{μ} is needed.

Rotating channel

Convex wall

Summary, part II

- Equilibrium analysis relates P / ε to constants in the ε or ω equation
- Within the confines of eddy viscosity closure, P / ε can be reduced below unity by replacing these constants by functions of the Bradshaw parameter; but that is not consistent with physical mechanisms
- The equilibrium solution to a full Reynolds stress model bifurcates from healthy to decaying turbulence branches.
- Bifurcation is effected by adding a dependence of the eddy viscosity on rates of strain and rotation. This is another approach to incorporating rotation into eddy viscosity closure.

