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Introduction	




Our topic is effects of 
rotation on the turbulence	


Core ~10,000 RPM	

 

Rotation	




Swirl 



Curvature 



Plan	

Part I	

	

•  Elements of rotating turbulence	


–  Illustration via eddy resolving simulations	

–  Phenomenology	

–  Analytical concepts	


•  Linear stability of uniform gradient, rotating flow	


Part II	

•  Reynolds stress transport equations	


–  Transformation to rotating coordinates	

–  Absolute and relative rotation	

–  Transformation and closure models	


•  Equilibrium analysis	

–  Second moment closure and bifurcation	

–  Modified coefficient, two equation models 	




 Part I. Eddy Simulations ���
 ���

                                  Basic Concepts ���
         Phenomenology	




Rotating grid turbulence	


Geurts et al (2007) DNS	


Length scale 
Anisotropy at 
intermediate 
Rossby 
numbers 
 
Stress 
anisotopy??? 



Decay exponent	


n	


k ∝ t−n C�2 = 1 + 1/n

Low Re DNS	


And standard return to isotropy says bij=0	


But dk/dt =-ε ;   no explicit effect of rotation	




Taylor columns	

Taylor-Proudman  
reorganization?	


Rossby number = U/ΩF L or ε/ΩF k

v =
∂xp

2ρΩF
= ∂xΨ ; u = − ∂yp

2ρΩF
= −∂yΨ



Momentum equation���
in rotating frame	


∂u

∂t
+ uj∂ju− 2ΩF v = −1

ρ
∂xp + ν∇2u

∂v

∂t
+ uj∂jv + 2ΩF u = −1

ρ
∂yp + ν∇2v

In x,y-component form, rotation about z	


The Coriolis acceleration (2Ω×u) conserves energy	

Arises by expressing equations in non-inertial frame	


∂ui

∂t
+ uj∂jui + 2�ijkΩF

j uk = −1
ρ
∂ip + ν∇2ui.



P. Davidson (J. Fluid Mech. 
557, 2006): turbulent eddies 
may generate transient 
Taylor Columns	

	

But only seen in DNS at 
intermediate Rossby 
numbers	

Ros= U/ΩL	


Nonlinearity 
required 

Linear, inertial 
waves 

Relevance to engineering modeling unknown	


How might Taylor-Proudman reorganization occur in turbulence?���
	
 Angular 

momentum 
conserved 



x    	


y	


ΩF

Homogeneous shear	


U = S y	

      	


Figure defines positive rotation and positive shear	

N.B mean rotation is opposite to frame rotation	




 	
Linearized equations

∂u

∂t
+ U

∂u

∂x
+ vS − 2ΩF v = −1

ρ
∂xp

∂v

∂t
+ U

∂v

∂x
+ 2ΩF u = −1

ρ
∂yp

Displacement produces ‘streaks’ or ‘jets’	


For x-independent perturbation (a.k.a ‘streak’):
∂u

∂t
∼ (2ΩF − s)v

‘displacement effect’ is

∆u ∼ (2ΩF − S)
�

vdt = (2ΩF − S)∆y

If S > 2ΩF (R > −1), ∆y > 0→ ∆u < 0



u-contours	

Linear solution for	

Sheared isotropic	

turbulence	


DNS  R = 0	


DNS  R = 1/2	


DNS  R = -1	
DNS  R = -1/2	


DNS  R = -3/2	


From Brethouwer	

streaks	

weaken,	


Rotation number
R = −2ΩF /S

Brethouwer 
(JFM 542, 2005) 



Streaky contours are jet like velocity perturbations: u’(y,z)	


Top view	


Side view	


Admission: there are jets in transitional flow 



Simple stability analysis	


∂/∂x(•) = 0 → p = 0
∂u

∂t
+ vS − 2ΩF v = 0

∂v

∂t
+ 2ΩF u = 0

⇒ d2u

dt2
= −R(R + 1)S2u ; R ≡ −2ΩF /S

Consider an elongated disturbance: 	


Production from	

shear	


Coriolis 	

acceleration	


coordinate rotation	

flow rotation	


Rotation number 

R< 0 for rotation against shear	

(mean vorticity is                   )	
ωz = −S

Comment:  max @ R=-1/2	

      symmetric about -1/2	


u ∝ e±
√
−R(R+1) St unstable −1 < R < 0

-1     0 



t.k.e. in rotating homogeneous shear	
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R = -1	


R = -3/2,1/2	


k	


St	

Symbols are DNS	

Lines are linear, RDT 
solution	


Note R=0 not same as R=-1	

Bradshaw parameter, R(R+1) is not controlling	


Brethouwer 
 
NB: Not 
`equilibrium’ 
Sk/ε ∼12	  (vs.	  6)	  



Rotating channel	


ΩF

x	


y	


z	


S = dU
dy

changes sign

R = −2ΩF /S
changes signR<0	


R>0	


Rotation is stabilizing 	

on this side	




Vorticity	


Anticlockwise rotation	


Lambalais (Theoretical and Comput. Fluid Dynam., 12, 1998) 
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stress	


t. k. e	
 Mean velocity	


R = -1	


Attributed 
to short channel 



Relaminarization at high rotation	


U+ 

Grundestam etal (JFM 598,2008)  DNS 
Reτ = 180

for laminar Poiseuille flow
U+

cl = Reτ/2 = 90
Ro = 2ΩF

H/Ubulk

2.49 

3.0 



Couette flow	


z

y !

Uw (2h) = U

U(0) = 0

0.0 1.0 2.0y/h
0.0

0.0

0.0

1.0

0.5

!U"z/Uw
Ro = 0

Ro = 0.1

Ro = 0.2

Streamwise rolls (Taylor-Goertler) 

instantaneous Average (RANS) 

Bari & Andersson Andersson, Petersson, Bech 

R is single signed 



Serpentine channel	


Periodic from	

inlet to exit	


Laskowski and 
Durbin (Phys Fl. 19 2007) 



Serpentine channel	


Vorticity u-velocity 



Cross-section	


w 

p 



Analogy between rotation and curvature	


Analogy:                          N.B. convex and concave curvature have opposite rc	

	


The linearized equation for v2 is   	

	

Curvature can enhance or counter rotation.  In isolation it acts either with or 
against the shear.	

	

	

 

U/rc ∼ ΩF

C = 2U/rcS

1/2 dv2

dτ = uv(R + C)



Convex and concave curvature	


!!"!#

convex

   curvature

!!"!#U$ /R

!!$!#

concave

   curvature

!!"!U$ /R

Curvature      with (R>0)        and             against (R<0)    shear                          	


rc 

rc 



Goertler vortices	


Are they significant 
in turbulent flow? 

Convex curvature 



Persistent streamwise vortices?	


Stationary Rotating 

stationary 

rotating 

w 

Helicity: uω	
 Low pass 
filtered 



Overview serpentine passage	
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Overview fluctuations	




Kinetic energy	
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Enhancement and suppression of Reynolds stresses	


ΩF

1− kro/k

1− u2
ro/u2

1− v2
ro/v2

1− w2
ro/w2



Summary, part I	


•  Rotation reduces the rate of decay of grid turbulence	

•  Rotation in the direction of shear is stabilizing	

•  Moderate rotation against the shear is destabilizing;  
	
larger rotation is stabilizing	

•  Curvature is analogous to rotation – to a large extent	

•  In non-homogeneous flow the rotation number varies 
	
with position and can change sign.  The net effect is 
	
not entirely obvious	




Part II. Single point closures	




Reynolds decomposition	

Total velocity (V) = Average (U) + Fluctuation(u) 
 
U is the mean flow 
u  is the turbulence 

∂V

∂t
+ V ·∇V = −∇P + ν∇2VNavier-Stokes 

Let V=U+u, substitute and average: Reynolds Averaged N-S (RANS) 

Equation of 
the mean flow ∂tUi + Uj∂jUi = −1

ρ
∂iP + ν∇2Ui −∂jujui� �� �

Reynolds stress 

U 
u 

V
t 



Comment: eddy viscosity closure	

−uiuj = νT Sij −

2
3
δijConstitutive formula 

(mean flow closure): 

Model:    νT = CµkT ; T = 1/ω, or, T = k/ε



∂tuiuj + Uk∂kuiuj = −1
ρ

(uj∂ip + ui∂jp)
� �� �

redistribution

− 2ν∂kui∂kuj� �� �
dissipation

−∂kukuiuj� �� �
turbulent transport

−ujuk∂kUi − uiuk∂kUj� �� �
production

+ν∇2uiuj .

Equation of 
the turbulent 
stress 

These are unclosed equations: models are needed 
 
The focus of second moment closure modeling is the redistribution tensor: 
make it a function of the Reynolds stress tensor 

Reynolds stress transport equation 

Pij = −ujuk∂kUi − uiuk∂kUj .
Rotation effects enter  
through production 
 
and convection ∂tuiuj + Uk∂kuiuj



Reynolds stress equations in rotating frame	


Unclosed 
pressure-strain 

ΩF
e1 

e2 

Where is the 2 Ω? 

If the unit directions rotate as

e1 = (cos ΩF t, sin ΩF t, 0), e2 = (− sin ΩF t, cos ΩF t, 0)

then

dte1 = ΩF (− sin ΩF t, cos ΩF t, 0) = ΩF e2, dte2 = −ΩF e1

and
dt(uiei) = eidtui + εijkΩF

j uk

Reynolds stress equations are

dtuiuj + uiulεjklΩF
k + ujulεiklΩF

k = Pij − 2/3δijε + ℘ij

dt(uiei) = eidtui + ei�ijkΩF
j uk



Production tensor	


Pij = −uiuk∂jUk − ujuk∂iUk

Pij = −uiuk(Skj + Ωkj)− ujuk(Ski + Ωki)

∂jUk =
1
2
[∂jUk + ∂kUj ]

� �� �
Sjk

+
1
2
[∂jUk − ∂kUj ]

� �� �
Ωjk

In terms of rate of strain and rate of rotation 



 	


Hence PA
ij = PF

ij − uiulεjklΩF
k − ujulεiklΩF

k

The apparently missing factor of 2: ∂kUA
j� �� �

absolute

= ∂kUF
j� �� �

relative

+εjklΩF
l

In closure modeling it is necessary to distinguish the production tensor.	

Production is frame independent:	

	

	

	

	

	

	

Reynolds stress depends on both                       .  The former comes from  
evolution; the latter from production.   	

The notion that constitutive formulas depend only on absolute rotation is 
not right for turbulence.	


Pij = −uiuk(Skj + ΩA
kj)− ujuk(Ski + ΩA

ki)

ΩF and ΩA

ΩA
ij����

absolute rotation

= Ωij����
vorticity

+ ΩF
k εijk� �� �

frame rotation



Rotation effect via SMC	

For IP model:

dtu2 − 2uvΩF = 4/5ΩF uv − 6/5uvS . . .

dtv2 + 2uvΩF = − 4/5ΩF uv − 2/5uvS . . .

dtuv = 2/5ΩF (v2 − u2)− 2/5v2S . . .

With R = −2ΩF /S and τ = St:

dτu2 = −( 7/5R + 6/5)uv . . .

dτv2 = ( 7/5R− 2/5)uv . . .

dτuv = 1/5R(v2 − u2)− 2/5v2 . . .

Note uv < 0 in shear flow. If R > 2/7, v2 will be suppressed.

Homogeneous shear	


Reynolds stress equations capture the inviscid mechanism	




Second moment closure	

Rotating homogeneous shear	


Bradshaw parameter	

    Br=R(R+1) > -0.25	
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Background: Equilibria of k-   equations	
ε

dk

dt
= P − ε

dε

dt
=

Cε1P − Cε2ε

T

Model in homogeneous shear	


Moving equilibrium:  k grows, but                            reach constant levels	
k/ε and P/ε

P = −uiujSij

With eddy viscosity

P = 2νT |S|2; νT = Cµ
k

ε

N.B. unaffected 
by rotation	




Approaches to 2-equation modeling	


Pragmatic motivation: this is the type of model used in 
turbomachinery analysis and design	


Basic concept: rotation can alter growth rate and can stabilize 
shear flow turbulence: how can this be incorporated?	


At 2-equation level it corresponds to dependence of 	

      production/dissipation : P/ε	

on rotation	

	

Do analysis to understand how models work:	




Moving equilibrium	

d

dt

� ε

k

�
=

� ε

k

�2
�
(Cε1 − 1)

P
ε
− (Cε2 − 1)

�
→ 0

The 2 solutions are	


branch 1 :
P
ε

=
Cε2 − 1
Cε1 − 1

=
2Cµ|S|2k2

ε2

branch 2 :
ε

k
= 0

  

k 
/ 

k
0

rb1 < R < r b2

R > r r2

branch 1

branch 2

Roughly, these are growing (healthy) and 
decaying (unhealthy) states. Valid for 
Reynolds stress models if	

	

                           .	
P = −uiujSij



 Branch 1	


Finally
� ε

k

�

∞
=

�
2Cµ|S|2

�
Cε1 − 1
Cε2 − 1

and
λ =

Cε2 − Cε1�
(Cε1 − 1)(Cε2 − 1)

�
2Cµ|S|2

k = k∞eλt, ε = ε∞eλt

where
λ =

Cε2 − Cε1

Cε1 − 1

� ε

k

�

∞
.



Branch 2	

k = A∞t−m, ε = B∞t−m−1

N.B. ε/k ∝ 1/t as t→∞.

m =
1− P/ε

(Cε2 − 1)− P/ε(Cε1 − 1)
.

If P < ε then m > 0 and turbulent energy decays

How can equilibrium analysis be used to develop models?	




Modified coefficients	


Might parameterize rotation effects by functions of Br 	


Recall the Bradshaw parameter from stability theory
Br = R(R + 1)

Br ≥ − 1/4 and Br < 0 is exponentially unstable range; but
algebraic growth occurs at Br = 0.

Cε1, Cε2, Cµ

Cε1(Br), Cε2(Br), Cµ(Br)



 	

Analogue to instability: P/ε > 1. Equilibrium solution

P
ε

=
Cε2 − 1
Cε1 − 1

provides connection to parameters. Introduce critical Bradshaw
number, and parametric dependence:

1 =
Cε2(Brcrit)− 1
Cε1(Brcrit)− 1

=⇒ Cε2(Brcrit) = Cε1(Brcrit)

Standard values are Cε1 = 1.44,Cε2 = 1.92. An early propsal:
Cε2 = C0

ε2(1− CscBr) with Csc ∼ 2.5. Then

Brcrit =
C0

ε2 − Cε1

C0
ε2Csc

= 0.1

Branch 1 



 	
Hellsten — translated from k − ω — is

Cε2 =
C0

ε2 + CscBr

1 + CscBr
.

with Csc = 3.6. So

Brcrit =
C0

ε2 − Cε1

(Cε1 − 1)Csc
=

12
11Csc

= 0.3

Corresponding range of rotation numbers (i.e. R(1 + R) = 0.3)

−1.24 < R < 0.24

(Cε2 = Cω2 + 1)



 Rotating, homogeneous shear	


0

2

4

6

8

10

0 1 2 3 4 5
t

k

Br=!!"#$
Br=  0.0 

Br=  0.75

Br=  2.0 

I.c.: equilibrium 
ratio	
 too fast	


R= 0 or -1	

or unmodified	


0

2

4

6

8

10

0 1 2 3 4 5

k

t

0

2

4

6

8

10

0 1 2 3 4 5

k

t

Warning  (c.f. LES, DNS data)	


ε0 = 0.2εequilibrium	

ε0 = 5εequilibrium	




 Comment on parameterization	


To avoid singularity at S = 0, Cε2 = C0
ε2(1−CscBr (|S|k/ε)2)

with Csc = 0.4 has been suggested (HBR model). Then

Brcrit =
C0

ε2 − Cε1

A(Cε1 − 1)
= 0.026.; A =

CscC0
ε2

2Cµ(Cε1 − 1)

However  Sk/ε is imaginary for Cε2 < 1 so this model is ill 
posed.  In fact  Cε2 < 0 for Br < 1/A = -0.103   (Cazalbou)  
	

 



Various definitions	


Br =
2ΩF (2ΩF − ∂yU)

∂yU2

�Br =
2ΩF (2ΩF − ∂yU)

(ε/k)2

How to define ‘frame rotation’?  Convective derivative of rate of 
strain (Spalart-Shur); if e(i) are rate of strain eigenvectors	


	

May be expensive, and is it right?  More useable ansatz:	


	

which is only frame rotation in 2-D	


Consider rotor-stator: what is ΩF, 0 or rotor velocity?   Or, rotor 
computed in rotating (flow is steady) or inertial (flow is time-
dependent) frame.	

 

ΩF
ij = e(i) · Dte

(j)

ΩF
ij ↔ (S · DtS −DtS · S)/2|S|2



 Rotating plane channel	
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Hellsten and Cazalbou are 
k-omega formulations 



 	

But: Physics are inviscid.  	

Modifying    -equation coefficients is an artifice that increases 
dissipation (it probably should decrease with rotation).	

	

 P/    should decrease because P is reduced by centrifugal 
stabilization	


! 

"

! 

"



Bifurcation of SMC models	


Solve SMC for Reynolds stress tensor	


But, instead of eddy viscosity (2-equation closure)

P = −uiuj∂jUi = −uiujSij

Recall equilibria of k–ε system:

branch 1 :
P
ε

=
Cε2 − 1
Cε1 − 1

and

branch 2 :
ε

k
= 0.



Equilibrium, algebraic stress	


Moving equilibrium

dt(uiuj/k) = 0 → dtuiuj =
−uiuj

k
dtk =

−uiuj

k
(P − ε)





Aside: this gives a linear algebraic equation

0 = (1−C1−cP/ε)b− 8
15

S−b·S−S·b+
2
3
δ trace(b·S)−b·W+W ·b.

for bij = uiuj/k − 2/3δij





Gives algebraic stress approximation (ASM); solution is called an 
explicit algebraic stress model (EASM).  Rotation effects are 
captured through Reynolds stress equations.	




 	
∃ closed form solution starting as

uiuj = −FµSk2/ε + 2/3kδij . . .

Hence not  
frame independent 

Aside: For General Linear closure model

Fµ =
8/15(C1 − 1 + P/ε)

(C1 − 1 + P/ε)2 − 2/3(1− C2 − C3)2|Sk/ε|2 + 2|W k/ε|2

This `constitutive’ equation accompanies k and    equations	


! 

"

The remaining terms do not contribute to production:

P = Fµ(S,ΩA,ΩF ; k/ε)|S|2k2/ε



 	
On branch 1 PR ≡ P/ε = (Cε2 − 1)/(Cε1 − 1)⇒

(ε/Sk)2∞ =
2(1− C2 − C3)2

3(C1 − 1 + PR)2
+

8
15(1− C2 − C3)(C1 − 1 + PR)PR

− 2|W |2

(C1 − 1 + PR)2|S|2

where

|W |
|S| = (1− C2 + C3) + (2− C2 + C3)R

The ‘bifurcation curve’ is of the form

(ε/Sk)2∞ = A + B(R + C)2

Where A, B and C are constants and  R is the rotation 
number, as usual. Bifurcation points are R    satisfying	


      A+B(R+C)2 = 0	

! 

±



Bifurcation diagram for homogeneous shear	


!!Sk

(P/!  - 1)/10

 branch 2

 branch 1

r
r2

r
r1

r
b2

r
b1

Model P/ε R− R+

Bifurcation, rb

SSG 2.09 −1.048 0.159
IP 2.09 −0.750 0.178

Stabilization, rr

SSG 1.00 −1.078 0.190
IP 1.00 −0.807 0.236

c.f. R+=0 and R-= 
-1 

k ∼ t−m

m = 1−P/ε
(Cε2−1)−P/ε(Cε1−1)

! 

"



 	

One might use   νT = FµS k2/ε to capture bifurcation in eddy viscosity 
framework	

Caveat: EASM does not reproduce non-rotating k-ε solution.  Modified 
Fµ is needed.  	
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Rotating channel	
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Summary, part II	


•  Equilibrium analysis relates P/ε  to constants in the ε  or ω  
	
equation	


•  Within the confines of eddy viscosity closure,  P/ε  can be 
	
reduced  below  unity  by  replacing  these  constants  	
by 
	
functions  of  the  Bradshaw  parameter;  but  that  is  not 
	
consistent with physical mechanisms	


•  The  equilibrium solution  to  a  full  Reynolds  stress  model 
	
bifurcates from healthy to decaying turbulence branches.	


•  Bifurcation is effected by adding a dependence of the eddy 
	
viscosity  on  rates  of  strain  and rotation.  This  is  another 
	
approach  to  incorporating  rotation  into  eddy  viscosity 
	
closure. 	



