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Transition affects performance, 
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Considerations	



•  Transition refers to development of small-scale, self-sustained 
turbulence within the boundary layer	



•  Free-stream disturbances (turbulence; wakes) are large scale and 
have little direct effect on skin friction, heat transfer	



•  External disturbances diffuse into the boundary layer, create 
low frequency perturbations that break down to turbulence	



•  Transition occurs over an extended length	



•  Practical modeling represents averaged properties	



Laminar Transition length Turbulent

Free-stream disturbances



Bypass transition	



free stream turbulence	



Transition in boundary 
layer	



Skin friction on wall	





Averaged view	
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Boundary layer response to 
Free-stream turbulence	





A bypass transition primer	



   Continuous modes; discrete modes	



   Klebanoff modes; ‘streaks’ or ‘jets’	



   Turbulent spots	



   Intermittency	



   Free-stream turbulence intensity (Tu)  u’/U (in %)	



   Shear sheltering – or filtering	



   Bypass and natural transition	





Discrete and Continuous mode shapes	



Discrete (T-S)	


`bound’	


	



  Natural transition	



Continuous (FST)	


`free’	


	



 Bypass transition	







Continuous modes: Shear filtering and 
penetration depth	
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Theory	



O-S=horizontal,	


Squire=vertical	



vorticity	



O-S and Squire	





∃ exact resonance between continuous O-S and Squire modes

Basic idea of algebraic growth: for kx → 0 (or λx →∞)

∇2p = ∂yU∂xv ∼ 0

Then

dtv = 0→ v = v(0)

dtu = −vdyU → u ∼ −v(0)dyU t

(RDT; c.f. Prandtl)

i.e., streamwise elongated disturbances (jets) grow within 
the boundary layer	







Continuous mode transition	



Evolution of continuous mode response         Klebanoff modes	
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Squire equation is forced by OS modes 	
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Superposition produces a `Klebanoff distortion'	





3% f.s.t, Klebanoff modes	



u’ contours	





Three planes	





2 continuous modes, u-component���
jets (streaks)	





Breakdown of lifted jets	





Side and end views of 
lifted jets	



Side	

 End 	





2 continuous modes, v-component	


Spots	





Turbulent spots	


Contours of v	



Patch of fully developed 
turbulence	





Discrete plus continuous 
modes	



To illustrate natural vs. bypass	





Boundary layer response	



T-S wave alone	



T-S Mode 5	



T-S+Mode 2	



‘natural’ transition	





Growth and breakdown of TS waves	
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Vortex pair

Secondary instability: Λ vortices	





u’ contours in x-z plane at y=0.5δ99	





v’ contours in x-z plane at y=0.5δ99	



Λ’s match cont’s mode;  1/10 H-type	





Boundary layer response	



2 low freq. modes	



1 low + 1 high	





Turbine and compressor blade ���
DNS	





Passing wakes	
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LP turbine	



T106	



Direct Numerical Simulation 	


(DNS)	





Transition on LP Turbine blade	



 

 

 

 

 

 

 

 

 

 

Impinging wakes	


No wakes	



Re=105	





DNS wake	


DNS no wake	



Distorted wakes	





Compressor passage	
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Compressor DNS sideview	





Pressure, suction surfaces���
and f.s.t.	





Instantaneous velocity 
contours	
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No fst	



Pressure side	



transition	





Jets and spots	





Suction side	





Suction side: mixed mode transition	



Iso-vorticity contours	





Instability on the suction side	



Incident wakes	





Impinging wakes	





u’ mode 5	





Mode 2 visualiztions	
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Compressor:	



Continuous mode transition is seen on the pressure side	


Suction side has three-dimensional instability after separation. 	


Suction side depends on %f.s.t.  Impinging wakes 
intermittently reattach the boundary layer	





Modeling for CFD	



Two recent approaches to model transition for general 
purpose CFD:  Laminar fluctuation (Walters & Cokljat) and 
Intermittency (Langtry & Menter)	


	


  Laminar fluctuation energy kL	


-  Klebanoff modes?	


-  kL feeds kT	



	


  Intermittency function (Narishima)  0 ≤ γ ≤ 1	



–  nominally the fraction of time the flow is turbulent	


–  practically it is a switch that ramps up turbulent 

production:  γ = Pturbulent/( Pturbulent+ Plaminar )	


	


	





•  Actually, the third approach: rely on turbulence model	


– Generally questionable: models not calibrated for 

transition	


– Not viable with k-ω, S-A: transition way too early	





Rely on turbulence model ??	
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Cf contours	
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Laminar fluctuation model ���
Walters & Cokljat 2009	



K-modes	


or 	



TS waves?	



Turbulent k.e. and laminar k.e.	





Intermittency model ���
Langtry-Menter 2004	



source	



Sink to ensure 	


laminar region	







Intermittency model	



Motive: Can formulation be simpler, more 
comprehensible?	


	


Physics: free-stream disturbance diffuses into 
boundary layer	


	





Dγ

Dt
= ∂j

��
ν

σl
+

νT

σγ

�
∂jγ

�
+ Fγ |Ω|(1− γ)

√
γ

In	



σl = 5 and σγ = 0.23 γ∞ = 1, ∂yγ|0 = 0
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Applied to  k-ω model	



Dk

Dt
= 2 γ νT |S|2 − Cµkω + ∂j

��
ν +
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�
∂jk

�

Dω

Dt
= 2Cω1|S|2 − Cω2ω
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Diffusion	





Flat plate boundary layer	
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Source: Fγ	



are introduced, defined as

Nt ≡
νT

ν

Tω ≡
νT

ν

|Ω|
ω

Rv ≡
d2|Ω|

2.188 ν











































(2.5)

where d is distance to the wall. Nt is the ratio of eddy viscosity to molecular
viscosity. The definition of Tω is Nt multiplied by |Ω|/ω to make it vanish in
the free-stream. Recall that ω "= 0 in laminar flow. Another view of Tω is that
in parallel shear flow Tω = |uv|/νω; for instance, in the log-layer it equals 1/ω+.

The local Reynolds number, Rv has a long history of use for transition
prediction (White, 1991). However, note that near a wall it behaves like wall
distance squared, in plus units: Rv → y2

+/2.188 as y+ → 0.
The definition of Rv is such that in the Blasius boundary layer maxyRv =

Rθ. In Falkner-Skan boundary layers maxyRv is less than Rθ for accelerating
pressure gradients and greater than Rθ for adverse pressure gradients. So a
fixed value of Rv will corresponding to a higher Rθ if the pressure gradient is
favorable, and a lower Rθ as the pressure gradient becomes adverse.

The functional dependence to be invoked is Fγ(Rv, Tω). Tω is used to create
a threshold Reynolds number, Rc. If the turbulent intensity is low the threshold
Reynolds number is high. Based on experimental data, a linear ramp between
400 at low intensity to 140 at high intensity was selected:

Rc = 400 − 260 min

(

Tω

2
, 1

)

. (2.6)

As the local Reynolds number Rv crosses the Rc threshold from below, Fγ

ramps up from zero. Again, a linear ramp min[ max(Rv−Rc, 0), 4 ] was selected.
This function is zero when Rv < Rc, then increases to a ceiling of 4. The upper
limit of 4 is not critical; a higher value has little effect.

However, under low free-stream turbulence this ramp-up causes early transi-
tion. So a ramp down was included if the Reynolds number crosses 200 without
the flow becoming turbulent (that is, if Tω remains low). To this end a factor
max[ 0, min(200−Rv, 1 )] is inserted. This evaluates to zero if Rv ≥ 200 and to
unity if Rv ≤ 199. In aggregate, the function is

Fγ = 2 max[0, min(200 − Rv, 1)] × min[max(Rv − Rc, 0), 4], (2.7)

with Rc as in (2.6). In other words, Fγ = 8 in a triangular region, and is zero
outside another triangular region:

Fγ = 0 if Rv ≤ Rc, or if Rv ≥ 200

Fγ = 8 if Rv > Rc + 4 and Rv ≤ 199
as in figure 2.6 — presently Rc,min in that figure is 140. Non-constant values
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Summary	



 Theory:	


  Continuous mode transition is a theoretical framework for bypass 
beneath  vortical  disturbances.   Disturbances  diffuse  into  the 
boundary layer, moderated by shear filtering	



DNS:	


 Transition is at low Reynolds number: DNS on realistic geometries 
is quite feasible	



Modeling:	


 Intermittency/RANS models probably can be simplified. That will 
make it easier to apply this approach to other RANS closures, and 
to modify models	


 	




