

The phenomenon of bypass transition and its modeling

Paul Durbin

Aerospace Engineering Iowa State University

Transition affects performance, aerodynamics, mixing, heat transfer

Engine Blades

Considerations

- Transition refers to development of *small-scale*, *self-sustained* turbulence within the boundary layer
- Free-stream disturbances (turbulence; wakes) are large scale and have little direct effect on skin friction, heat transfer
- External disturbances diffuse into the boundary layer, create low frequency perturbations that break down to turbulence
- Transition occurs over an extended length
- Practical modeling represents averaged properties

Bypass transition

Schematic of continuous mode transition

Boundary layer response to Free-stream turbulence

A bypass transition primer

- Continuous modes; discrete modes
- Klebanoff modes; 'streaks' or 'jets'
- Turbulent spots
- Intermittency
- Free-stream turbulence intensity (Tu) u'/U (in %)
- Shear sheltering or filtering
- Bypass and natural transition

Discrete and Continuous mode shapes

→ Natural transition

→ Bypass transition

Streamwise (x)

Continuous modes: Shear filtering and penetration depth

Theory

O-S + forced Squire equations

O-S=horizontal, Squire=vertical vorticity

$$(\mathcal{L} - \partial_t)v = 0$$

 $(\mathcal{S} - \partial_t)\eta = \mathcal{C}v(\tilde{k_y}, \tilde{\omega})$

Discrete modes (TS waves), $v \to 0, y \to \infty$ Continuous modes, v bounded, $y \to \infty$

Dispersion relation: temporal (non-dim on δ ; $U_{\infty} = 1$)

$$\omega = \underbrace{k_x}_{c=1} - \underbrace{rac{i}{R} \left(k_x^2 + k_z^2 + k_y^2
ight)}_{decay}$$

O-S and Squire

 \exists exact resonance between continuous O-S and Squire modes

Basic idea of algebraic growth: for $k_x \to 0$ (or $\lambda_x \to \infty$)

$$\nabla^2 p = \partial_y U \partial_x v \sim 0$$

Then

$$d_t v = 0 \rightarrow v = v(0)$$

$$d_t u = -v d_y U \rightarrow u \sim -v(0) d_y U t$$

(RDT; c.f. Prandtl)

i.e., streamwise elongated disturbances (jets) grow within the boundary layer

Typical discrete mode

Continuous mode transition

Evolution of continuous mode response \rightarrow Klebanoff modes

Squire equation is forced by OS modes

Superposition produces a `Klebanoff distortion'

3% f.s.t, Klebanoff modes

Three planes

2 continuous modes, *u*-component jets (streaks)

u' contours at $y/\delta_0 = 0.74$

Breakdown of lifted jets

Side and end views of lifted jets

Side

2 continuous modes, v-component Spots

Turbulent spots

Contours of v

Discrete plus continuous modes

To illustrate natural vs. bypass

Growth and breakdown of TS waves

Secondary instability: Λ vortices

u' contours in *x*-*z* plane at *y*=0.5 δ_{99}

Boundary layer response

2 low freq. modes

1 low + 1 high

Turbine and compressor blade DNS

Passing wakes

LP turbine

Direct Numerical Simulation (DNS)

T106

Transition on LP Turbine blade

Distorted wakes

data by Fottner et al at Univ. Bundeswehr Munchen

Compressor passage

Compressor DNS sideview

Pressure, suction surfaces and f.s.t.

Instantaneous velocity contours

U

Pressure side

Jets and spots

Suction side

Suction side: mixed mode transition

Iso-vorticity contours

Instability on the suction side

Impinging wakes

u' mode 5

Mode 2 visualiztions

Compressor:

Continuous mode transition is seen on the pressure side

Suction side has three-dimensional instability after separation.

Suction side depends on %f.s.t. Impinging wakes intermittently reattach the boundary layer

Modeling for CFD

Two recent approaches to model transition for general purpose CFD: Laminar fluctuation (*Walters & Cokljat*) and Intermittency (*Langtry & Menter*)

Laminar fluctuation energy \boldsymbol{k}_{L}

- Klebanoff modes?
- k_L feeds k_T

Intermittency function (Narishima) $0 \le \gamma \le 1$

- nominally the fraction of time the flow is turbulent
- practically it is a switch that ramps up turbulent production: $\gamma = P_{turbulent} / (P_{turbulent} + P_{laminar})$

- Actually, the third approach: rely on turbulence model

 Generally questionable: models not calibrated for
 transition
 - Not viable with k- ω , S-A: transition way too early

Rely on turbulence model ??

C_f contours

Laminar fluctuation model Walters & Cokljat 2009

Turbulent k.e. and laminar k.e.

$$\frac{Dk_T}{Dt} = P_{k_T} + R_{\rm BP} + R_{\rm NAT} - \omega k_T - D_T + \frac{\partial}{\partial x_j} \left[\left(\nu + \frac{\alpha_T}{\sigma_k} \right) \frac{\partial k_T}{\partial x_j} \right]$$

K-modes
or
TS waves?
$$\frac{Dk_L}{Dt} = P_{k_L} - R_{BP} - R_{NAT} - D_L + \frac{\partial}{\partial x_j} \left[\nu \frac{\partial k_L}{\partial x_j} \right]$$

$$\frac{D\omega}{Dt} = C_{\omega 1} \frac{\omega}{k_T} P_{k_T} + \left(\frac{C_{\omega R}}{f_W} - 1\right) \frac{\omega}{k_T} (R_{\rm BP} + R_{\rm NAT}) - C_{\omega 2} \omega^2 + C_{\omega 3} f_\omega \alpha_T f_W^2 \frac{\sqrt{k_T}}{d^3} + \frac{\partial}{\partial x_j} \left[\left(\nu + \frac{\alpha_T}{\sigma_\omega}\right) \frac{\partial \omega}{\partial x_j} \right]$$

Intermittency model Langtry-Menter 2004

$$\frac{\partial(\rho\gamma)}{\partial t} + \frac{\partial(\rho U_j\gamma)}{\partial x_j} = P_{\gamma} - E_{\gamma} + \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_t}{\sigma_f} \right) \frac{\partial\gamma}{\partial x_j} \right]$$

source $P_{\gamma 1} = F_{length} c_{a1} \rho S [\gamma F_{onset}]^{0.5} (1 - \gamma)$

Sink to ensure laminar region

$$E_{\gamma} = c_{a2}\rho\Omega\gamma F_{turb}(c_{e2}\gamma - 1)$$

The transport equation for the intermittency, γ reads:

$$\frac{\partial(\rho\gamma)}{\partial t} + \frac{\partial(\rho U_{j}\gamma)}{\partial x_{j}} = P_{\gamma 1} - E_{\gamma 1} + P_{\gamma 2} - E_{\gamma 2} + \frac{\partial}{\partial x_{j}} \left[\left(\mu + \frac{\mu_{j}}{\sigma_{\gamma}} \right) \frac{\partial\gamma}{\partial x_{j}} \right]$$

The transition sources are defined as follows:

 $P_{\gamma 1} = F_{length} c_{s1} \rho S \left[\gamma F_{onset} \right]^{r_s}; \quad E_{\gamma 1} = c_{e1} P_{\gamma 1} \gamma$

where S is the strain rate magnitude. $F_{\rm icogh}$ is an empirical correlation that controls the length of the transition region. The destruction/relaminarization sources are defined as follows:

 $P_{\gamma 2} = c_{\alpha 2} \rho \Omega \gamma F_{\text{numb}}; \quad E_{\gamma 2} = c_{\alpha 2} P_{\gamma 2} \gamma$

(4)

(5)

ത്ര

where Ω is the vorticity magnitude. The transition onset is controlled by the following functions:

$$\mathbf{Re}_{v} = \frac{\rho v^{2}S}{\mu}; \quad R_{r} = \frac{\rho k}{\mu \omega}$$

$$F_{outrin} = \frac{\mathbf{Re}_{v}}{2.193 \cdot \mathbf{Re}_{ek}}; \quad F_{outrin} = \min\left(\max\left(F_{outrin}, F_{outrin}\right)^{4}\right) 2.0\right)$$

$$F_{outrin} = \max\left(1 - \left(\frac{R_{r}}{2.5}\right)^{3}, 0\right) \quad F_{outrin} = \max\left(F_{outrin} - F_{outrin}, 0\right); \quad F_{base} = e^{-\left(\frac{R_{r}}{4}\right)^{4}}$$

 $Re_{s_{0}}$ is the critical Reynolds number where the intermittency first starts to increase in the bundary layer. The occurs upstream of the transition Reynolds number, $\tilde{R}e_{a}$, and the difference between the two must be obtaine from an empirical correlation. Both the F_{errets} and Re₈ correlations are functions of $\tilde{R}e_{a}$.

The constants for the intermittency equation are:

 $c_{e1} = 1.0; \quad c_{a1} = 2.0; \quad c_{\alpha} = 0.5; \quad c_{e2} = 50; \quad c_{a2} = 0.06; \quad \sigma_{\gamma} = 1.0;$

∢____'

The modification for separation-induced transition is

$$\boldsymbol{\gamma}_{sp} = \min \Bigg(2 \cdot \max \Bigg[\left(\frac{\mathbf{Re}_{x}}{3.235 \, \mathbf{Re}_{x}} \right) - 1.0 \Bigg] \boldsymbol{F}_{restures}, 2 \Bigg] \boldsymbol{F}_{y}; \boldsymbol{F}_{restures} = \boldsymbol{e}^{-\left(\frac{\boldsymbol{E}_{y}}{2D} \right)^{'}}; \boldsymbol{\gamma}_{cf} = \max \Big(\boldsymbol{\gamma}, \boldsymbol{\gamma}_{sp} \Big)$$

The model constants in Equ. 10 have been adjusted from those of Menter et al (2004) in order to improve th predictions of separated flow transition. The main difference is the constant that controls the relation between Re and Re₆, was changed from 2.193, it's value for a Blasius boundary layer, to 3.235, the value at a separation poly where the shape factor is 3.5 (see for example Figure 2 in Menter et al, 2004). The boundary condition for γ at Figuliarsecretoraudith/ordeficiarsionitomoristicantabic/kees kevolds number. Re₆, reads:

$$\frac{\partial \left(\rho \,\tilde{\mathbf{R}} \,\mathbf{c}_{m}\right)}{\partial t} + \frac{\partial \left(\rho \,U_{j} \,\tilde{\mathbf{R}} \,\mathbf{c}_{m}\right)}{\partial x_{j}} = P_{m} + \frac{\partial}{\partial x_{j}} \left[\sigma_{m} \left(\mu + \mu_{j}\right) \frac{\partial \,\tilde{\mathbf{R}} \,\mathbf{c}_{m}}{\partial x_{j}}\right] \tag{11}$$

The source term is defined as follows

$$P_{\theta t} = c_{\theta t} \frac{\rho}{t} \left(\operatorname{Re}_{\theta t} - \widetilde{\operatorname{R}} \mathbf{e}_{\theta t} \right) \left(1.0 - F_{\theta t} \right), \quad t = \frac{500}{\rho U^{-2}}$$
(12)
$$F_{\theta} = \min \left(\max \left\{ F_{oute} \cdot e^{\frac{f(y)}{2}} \right), 1.0 - \left(\frac{\gamma - 1/c_{e_{x}}}{1.0 - 1/c_{e_{x}}} \right)^{2} \right) \right).0 \right)$$
(13)
$$\theta_{\theta t} = \frac{\widetilde{\operatorname{Re}}_{\theta} \cdot \mu}{t}; \quad \delta_{\theta t} = \frac{15}{2} \theta_{\theta t}; \quad \delta = \frac{50\Omega \cdot y}{2}, \quad \delta_{\theta t}.$$
(14)

$$\rho U = \frac{\rho \omega_{2}}{2} \quad U = \frac{1}{2} \quad U = \frac{$$

The model constants for the $\tilde{R}e_{\alpha}$ equation are:

Re_a

= 0.03;
$$\sigma_{\alpha} = 2.0$$
 (16

The boundary condition for $\tilde{R}e_{\alpha}$ at a wall is zero flux. The boundary condition for $\tilde{R}e_{\alpha}$ at an inlet should be calculated from the empirical correlation based on the inlet turbulence intensity.

 C_{∞}

The model contains three empirical correlations. Res. is the transition onset as observed in experiments. This has been modified from Menter et al. (2004) in order to improve the predictions for natural transition. It is used in Eq.1.2. Fr_{engt} is the length of the transition zone and goes into Eq. 4. Res, is the point where the model is activated in order to match both. Res and F_{length}, it goes into Eq. 7. At present these empirical correlations are proprietary and are no given in the paper.

$$= f(Tu, \lambda); \quad F_{ienget} = f(\widetilde{R}e_{\Theta_i}); \quad Re_{\Theta_i} = f(\widetilde{R}e_{\Theta_i})$$
(17)

The first empirical correlation is a function of the local turbulence intensity, Tu, and the Thwaites' pressure gradient coefficient λ_0 defined as:

$$\lambda_0 = (\theta^2 h) dU/ds$$

(18)

Intermittency model

Motive: Can formulation be simpler, more comprehensible?

Physics: free-stream disturbance diffuses into boundary layer

Diffusion

$$\frac{D\gamma}{Dt} = \partial_j \left[\left(\frac{\nu}{\sigma_l} + \frac{\nu_T}{\sigma_\gamma} \right) \partial_j \gamma \right] + F_\gamma |\Omega| (1 - \gamma) \sqrt{\gamma}$$
$$\sigma_l = 5 \text{ and } \sigma_\gamma = 0.23 \qquad \gamma_\infty = 1, \ \partial_y \gamma|_0 = 0$$

Flat plate boundary layer

FPG-APG at 2 Reynolds #s (T3C2, 5)

Summary

Theory:

Continuous mode transition is a theoretical framework for bypass beneath vortical disturbances. Disturbances diffuse into the boundary layer, moderated by shear filtering

DNS:

Transition is at *low Reynolds number*: DNS on realistic geometries is quite feasible

Modeling:

Intermittency/RANS models probably can be simplified. That will make it easier to apply this approach to other RANS closures, and to modify models