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Engine Blades	


Transition affects performance, 
aerodynamics, mixing, heat transfer	
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Considerations	


•  Transition refers to development of small-scale, self-sustained 
turbulence within the boundary layer	


•  Free-stream disturbances (turbulence; wakes) are large scale and 
have little direct effect on skin friction, heat transfer	


•  External disturbances diffuse into the boundary layer, create 
low frequency perturbations that break down to turbulence	


•  Transition occurs over an extended length	


•  Practical modeling represents averaged properties	


Laminar Transition length Turbulent

Free-stream disturbances



Bypass transition	


free stream turbulence	


Transition in boundary 
layer	


Skin friction on wall	




Averaged view	
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Boundary layer response to 
Free-stream turbulence	




A bypass transition primer	


   Continuous modes; discrete modes	


   Klebanoff modes; ‘streaks’ or ‘jets’	


   Turbulent spots	


   Intermittency	


   Free-stream turbulence intensity (Tu)  u’/U (in %)	


   Shear sheltering – or filtering	


   Bypass and natural transition	




Discrete and Continuous mode shapes	


Discrete (T-S)	

`bound’	

	


  Natural transition	


Continuous (FST)	

`free’	

	


 Bypass transition	






Continuous modes: Shear filtering and 
penetration depth	
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ω=π;              ω=π/10,             ω=π/100	




Theory	


O-S=horizontal,	

Squire=vertical	


vorticity	


O-S and Squire	




∃ exact resonance between continuous O-S and Squire modes

Basic idea of algebraic growth: for kx → 0 (or λx →∞)

∇2p = ∂yU∂xv ∼ 0

Then

dtv = 0→ v = v(0)

dtu = −vdyU → u ∼ −v(0)dyU t

(RDT; c.f. Prandtl)

i.e., streamwise elongated disturbances (jets) grow within 
the boundary layer	






Continuous mode transition	


Evolution of continuous mode response         Klebanoff modes	
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Squire equation is forced by OS modes 	
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Superposition produces a `Klebanoff distortion'	




3% f.s.t, Klebanoff modes	


u’ contours	




Three planes	




2 continuous modes, u-component���
jets (streaks)	




Breakdown of lifted jets	




Side and end views of 
lifted jets	


Side	
 End 	




2 continuous modes, v-component	

Spots	




Turbulent spots	

Contours of v	


Patch of fully developed 
turbulence	




Discrete plus continuous 
modes	


To illustrate natural vs. bypass	




Boundary layer response	


T-S wave alone	


T-S Mode 5	


T-S+Mode 2	


‘natural’ transition	




Growth and breakdown of TS waves	
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Formed vortex

Vortex that is forming

Boundary between two continuous vortices

Vortex pair

Secondary instability: Λ vortices	




u’ contours in x-z plane at y=0.5δ99	




v’ contours in x-z plane at y=0.5δ99	


Λ’s match cont’s mode;  1/10 H-type	




Boundary layer response	


2 low freq. modes	


1 low + 1 high	




Turbine and compressor blade ���
DNS	




Passing wakes	
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LP turbine	


T106	


Direct Numerical Simulation 	

(DNS)	




Transition on LP Turbine blade	


 

 

 

 

 

 

 

 

 

 

Impinging wakes	

No wakes	


Re=105	




DNS wake	

DNS no wake	


Distorted wakes	




Compressor passage	


U
x U

y 



Compressor DNS sideview	




Pressure, suction surfaces���
and f.s.t.	




Instantaneous velocity 
contours	


u	


v	




No fst	


Pressure side	


transition	




Jets and spots	




Suction side	




Suction side: mixed mode transition	


Iso-vorticity contours	




Instability on the suction side	


Incident wakes	




Impinging wakes	




u’ mode 5	




Mode 2 visualiztions	




2% 	

4%	

6%	


Compressor:	


Continuous mode transition is seen on the pressure side	

Suction side has three-dimensional instability after separation. 	

Suction side depends on %f.s.t.  Impinging wakes 
intermittently reattach the boundary layer	




Modeling for CFD	


Two recent approaches to model transition for general 
purpose CFD:  Laminar fluctuation (Walters & Cokljat) and 
Intermittency (Langtry & Menter)	

	

  Laminar fluctuation energy kL	

-  Klebanoff modes?	

-  kL feeds kT	


	

  Intermittency function (Narishima)  0 ≤ γ ≤ 1	


–  nominally the fraction of time the flow is turbulent	

–  practically it is a switch that ramps up turbulent 

production:  γ = Pturbulent/( Pturbulent+ Plaminar )	

	

	




•  Actually, the third approach: rely on turbulence model	

– Generally questionable: models not calibrated for 

transition	

– Not viable with k-ω, S-A: transition way too early	




Rely on turbulence model ??	
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Cf contours	
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Laminar fluctuation model ���
Walters & Cokljat 2009	


K-modes	

or 	


TS waves?	


Turbulent k.e. and laminar k.e.	




Intermittency model ���
Langtry-Menter 2004	


source	


Sink to ensure 	

laminar region	






Intermittency model	


Motive: Can formulation be simpler, more 
comprehensible?	

	

Physics: free-stream disturbance diffuses into 
boundary layer	

	




Dγ

Dt
= ∂j

��
ν

σl
+

νT

σγ

�
∂jγ

�
+ Fγ |Ω|(1− γ)

√
γ

In	


σl = 5 and σγ = 0.23 γ∞ = 1, ∂yγ|0 = 0
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In energy equation production is multiplied by γ.	

Applied to  k-ω model	


Dk

Dt
= 2 γ νT |S|2 − Cµkω + ∂j

��
ν +

νT

σk

�
∂jk

�

Dω

Dt
= 2Cω1|S|2 − Cω2ω

2 + ∂j

��
ν +

νT

σω

�
∂jω

�

Diffusion	




Flat plate boundary layer	
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Source: Fγ	


are introduced, defined as

Nt ≡
νT

ν

Tω ≡
νT

ν

|Ω|
ω

Rv ≡
d2|Ω|

2.188 ν











































(2.5)

where d is distance to the wall. Nt is the ratio of eddy viscosity to molecular
viscosity. The definition of Tω is Nt multiplied by |Ω|/ω to make it vanish in
the free-stream. Recall that ω "= 0 in laminar flow. Another view of Tω is that
in parallel shear flow Tω = |uv|/νω; for instance, in the log-layer it equals 1/ω+.

The local Reynolds number, Rv has a long history of use for transition
prediction (White, 1991). However, note that near a wall it behaves like wall
distance squared, in plus units: Rv → y2

+/2.188 as y+ → 0.
The definition of Rv is such that in the Blasius boundary layer maxyRv =

Rθ. In Falkner-Skan boundary layers maxyRv is less than Rθ for accelerating
pressure gradients and greater than Rθ for adverse pressure gradients. So a
fixed value of Rv will corresponding to a higher Rθ if the pressure gradient is
favorable, and a lower Rθ as the pressure gradient becomes adverse.

The functional dependence to be invoked is Fγ(Rv, Tω). Tω is used to create
a threshold Reynolds number, Rc. If the turbulent intensity is low the threshold
Reynolds number is high. Based on experimental data, a linear ramp between
400 at low intensity to 140 at high intensity was selected:

Rc = 400 − 260 min

(

Tω

2
, 1

)

. (2.6)

As the local Reynolds number Rv crosses the Rc threshold from below, Fγ

ramps up from zero. Again, a linear ramp min[ max(Rv−Rc, 0), 4 ] was selected.
This function is zero when Rv < Rc, then increases to a ceiling of 4. The upper
limit of 4 is not critical; a higher value has little effect.

However, under low free-stream turbulence this ramp-up causes early transi-
tion. So a ramp down was included if the Reynolds number crosses 200 without
the flow becoming turbulent (that is, if Tω remains low). To this end a factor
max[ 0, min(200−Rv, 1 )] is inserted. This evaluates to zero if Rv ≥ 200 and to
unity if Rv ≤ 199. In aggregate, the function is

Fγ = 2 max[0, min(200 − Rv, 1)] × min[max(Rv − Rc, 0), 4], (2.7)

with Rc as in (2.6). In other words, Fγ = 8 in a triangular region, and is zero
outside another triangular region:

Fγ = 0 if Rv ≤ Rc, or if Rv ≥ 200

Fγ = 8 if Rv > Rc + 4 and Rv ≤ 199
as in figure 2.6 — presently Rc,min in that figure is 140. Non-constant values
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Summary	


 Theory:	

  Continuous mode transition is a theoretical framework for bypass 
beneath  vortical  disturbances.   Disturbances  diffuse  into  the 
boundary layer, moderated by shear filtering	


DNS:	

 Transition is at low Reynolds number: DNS on realistic geometries 
is quite feasible	


Modeling:	

 Intermittency/RANS models probably can be simplified. That will 
make it easier to apply this approach to other RANS closures, and 
to modify models	

 	



