Turbulence As A Source of Sound

Jonathan B. Freund

Mechanical Science & Engineering Aerospace Engineering University of Illinois at Urbana-Champaign

NASA, AFOSR, ONR

Turbulence Makes Sound

Turbulence Makes Sound

• Increasingly a concern...

Outline

- The acoustic limit
- Sources and sound
- Turbulence: the acoustic analogy
- Challenges in predicting sound from turbulence
 - Complex turbulence statistic
 - Phase velocity restriction
 - Coupled process: different source components, refraction,...
- Robustness as a criterion for formulation selection

Outlook

Sound Energies Are Small

 Acoustic energy radiated from a jet at take-off insufficient to boil and egg

• Double exit velocity: ~ 250 times more acoustic power

 Typically neglected in conservation of energy analysis of mechanical systems

Acoustic Limit

• A solution of the compressible flow equations

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u_i}{\partial x_i} = 0$$
$$\frac{\partial \rho u_i}{\partial t} + \frac{\partial \rho u_i u_j}{\partial x_j} + \frac{\partial p}{\partial x_i} = [\text{viscous terms}]$$

 Approximately inviscid: interested in sound that propagates long distances, many wavelengths

$$f = 4 \text{ kHz} \implies \lambda = a_o/f \approx 0.1 \text{ m}$$

• Low energy \rightarrow low amplitude \rightarrow linearize

 $\rho(\mathbf{x},t) = \rho_o + \rho'(\mathbf{x},t) \qquad u_i(\mathbf{x},t) = 0 + u'_i(\mathbf{x},t) \qquad p(\mathbf{x},t) = p_0 + p'(\mathbf{x},t)$

yielding

$$\frac{\partial \rho'}{\partial t} + \rho_o \frac{\partial u'_i}{\partial x_i} = 0$$
$$\rho_o \frac{\partial u'_i}{\partial t} + \frac{\partial p'}{\partial x_i} = 0$$

• Eliminate velocity:

$$\frac{\partial}{\partial t} [\text{mass}] \implies \frac{\partial^2 \rho'}{\partial t^2} + \left| \rho_o \frac{\partial^2 u'_i}{\partial t \partial x_i} \right| = 0$$
$$\frac{\partial}{\partial x_i} [\text{momentum}] \implies \left[\rho_o \frac{\partial^2 u'_i}{\partial t \partial x_i} \right] + \frac{\partial^2 p'}{\partial x_i \partial x_i} = 0$$

and subtract

$$\frac{\partial^2 \rho'}{\partial t^2} - \frac{\partial^2 p'}{\partial x_i \partial x_i} = 0$$

Speed of sound

$$a_o = \left(\frac{\partial p}{\partial \rho}\right)_s \approx \frac{p'}{\rho'} \implies p' = a_o^2 \rho' + \text{h.o.t.}$$

yielding the linear, scalar wave equation for ρ^\prime

$$\frac{\partial^2 \rho'}{\partial t^2} - a_o^2 \frac{\partial^2 \rho'}{\partial x_i \partial x_i} = 0$$

Speed of sound

$$a_o = \left(\frac{\partial p}{\partial \rho}\right)_s \approx \frac{p'}{\rho'} \implies p' = a_o^2 \rho' + \text{h.o.t.}$$

yielding the linear, scalar wave equation for ρ^\prime

$$\frac{\partial^2 \rho'}{\partial t^2} - a_o^2 \frac{\partial^2 \rho'}{\partial x_i \partial x_i} = 0$$

or for p'

$$\frac{\partial^2 p'}{\partial t^2} - a_o^2 \frac{\partial^2 p'}{\partial x_i \partial x_i} = 0$$

Solution Forms

• Plane waves: $\omega^2 = a_o^2 k^2$

$$\rho' \sim \exp\left[i(\mathbf{k} \cdot \mathbf{x} + \omega t)\right] = \exp\left[ik(\hat{\mathbf{k}} \cdot \mathbf{x} \pm a_o t)\right]$$

Solution Forms

• Plane waves: $\omega^2 = a_o^2 k^2$

$$\rho' \sim \exp\left[i(\mathbf{k}\cdot\mathbf{x}+\omega t)\right] = \exp\left[ik(\hat{\mathbf{k}}\cdot\mathbf{x}\pm a_o t)\right]$$

• Cylindrical waves (*e.g.* $r^2 = x_1^2 + x_2^2$)

$$\rho' \sim H_0^{(1 \text{ or } 2)}(kr) \exp\left[ika_o t\right] \sim \left[\frac{2}{\pi kr}\right]^{1/2} \exp\left[\mp ik(r-a_o t) \mp i\frac{\pi}{4}\right] \sim \frac{1}{r^{1/2}}$$

Solution Forms

• Plane waves:
$$\omega^2 = a_o^2 k^2$$

$$\rho' \sim \exp\left[i(\mathbf{k}\cdot\mathbf{x}+\omega t)\right] = \exp\left[ik(\hat{\mathbf{k}}\cdot\mathbf{x}\pm a_o t)\right]$$

• Cylindrical waves (e.g. $r^2 = x_1^2 + x_2^2$)

$$\rho' \sim H_0^{(1 \text{ or } 2)}(kr) \exp\left[ika_o t\right] \sim \left[\frac{2}{\pi kr}\right]^{1/2} \exp\left[\mp ik(r-a_o t) \mp i\frac{\pi}{4}\right] \sim \frac{1}{r^{1/2}}$$

• Spherical waves ($r = |\mathbf{x}|$)

$$\rho' \sim \frac{1}{r} \exp[ik(r \pm a_o t)] \sim \frac{1}{r}$$

Acoustic Perturbations Are Related

• Plane wave traveling in $+x_1$:

$$\rho' = \Re \left[A e^{ikx - i\omega t} \right] \qquad u'_1 = \Re \left[\frac{a_o}{\rho_o} A e^{ikx - i\omega t} \right] \qquad p' = \Re \left[A a_o^2 e^{ikx - i\omega t} \right]$$

$$u_2' = u_3' = 0$$

SO

$$p' = \rho_o a_o u'_1 \qquad \rho' = \frac{\rho_o}{a_o} u'_1$$

Acoustic Intensity

• Acoustic intensity, mean power flux

$$I = \left\langle p'u' \right\rangle = \frac{a_o^3}{\rho_o} \left\langle (\rho')^2 \right\rangle$$

• Large r:

cylindrical:
$$I \sim \frac{1}{r}$$
 spherical: $I \sim \frac{1}{r^2}$

• Intensity usually metric of practical interest

Sources of Sound

Sources of Sound

• A mass source...

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u_i}{\partial x_i} = \boxed{Q(\mathbf{x}, t)}$$
$$\frac{\partial \rho u_i}{\partial t} + \frac{\partial \rho u_i u_j}{\partial x_j} + \frac{\partial p}{\partial x_i} = \text{viscous terms}$$

• Linearize, differentiate, form wave equation,....

$$\frac{\partial^2 \rho'}{\partial t^2} - a_o^2 \frac{\partial^2 \rho'}{\partial x_i \partial x_i} = \boxed{\frac{\partial Q}{\partial t} \equiv q(\mathbf{x}, t)}$$

Green's Function Solution

• Greens function:

$$\frac{\partial^2 G}{\partial t^2} - a_o^2 \frac{\partial^2 G}{\partial x_i \partial x_i} = \delta(\mathbf{x}) \delta(t)$$

has solution

$$G(\mathbf{x},t) = \frac{\delta(\mathbf{x} - a_o t)}{4\pi a_o |\mathbf{x}|} \sim \frac{1}{r}$$

Solution of

$$\frac{\partial^2 \rho'}{\partial t^2} - a_o^2 \frac{\partial^2 \rho'}{\partial x_i \partial x_i} = q(\mathbf{x}, t)$$

is

$$\rho'(\mathbf{x},t) = \frac{1}{4\pi a_o^2} \int \frac{q\left(\mathbf{y}, t - \frac{|\mathbf{x}-\mathbf{y}|}{a_o}\right)}{|\mathbf{x}-\mathbf{y}|} \, d\mathbf{y}$$

• Source scales: ℓ , u, ρ_o

Compact Source Approximation

$$\rho'(\mathbf{x},t) = \frac{1}{4\pi a_o^2} \int \frac{q\left(\mathbf{y}, t - \frac{|\mathbf{x} - \mathbf{y}|}{a_o}\right)}{|\mathbf{x} - \mathbf{y}|} \, d\mathbf{y}$$

• Source scales: ℓ , u, ρ_o

• $q \sim \rho_o u^2/\ell^2$

- Difference in emission times across source $\tau_{\text{emission}} = \ell/a_o$
- Source changes on time scale $\tau_{source} = \ell/u$
- Consider $\tau_{\text{emission}} \ll \tau_{\text{source}}$:

♦ \(\tau_{emission} / \tau_{source} = u / a_o \equiv m \ll 1 - \low Mach number\)
 ♦ integrand: \(q \left(\mathbf{y}, t - \frac{|\mathbf{x} - \mathbf{y}|}{a_o} \right) \approx q \left(\mathbf{y}, t - \frac{|\mathbf{x}|}{a_o} \right) \app

Far-field Intensity

• Consider far field $|\mathbf{x}| \gg \ell$, so

$$\frac{1}{|\mathbf{x} - \mathbf{y}|} \approx \frac{1}{|\mathbf{x}|}$$

• Compact-source and far-field approximations

$$\rho'(\mathbf{x},t) = \frac{1}{\underbrace{4\pi a_o^2 |\mathbf{x}|}_{\sim 1/ra_o^2}} \int \underbrace{q\left(\mathbf{y},t-\frac{|\mathbf{x}|}{a_o}\right)}_{\sim \rho_o u^2/\ell^2} \underbrace{\underbrace{d\mathbf{y}}_{\sim \ell^3}}_{\text{thus:}} \rho' \sim \rho_o \frac{\ell}{r} m^2$$

$$I \sim (\rho')^2 \sim m^4$$

Intensity

Sources of Sound: Force

• A momentum source...

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u_i}{\partial x_i} = 0$$
$$\frac{\partial \rho u_i}{\partial t} + \frac{\partial \rho u_i u_j}{\partial x_j} + \frac{\partial p}{\partial x_i} = \boxed{F_i(\mathbf{x}, t)} + [\text{ vis. terms }]$$

• Linearize, differentiate, inviscid, form acoustic equations,....

$$\frac{\partial^2 \rho'}{\partial t^2} - a_o^2 \frac{\partial^2 \rho'}{\partial x_i \partial x_i} = \boxed{\frac{\partial F_i}{\partial y_i}}$$

Far-field, Compact

Same Green's function solution

$$\rho'(\mathbf{x},t) = \frac{1}{4\pi a_o^2} \int \frac{\partial F_i\left(\mathbf{y}, t - \frac{|\mathbf{x}-\mathbf{y}|}{a_o}\right)}{\partial y_i} \frac{1}{|\mathbf{x}-\mathbf{y}|} \, d\mathbf{y}$$

• Far-field, compact ($m \ll 1$):

$$\rho'(\mathbf{x},t) = \frac{1}{4\pi a_o^2 |\mathbf{x}|} \int \frac{\partial F_i\left(\mathbf{y}, t - \frac{|\mathbf{x}|}{a_o}\right)}{\partial y_i} \, d\mathbf{y}$$

• Same source scaling ($F \sim \rho_o u^2/\ell$) also yields

$$\rho' \sim \rho_o \frac{\ell}{r} m^2$$
 and $I \sim \rho^2 \sim \rho_o^2 \left(\frac{\ell}{r}\right)^2 m^4$

Far-field, Compact

Same Green's function solution

$$\rho'(\mathbf{x},t) = \frac{1}{4\pi a_o^2} \int \frac{\partial F_i\left(\mathbf{y}, t - \frac{|\mathbf{x}-\mathbf{y}|}{a_o}\right)}{\partial y_i} \frac{1}{|\mathbf{x}-\mathbf{y}|} \, d\mathbf{y}$$

• Far-field, compact ($m \ll 1$):

$$\rho'(\mathbf{x},t) = \frac{1}{4\pi a_o^2 |\mathbf{x}|} \int \frac{\partial F_i\left(\mathbf{y}, t - \frac{|\mathbf{x}|}{a_o}\right)}{\partial y_i} \, d\mathbf{y}$$

• Same source scaling ($F \sim \rho_o u^2/\ell$) also yields

$$\rho' \sim \rho_o \frac{\ell}{r} m^2 \quad \text{and} \quad I \sim \rho^2 \sim \rho_o^2 \left(\frac{\ell}{r}\right)^2 m^4$$

but this is very wrong....

A Missed Cancellation

$$\rho'(\mathbf{x},t) = \frac{1}{4\pi a_o^2 |\mathbf{x}|} \int \frac{\partial F_i\left(\mathbf{y}, t - \frac{|\mathbf{x}|}{a_o}\right)}{\partial y_i} \, d\mathbf{y}$$

• Divergence theorem for compact region of finite F_i

$$\int \frac{\partial F_i\left(\mathbf{y}, t - \frac{|\mathbf{x}|}{a_o}\right)}{\partial y_i} \, d\mathbf{y} = 0$$

Build Near-Cancellation into Formulation

$$\rho'(\mathbf{x},t) = \frac{1}{4\pi a_o^2} \int \frac{\partial F\left(\mathbf{y},t-\frac{|\mathbf{x}-\mathbf{y}|}{a_o}\right)}{\partial y_i} \frac{1}{|\mathbf{x}-\mathbf{y}|} d\mathbf{y}$$
$$= \frac{1}{4\pi a_o^2} \frac{\partial}{\partial x_i} \int \frac{F\left(\mathbf{y},t-\frac{|\mathbf{x}-\mathbf{y}|}{a_o}\right)}{|\mathbf{x}-\mathbf{y}|} d\mathbf{y}$$

via

$$\frac{\partial}{\partial x_i} \int f(\mathbf{y}) g(\mathbf{x} - \mathbf{y}) \, d\mathbf{y} = \int f(\mathbf{y}) \frac{\partial}{\partial x_i} g(\mathbf{x} - \mathbf{y}) \, d\mathbf{y}$$
$$= -\int f(\mathbf{y}) \frac{\partial}{\partial y_i} g(\mathbf{x} - \mathbf{y}) \, d\mathbf{y}$$
$$= +\int \frac{\partial f(\mathbf{y})}{\partial y_i} g(\mathbf{x} - \mathbf{y}) \, d\mathbf{y} - \int \frac{\partial}{\partial y_i} [f(\mathbf{y})g(\mathbf{x} - \mathbf{y})] \, d\mathbf{y}$$

Far-field, Compact (again)

• Far-field, compact

$$\begin{split} \rho'(\mathbf{x},t) &= \frac{1}{4\pi a_o^2} \frac{\partial}{\partial x_i} \int \frac{F\left(\mathbf{y},t-\frac{|\mathbf{x}-\mathbf{y}|}{a_o}\right)}{|\mathbf{x}-\mathbf{y}|} \, d\mathbf{y} \\ &\approx \frac{1}{4\pi a_o^2} \frac{\partial}{\partial x_i} \int \frac{F\left(\mathbf{y},t-\frac{|\mathbf{x}|}{a_o}\right)}{|\mathbf{x}|} \, d\mathbf{y} \\ &\approx \frac{1}{4\pi a_o^2} \int \left[\frac{\partial F\left(\mathbf{y},t-\frac{|\mathbf{x}|}{a_o}\right)}{\partial x_i} \frac{1}{|\mathbf{x}|} + F\left(\mathbf{y},t-\frac{|\mathbf{x}|}{a_o}\right) \frac{\partial}{\partial x_i} \left(\frac{1}{|\mathbf{x}|}\right) \right] \, d\mathbf{y} \\ &= -\frac{1}{4\pi a_o^2 |\mathbf{x}|} \int \frac{\partial F}{\partial t} \left(\mathbf{y},t-\frac{|\mathbf{x}|}{a_o}\right) \frac{1}{a_o} \frac{\partial |\mathbf{x}|}{\partial \mathbf{x}_i} \, d\mathbf{y} + O\left(\frac{1}{|\mathbf{x}|^2}\right) \end{split}$$

Far-field, Compact (again)

• Far-field, compact

$$\begin{split} \rho'(\mathbf{x},t) &= \frac{1}{4\pi a_o^2} \frac{\partial}{\partial x_i} \int \frac{F\left(\mathbf{y},t - \frac{|\mathbf{x}-\mathbf{y}|}{a_o}\right)}{|\mathbf{x} - \mathbf{y}|} \, d\mathbf{y} \\ &\approx \frac{1}{4\pi a_o^2} \frac{\partial}{\partial x_i} \int \frac{F\left(\mathbf{y},t - \frac{|\mathbf{x}|}{a_o}\right)}{|\mathbf{x}|} \, d\mathbf{y} \\ &\approx \frac{1}{4\pi a_o^2} \int \left[\frac{\partial F\left(\mathbf{y},t - \frac{|\mathbf{x}|}{a_o}\right)}{\partial x_i} \frac{1}{|\mathbf{x}|} + F\left(\mathbf{y},t - \frac{|\mathbf{x}|}{a_o}\right) \frac{\partial}{\partial x_i} \left(\frac{1}{|\mathbf{x}|}\right) \right] \, d\mathbf{y} \\ &= -\frac{1}{4\pi a_o^2 |\mathbf{x}|} \int \frac{\partial F}{\partial t} \left(\mathbf{y},t - \frac{|\mathbf{x}|}{a_o}\right) \frac{1}{a_o} \frac{\partial |\mathbf{x}|}{\partial \mathbf{x}_i} \, d\mathbf{y} + O\left(\frac{1}{|\mathbf{x}|^2}\right) \end{split}$$

Far-field, Compact (again)

$$\rho'(\mathbf{x},t) = \frac{1}{4\pi a_o^2 |\mathbf{x}|} \int \frac{\partial F}{\partial t} \left(\mathbf{y}, t - \frac{|\mathbf{x}|}{a_o} \right) \frac{1}{a_o} \frac{\partial |\mathbf{x}|}{\partial \mathbf{x}_i} \, d\mathbf{y}$$

Noting that

$$\frac{\partial |\mathbf{x}|}{\partial x_i} = \frac{\partial}{\partial x_i} \sqrt{x_1^2 + x_2^2 + x_3^2} = \frac{x_i}{|\mathbf{x}|}$$

yields

$$\rho'(\mathbf{x},t) = \frac{1}{4\pi a_o^3 |\mathbf{x}|} \frac{x_i}{|\mathbf{x}|} \int \underbrace{\frac{\partial F}{\partial t} \left(\mathbf{y}, t - \frac{|\mathbf{x}|}{a_o}\right)}_{F \sim \rho_o u^2/\ell; t \sim \ell/u} \underbrace{\frac{\partial \mathbf{y}}{\ell^3}}_{\ell^3}$$

SO

$$\rho' \sim \rho_o \left(\frac{u}{a_o}\right)^3 \frac{l}{r} \sim m^3 \quad \text{and} \quad I \sim m^6$$

Dipole Character

• Dipole — equivalent to nearly canceling equal and opposite q's

- Initial wrong approach missed cancellation (or got zero)
- Space derivative ∂_{y_i} of source was key factor
- This also affects how turbulence makes sound...

Turbulence As A Source of Sound

A Turbulent Jet

• Source and sound are intuitively obvious

A Turbulent Jet

• No obvious length/time-scale separation to clarify distinction

- $\overline{u'u'}/U^2 = O(1)$ beyond weakly nonlinear
- Simplifications of standard acoustics do not apply

A Turbulent Jet

• So what do we know for sure...? A short list:

Our Only Truth

$\mathcal{N}(\vec{q}) = 0$

Our Only Truth

$\mathcal{N}(\vec{q}) = 0$

• The flow equations $\mathcal N$ govern the flow variables $\vec q$

Our Only Truth

$\mathcal{N}(\vec{q}) = 0$

• So what can we do...?

Give \vec{q} a dual role

- Seems that we must use \vec{q} in two ways simultaneously
- Rearrange $\mathcal{N}(\vec{q}) = 0$ into $\mathcal{L}\vec{q} = S(\vec{q})$
 - \bullet \mathcal{N} compressible flow equations
 - ♦ \mathcal{L} wave propagation operator (usually linear)
 - \bullet S nominal noise source (usually nonlinear)

$$\mathcal{L} = \partial_{tt} - a_o^2 \nabla^2$$

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u_i}{\partial x_i} = 0$$
$$\frac{\partial \rho u_i}{\partial t} + \frac{\partial \rho u_i u_j}{\partial x_j} + \frac{\partial p}{\partial x_i} = \text{viscous terms}$$

- Turbulence fluctuations are not small... can't just linearize
- $\partial_t[\text{mass}] \partial_{x_i}[\text{momentum}]$ as before:

$$\frac{\partial^2 \rho}{\partial t^2} - a_o^2 \frac{\partial^2 \rho}{\partial x_i \partial x_i} = \frac{\partial^2 T_{ij}}{\partial x_i \partial x_j}$$

the Lighthill equation, where the Lighthill stress is

$$T_{ij} = \rho u_i u_j + (p - a_o^2 \rho) + \tau_{\text{viscous}}$$

Note: this is an exact re-arrangement of the flow equations

Acoustic Analogy

$$\frac{\partial^2 \rho}{\partial t^2} - a_o^2 \frac{\partial^2 \rho}{\partial x_i \partial x_i} = \frac{\partial^2 T_{ij}}{\partial x_i \partial x_j}$$

- Treat T_{ij} as analogous to externally applied stress
- Same solution procedure....

$$\rho(\mathbf{x},t) = \frac{1}{4\pi a_o^2} \int \frac{\partial^2 T_{ij} \left(\mathbf{y}, t - \frac{|\mathbf{x}-\mathbf{y}|}{a_o}\right)}{\partial y_i \partial y_j} \frac{1}{|\mathbf{x}-\mathbf{y}|} d\mathbf{y}$$
$$= \frac{1}{4\pi a_o^2} \frac{\partial^2}{\partial x_i \partial x_j} \int T_{ij} \left(\mathbf{y}, t - \frac{|\mathbf{x}-\mathbf{y}|}{a_o}\right) \frac{1}{|\mathbf{x}-\mathbf{y}|} d\mathbf{y}$$

Acoustic Analogy

$$\frac{\partial^2 \rho}{\partial t^2} - a_o^2 \frac{\partial^2 \rho}{\partial x_i \partial x_i} = \frac{\partial^2 T_{ij}}{\partial x_i \partial x_j}$$

- Treat T_{ij} as analogous to externally applied stress
- Same solution procedure....

$$\rho(\mathbf{x},t) = \frac{1}{4\pi a_o^2} \int \frac{\partial^2 T_{ij} \left(\mathbf{y}, t - \frac{|\mathbf{x}-\mathbf{y}|}{a_o}\right)}{\partial y_i \partial y_j} \frac{1}{|\mathbf{x}-\mathbf{y}|} d\mathbf{y}$$
$$= \frac{1}{4\pi a_o^2} \frac{\partial^2}{\partial x_i \partial x_j} \int T_{ij} \left(\mathbf{y}, t - \frac{|\mathbf{x}-\mathbf{y}|}{a_o}\right) \frac{1}{|\mathbf{x}-\mathbf{y}|} d\mathbf{y}$$

• Compact source, far field....

Acoustic Analogy

$$\frac{\partial^2 \rho}{\partial t^2} - a_o^2 \frac{\partial^2 \rho}{\partial x_i \partial x_i} = \frac{\partial^2 T_{ij}}{\partial x_i \partial x_j}$$

• Compact-source, far-field assumptions...

$$\rho(\mathbf{x},t) = \frac{1}{4\pi a_o^2} \frac{\partial^2}{\partial x_i \partial x_j} \int T_{ij} \left(\mathbf{y}, t - \frac{|\mathbf{x}|}{a_o} \right) \frac{1}{|\mathbf{x}|} d\mathbf{y}$$
$$= \frac{1}{4\pi a_o^4 |\mathbf{x}|} \frac{x_i x_j}{|\mathbf{x}|^2} \int \frac{\partial^2 T_{ij} \left(\mathbf{y}, t - \frac{|\mathbf{x}|}{a_o} \right)}{\partial t^2} d\mathbf{y} + O\left(\frac{1}{|\mathbf{x}|^2}\right)$$

• Scaling: $T_{ij} \approx \rho u_i u_j \sim \rho_o u^2 \dots$

$$ho \sim
ho_o rac{\ell}{r} m^4$$
 and $I \sim m^8$

Quadrupole Character

• Far-field exact in the Mach number $M \rightarrow 0$ limit...

• Predicts that jet-noise power should scale as U^8

Predicts that jet-noise power should scale as U⁸ UIUC Jet Noise Facility

• Predicts that jet-noise power should scale as U^8

• Gross features:

- \bullet U^8 even for M approaching unity
- \bullet U^6 with surfaces
- \blacklozenge U^4 with mass-source-like features

- Gross features:
 - ♦ U^8 even for M approaching unity
 - \bullet U⁶ with surfaces
 - \bullet U^4 with mass-source-like features
- Detailed quantitative predictions
 - Can calculate sound given prediction of $\frac{\partial^2 T_{ij}}{\partial x_i \partial x_j}$...
 - Challenging....
 - depends upon turbulence

- Gross features:
 - ♦ U^8 even for M approaching unity
 - \bullet U⁶ with surfaces
 - \blacklozenge U^4 with mass-source-like features
- Detailed quantitative predictions
 - Can calculate sound given prediction of $\frac{\partial^2 T_{ij}}{\partial x_i \partial x_j}$...
 - Challenging....
 - depends upon turbulence ... in more complex manner than needed in most turbulence modeling

- Gross features:
 - ♦ U^8 even for M approaching unity
 - \bullet U⁶ with surfaces
 - \blacklozenge U^4 with mass-source-like features
- Detailed quantitative predictions
 - Can calculate sound given prediction of $\frac{\partial^2 T_{ij}}{\partial x_i \partial x_j}$...
 - Challenging....
 - depends upon turbulence ... in more complex manner than needed in most turbulence modeling
 - $T_{ij,ij}$ includes non-source effects (refraction)

- Gross features:
 - ♦ U^8 even for M approaching unity
 - \bullet U⁶ with surfaces
 - \blacklozenge U^4 with mass-source-like features
- Detailed quantitative predictions
 - Can calculate sound given prediction of $\frac{\partial^2 T_{ij}}{\partial x_i \partial x_j}$...
 - Challenging....
 - depends upon turbulence ... in more complex manner than needed in most turbulence modeling
 - $T_{ij,ij}$ includes non-source effects (refraction)
 - most of T_{ij} is non-radiating

Complex Turbulence Statistic

- Can predict sound via prediction of $\frac{\partial^2 T_{ij}}{\partial x_i \partial x_j}$...
- Mean intensity: ($I = \langle \rho^2 \rangle$)
- Compact source, far field

$$I(\mathbf{x}) = \frac{x_i x_j x_k x_l}{16\pi^2 a_{\infty}^5 |\mathbf{x}|^5} \int_{\infty} \int_{\infty} \int_{\infty} \frac{\partial^4}{\partial \tau^4} \overline{T_{ij}(\mathbf{y}, t) T_{kl}(\mathbf{y} + \boldsymbol{\xi}, t + \tau)} \, d\boldsymbol{\xi} \, d\mathbf{y},$$

fourth-order space retarded-time covariance tensor....

Complex Turbulence Statistic

- Can predict sound via prediction of $\frac{\partial^2 T_{ij}}{\partial x_i \partial x_j}$...
- Mean intensity: ($I = \langle \rho^2 \rangle$)
- Compact source, far field

$$I(\mathbf{x}) = \frac{x_i x_j x_k x_l}{16\pi^2 a_{\infty}^5 |\mathbf{x}|^5} \int_{\infty} \int_{\infty} \frac{\partial^4}{\partial \tau^4} \overline{T_{ij}(\mathbf{y}, t) T_{kl}(\mathbf{y} + \boldsymbol{\xi}, t + \tau)} \, d\boldsymbol{\xi} \, d\mathbf{y},$$

fourth-order space retarded-time covariance tensor....

- Computed in DNS (Freund, Phys. Fluids 2003)
- Components have been measured
- No universal character

• Appears as a source in:

$$\frac{\partial^2 \rho}{\partial t^2} - a_o^2 \frac{\partial^2 \rho}{\partial x_i \partial x_i} = \frac{\partial^2 T_{ij}}{\partial x_i \partial x_j}$$

• Appears as a source in:

$$\frac{\partial^2 \rho}{\partial t^2} - a_o^2 \frac{\partial^2 \rho}{\partial x_i \partial x_i} = \frac{\partial^2 T_{ij}}{\partial x_i \partial x_j}$$

• Appears as a source in:

$$\frac{\partial^2 \rho}{\partial t^2} - a_o^2 \frac{\partial^2 \rho}{\partial x_i \partial x_i} = \frac{\partial^2 T_{ij}}{\partial x_i \partial x_j}$$

• Appears as a source in:

1867

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIG

$$\frac{\partial^2 \rho}{\partial t^2} - a_o^2 \frac{\partial^2 \rho}{\partial x_i \partial x_i} = \frac{\partial^2 T_{ij}}{\partial x_i \partial x_j}$$

Lighthill Source

• $T_{ij,ij}$ for M = 0.9, Re = 3600 DNS (Freund, 2001)

• Only 'modes' with supersonic phase velocity radiate:

- Only 'modes' with supersonic phase velocity radiate:
- Consider two-dimensional example:

$$\frac{\partial^2 \rho}{\partial t^2} - a_o^2 \left(\frac{\partial^2 \rho}{\partial x^2} + \frac{\partial^2 \rho}{\partial y^2} \right) = S(x, y, t)$$

- Only 'modes' with supersonic phase velocity radiate:
- Consider two-dimensional example:

$$\frac{\partial^2 \rho}{\partial t^2} - a_o^2 \left(\frac{\partial^2 \rho}{\partial x^2} + \frac{\partial^2 \rho}{\partial y^2} \right) = S(x, y, t)$$

• Only 'modes' with supersonic phase velocity radiate:

• Consider two-dimensional example:

$$\frac{\partial^2 \rho}{\partial t^2} - a_o^2 \left(\frac{\partial^2 \rho}{\partial x^2} + \frac{\partial^2 \rho}{\partial y^2} \right) = S(x, y, t)$$

• Fourier transform

$$f(x, y, t) = \iint \hat{f}(k, y, \omega) e^{ikx} e^{i\omega t} \, dk \, d\omega$$

• Only 'modes' with supersonic phase velocity radiate:

• Consider two-dimensional example:

$$\frac{\partial^2 \rho}{\partial t^2} - a_o^2 \left(\frac{\partial^2 \rho}{\partial x^2} + \frac{\partial^2 \rho}{\partial y^2} \right) = S(x, y, t)$$

• Fourier transform

$$f(x, y, t) = \iint \hat{f}(k, y, \omega) e^{ikx} e^{i\omega t} \, dk \, d\omega$$

$$\frac{d^2\hat{\rho}}{dy^2} + \left(\omega^2 - a_o^2k^2\right)\hat{\rho} = -\hat{S}$$

Solutions

$$\hat{\rho}(k, y, \omega) = [\cdots] e^{\pm y \sqrt{a_o^2 k^2 - \omega^2}}$$

decay (not waves) in $\pm y$ unless $\omega^2 > a_o^2 k^2$

• $\omega^2 > a_o^2 k^2$ corresponds to supersonic phase velocity

$$\left|\frac{\omega}{k}\right| > a_c$$

- Most of turbulence in a $M \approx 1$ jet is moving with convection velocity (phase velocity) $U_c \leq a_o$:
 - subsonic phase velocity

M = 0.9

M = 0.9

Don't 'see' what makes the sound

M = 2.5: Supersonic Convection

Eddies emit shock waves

$M_c > 1$ Basic Mechanism

$M_c > 1$ Basic Mechanism

$M_c > 1$ Basic Mechanism

M = 0.9 Jet: Lighthill Source

• $T_{ij,ij}$ for M = 0.9, Re = 3600 DNS (Freund, 2001)

M = 0.9 Jet: Lighthill Source

Source in wavenumber-frequency space

M = 0.9 Jet: Lighthill Source

Source in wavenumber-frequency space

• Filtering down to radiating-only modes breaks locality

Flows can look the same and yet have very different sound

Large Turbulent Structures

- Very similar looking 'turbulence' can have entirely different sound
- Two-dimensional mixing layer (Wei & Freund, JFM, 2006)
- Controlled flow is $\gtrsim 6 \text{ dB}$ quieter

Large-scale Structures

Makes Prediction Challenging

Need to predict subtle aspects of turbulence....

• $\omega = 1.5 a_{\infty}/r_o$:

Need to faithfully represent components with small energy

Simplify Source

Common mean + perturbation turbulence decomposition

$$T_{ij} = \overline{T}_{ij} + \underbrace{\rho(\overline{u}_i u'_j + u'_i \overline{u}_j)}_{\text{shear}} + \underbrace{\rho u'_i u'_j}_{\text{self}} + \underbrace{(p' - a_{\infty}^2 \rho') \delta_{ij}}_{\text{'entropy'}} - \underbrace{\tau'_{ij}}_{\text{viscous}}$$

- Neglect viscous source (universally accepted)
 - Implicit result of Colonius & Freund (2000) even for Re = 2000

Directivity (M = 0.9 **Jet)**

Net Power

	Component	Power/ $\rho_j U_j{}^3 A_j$	Power/Power T_{ij}
Total:	T_{ij}	8.3 $\times 10^{-5}$	1.00
Shear:	T_{ij}^{l}	8.7 $\times 10^{-5}$	1.05
Self:	T_{ij}^n	6.9 $\times 10^{-5}$	0.83
Entropy:	$T_{ij}^{\check{s}}$	2.0 $\times 10^{-5}$	0.25

• Net powers of different components to not "add up"

Correlation Coefficients

Need to model terms and correlations

Non-local

Non-local

• Compact sufficient for U^8 but not for all details

$$\mathcal{N}(\vec{q}) = 0 \qquad \Rightarrow \qquad \mathcal{L}\vec{q} = S(\vec{q})$$

$$\mathcal{N}(\vec{q}) = 0 \qquad \Rightarrow \qquad \mathcal{L}\vec{q} = S(\vec{q})$$

- Make prediction easier with more propagation physics in \mathcal{L} ?
- Common choices:
 - ♦ Lighthill: \mathcal{L} homogeneous-medium wave operator
 - Lilley (linearized): \mathcal{L} refraction due to parallel shear flow
 - Goldstein: \mathcal{L} refraction due to mean flow (*e.g.*)

$$\mathcal{N}(\vec{q}) = 0 \qquad \Rightarrow \qquad \mathcal{L}\vec{q} = S(\vec{q})$$

- Make prediction easier with more propagation physics in \mathcal{L} ?
- Common choices:
 - ♦ Lighthill: L homogeneous-medium wave operator
 - Lilley (linearized): \mathcal{L} refraction due to parallel shear flow
 - Goldstein: \mathcal{L} refraction due to mean flow (*e.g.*)
- One alternative: Ad hoc source/propagation combination
 - Tam & Auriault: \mathcal{L} has locally parallel flow with made up S

$$\mathcal{N}(\vec{q}) = 0 \qquad \Rightarrow \qquad \mathcal{L}\vec{q} = S(\vec{q})$$

- Make prediction easier with more propagation physics in \mathcal{L} ?
- Common choices:
 - ♦ Lighthill: L homogeneous-medium wave operator
 - Lilley (linearized): \mathcal{L} refraction due to parallel shear flow
 - Goldstein: \mathcal{L} refraction due to mean flow (*e.g.*)
- One alternative: Ad hoc source/propagation combination
 - Tam & Auriault: \mathcal{L} has locally parallel flow with made up S
 - Why when exact relations can be a starting point? unjustified

Which $\mathcal{L}\vec{q} = S(\vec{q})$ best?

- All $\mathcal{L}\vec{q} = S(\vec{q})$ are exact
 - ♦ Given $S(\vec{q})$, $\mathcal{L}^{-1}S(\vec{q})$ gives sound
 - So how to choose?

Which $\mathcal{L}\vec{q} = S(\vec{q})$ best?

- All $\mathcal{L}\vec{q} = S(\vec{q})$ are exact
 - ♦ Given $S(\vec{q})$, $\mathcal{L}^{-1}S(\vec{q})$ gives sound
 - So how to choose?
- Simplest? Lighthill (or related)
 - ♦ L easily inverted
 - $S(\vec{q})$ seems no more complex than others
 - ♦ solutions of $\mathcal{L}\vec{q} = 0$ well behaved
 - \blacklozenge disturbing that so much non-source stuff is in S

Anything Simpler?

Better differentiation of source and propagation?

• complicates $\mathcal{L}^{-1}S(\vec{q})$

• may simplify $S(\vec{q})$ – more like true source (unexplored)

• Inconvenient truth: the turbulent flow that constitutes $S(\vec{q})$ remains mysterious

Anything Simpler?

Better differentiation of source and propagation?

• complicates $\mathcal{L}^{-1}S(\vec{q})$

• may simplify $S(\vec{q})$ – more like true source (unexplored)

• Inconvenient truth: the turbulent flow that constitutes $S(\vec{q})$ remains mysterious

• S is never known exactly

• S is never known exactly

- Acoustic inefficiency allows far-field \vec{q} errors $\gg S(\vec{q})$ errors
 - ♦ e.g. errors potentially disrupt cancellations

• S is never known exactly

• Acoustic inefficiency allows far-field \vec{q} errors $\gg S(\vec{q})$ errors

♦ e.g. errors potentially disrupt cancellations

- Use formulation most robust to unavoidable errors in S
 - Samanta, Freund, Wei, Lele, AIAA J. (2006)

Many potential ways to evaluate robustness...

• For now: empirical robustness evaluation using DNS data

- Work with time dependent formulations
 - SGS noise models
 - large-scale dynamics models (POD Galerkin projection, PSE)

Formulation

• Goldstein (2003) general acoustic analogy $\mathcal{L}\vec{q} = S(\vec{q})$:

$$\bar{\rho}\frac{D}{Dt}\frac{\rho'}{\bar{\rho}} + \frac{\partial}{\partial x_j}\bar{\rho}u'_j = 0$$

$$\bar{\rho}\left(\frac{\bar{D}}{Dt}u_i' + u_j'\frac{\partial\tilde{v}_i}{\partial x_j}\right) + \frac{\partial p_e'}{\partial x_i} - \frac{\rho'}{\bar{\rho}}\frac{\partial\tilde{\tau}_{ij}}{\partial x_j} = \frac{\partial}{\partial x_j}(e_{ij}' - \tilde{e}_{ij})$$

$$\frac{1}{\gamma - 1} \left(\frac{\bar{D}p'_e}{Dt} + \gamma p'_e \frac{\partial \tilde{v}_j}{\partial x_j} + \gamma \frac{\partial}{\partial x_j} \bar{p}u'_j \right) - u'_i \frac{\partial \tilde{\tau}_{ij}}{\partial x_j} \\ = \frac{\partial}{\partial x_j} (\eta'_j - \tilde{\eta}_j) + (e'_{ij} - \tilde{e}_{ij}) \frac{\partial \tilde{v}_i}{\partial x_j}$$

• Exact consequence of flow equations

Formulation

- Base flow ($\bar{\rho}$, \bar{p} , \tilde{v}_i)
 - "user" specified
 - for explicit mean-flow refraction (e.g.)
 - satisfies exact equations with sources \widetilde{T}_{ij} , \widetilde{H}_{ij} and \widetilde{H}_0
- Introduced new dependent variables

$$p'_e \equiv p' + \frac{\gamma - 1}{2}\rho v_i v_i + (\gamma - 1)\widetilde{H}_0$$
 and $u'_i \equiv \rho \frac{v'_i}{\overline{\rho}}$,

Formulation

• Noise source $S(\vec{q})$:

$$e'_{ij} \equiv -\rho v'_i v'_j + \frac{\gamma - 1}{2} \delta_{ij} \rho v'_k v'_k + \sigma'_{ij}$$
$$\tilde{e}_{ij} \equiv \widetilde{T}_{ij} - \delta_{ij} (\gamma - 1) \widetilde{H}_0$$
$$\eta'_i \equiv -\rho v'_i h'_0 - q'_i + \sigma_{ij} v'_j$$
$$\tilde{\eta}_i \equiv \widetilde{H}_i - \widetilde{T}_{ij} \tilde{v}_j$$

zero mean for time averaged base flow

- Step I: pick base flow
 - uniform (Lighthill-like)
 - globally parallel flow (Lilley)
 - spreading mean flow

- Step I: pick base flow
 - uniform (Lighthill-like)
 - globally parallel flow (Lilley)
 - spreading mean flow
- Step II: base flow defines source $S(\vec{q})$

$$e'_{ij} - \tilde{e}_{ij}$$
 and $\eta'_i - \tilde{\eta}_i$

- Step I: pick base flow
 - uniform (Lighthill-like)
 - globally parallel flow (Lilley)
 - spreading mean flow
- Step II: base flow defines source $S(\vec{q})$

$$e'_{ij} - \tilde{e}_{ij}$$
 and $\eta'_i - \tilde{\eta}_i$

• Step III: solve
$$\mathcal{L}\vec{q} = S(\vec{q})$$

- same high-order schemes at DNS
- same mesh
- same wave-equation extrapolation to far field
- no special treatment of $\mathcal{L}\vec{q} = 0$ solutions (!?!?)
- neglect diffusive transport

Locally Parallel Base Flow

Mean-flow base flow but neglect streamwise derivatives

$$\frac{\partial \bar{q}}{\partial x_1} = 0$$

Rational approximation of mean-flow analogy

- Used by Tam & Auriault with ad hoc $S(\vec{q})$
- Analyze in same way as true acoustic analogies using actual S subject to same approximation

DNS

• Two-dimensional mixing layer

- Randomly excited
- Wei (2004) PhD dissertation; Wei & Freund, JFM (2006)
- 3907 fields stored every $4\Delta t$

Source Errors

Decompose DNS flow into empirical eigenfunctions (POD modes)

$$\vec{q}(\mathbf{x},t) = \sum_{i=1}^{N} a_i(t) \vec{\psi}_i(\mathbf{x}) \qquad N = 587$$

where $\vec{\psi}$ modes are constructed using snapshots and KE norm

$$E = \int_{\mathcal{V}} \rho u_i u_i \, d\mathbf{x}$$

• Expect:

Iow modes: large scale, low frequency, high energy

high modes: small scale, high frequency, low energy

Mode Spectrum

Mode Shapes and a(t)

MODE 1

MODE 128

Mode Shapes and a(t)

MODE 1

MODE 128

Mode Shapes and a(t)

- Lower modes: larger scale, lower frequency, higher energy
- Higher modes: smaller scale, higher frequency, lower energy

Errors to Assess Robustness

• High-frequency / small-scale errors: truncate series

$$\vec{q_e}(\mathbf{x},t) = \sum_{i=1}^{N_t} a_i(t) \vec{\psi_i}(\mathbf{x})$$

• Low-frequency / large-scale errors: mess with mode 1 and/or 2

$$\vec{q}_e(\mathbf{x}, t) = \vec{q}(\mathbf{x}, t) - \frac{a_1(t)}{2} \vec{\psi}_1(\mathbf{x})$$
$$\vec{q}_e(\mathbf{x}, t) = \vec{q}(\mathbf{x}, t) - \frac{a_1(t)}{2} \vec{\psi}_1(\mathbf{x}) - \frac{a_2(t)}{2} \vec{\psi}_2(\mathbf{x})$$

♦ e.g. POD dynamical model, PSE

Errors

Case	Energy Retained	Description
Α	100.0%	Full source
В	99.3%	128 modes
С	91.3%	32 modes
D	92.5%	$a'_1 = a_1/2$
E	85.5%	$a'_{1,2} = a_{1,2}/2$

DNS DNS-mean base flow Uniform base flow

DNS DNS-mean base flow Uniform base flow

Case A: Full source

DNS DNS-mean base flow Uniform base flow

Case B: 128 modes

DNS DNS-mean base flow Uniform base flow

Case C: 32 modes

DNS DNS-mean base flow Uniform base flow

Case D:
$$a'_1 = a_1/2$$

DNS DNS-mean base flow Uniform base flow

Case E:
$$a'_{1,2} = a_{1,2}/2$$

DNS Parallel base flow Locally parallel flow

Sound Spectra: $\phi = 50^{\circ}$

None clearly more robust at 50°

DNS DNS-mean base flow Uniform base flow

DNS DNS-mean base flow Uniform base flow

Case A: Full source

DNS DNS-mean base flow Uniform base flow

Case B: 128 modes

DNS DNS-mean base flow Uniform base flow

Case C: 32 modes

DNS DNS-mean base flow Uniform base flow

Case D:
$$a'_1 = a_1/2$$

DNS DNS-mean base flow Uniform base flow

Case E:
$$a'_{1,2} = a_{1,2}/2$$

Sound Spectra: $\phi = 130^{\circ}$

DNS Parallel base flow Locally parallel flow

Lighthill-like analogy pathologically sensitive to S errors

Sound Field Visualization

Error: Filtering

• Filter flow variables: $\beta \hat{f}_{i-2} + \alpha \hat{f}_{i-1} + \hat{f}_i + \alpha \hat{f}_{i+1} + \beta \hat{f}_{i+2} = \sum_{j=0}^{N} \frac{a_j(f_{i-j}+f_{i+j})}{2}$

• Transfer function: $T(k\Delta x) = \frac{\sum_{n=0}^{N} a_n \cos(nk\Delta x)}{1+2\alpha \cos(k\Delta x)+2\beta \cos(2k\Delta x)}$

$$T(k_1 \Delta x) = s_1$$
$$T(k_2 \Delta x) = s_2$$

• $\beta = 0.16645, \quad \alpha = -0.66645$

•
$$a_0 = \frac{1}{4}(2+3\alpha), \quad a_1 = \frac{1}{16}(9+16\alpha+10\beta),$$

•
$$a_2 = \frac{1}{4}(\alpha + 4\beta), \quad a_3 = \frac{1}{16}(6\beta - 1).$$

Error: Filtering

• $T(\lambda) = 0.5$ for $\lambda = 15.7\delta_{\omega}$

• Filter applied directly to DNS data

• Filtered data used to compute means, correlations and sources

Sound Pressure Spectra

DNS-mean base flow Uniform base flow

Sensitivity?

Why is the Lighthill-like (uniform flow) so sensitive?

Bubbly Structure

Wavy Structure

A Crude Model

- $a_1(t) = -\sin \omega t$ and $a_2(t) = \cos \omega t \Rightarrow$ form suggested by actual POD analysis
- Convected harmonic wave modulated by a Gaussian envelope: $y_p = e^{-\eta x^2} [a_1(t) \cos kx + a_2(t) \sin kx]$
- Velocity field: $u_1 = \frac{1}{2}(M_1 M_2)[\tanh(\sigma(y y_p)) + 1] + M_2$
- Construct T_{11}

• Solve Lighthill's equation:
$$\left(\nabla^2 - \frac{1}{a_{\infty}^2} \frac{\partial^2}{\partial t^2}\right) \rho(\mathbf{x}, t) = -\frac{1}{a_{\infty}^2} \frac{\partial^2 \rho u_1 u_1}{\partial x_1 \partial x_1}$$

- Solution: $\rho(\mathbf{x}, \omega) = -\frac{1}{4i} \int \mathcal{S}(\mathbf{y}, \omega) H_0^{(1)}(k_\omega | \mathbf{x} \mathbf{y} |) d\mathbf{y}$
- Two cases: (1) a_1 , a_2 ; (2) $a_1/2$, a_2

Model Source

Model Source

Source with error

Model Source

Summary

- Sound constitutes a tiny amount of a flow's energy
- Defining sound involves splitting the flow solution into source and propagation
 - resulting formulas for prediction
 - predict U⁸ scaling observed
 - challenging: turbulence complexity, phase velocity,....
 - source simplifications have not significantly improved predictions
 - $\ \, \blacklozenge \ \, \mathcal{N}(\vec{q}) = 0 \ \ \, \Rightarrow \ \ \, \mathcal{L}\vec{q} = S(\vec{q}) \text{ not unique }$

Summary

- Assessed choice of $\mathcal{L}\vec{q} = S(\vec{q})$ based upon robustness criterion
- Small-scale errors
 - all analogies behaved similarly
 - potential implications for SGS-noise modeling
- Large-scale errors
 - Iarge errors for uniform-flow base flow (Lighthill)
 - \blacklozenge analogies with principal shear in \mathcal{L} were similarly robust
 - potential implication for POD-dynamic, PSE models
- The high sensitivity of uniform base flow due to non-compact wavy character
- Homogeneous solutions ($\mathcal{L}\vec{q} = 0$) did not hinder predictions

Wither Prediction?

• Large-eddy simulation..... we are at the dawn of affordability

Wither Prediction?

- Large-eddy simulation..... we are at the dawn of affordability
- Without engineering insights, there still wont be guidance regarding what to do with predictions......

Wither Prediction?

- Large-eddy simulation..... we are at the dawn of affordability
- Without engineering insights, there still wont be guidance regarding what to do with predictions..... next talk

