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● Increasingly a concern...



Outline

● The acoustic limit

● Sources and sound

● Turbulence: the acoustic analogy

● Challenges in predicting sound from turbulence

✦ Complex turbulence statistic

✦ Phase velocity restriction

✦ Coupled process: different source components, refraction,...

● Robustness as a criterion for formulation selection

● Outlook



Sound Energies Are Small

● Acoustic energy radiated from a jet at take-off insufficient to boil and
egg

● Double exit velocity: ∼ 250 times more acoustic power

● Typically neglected in conservation of energy analysis of mechanical
systems



Acoustic Limit



What is sound?

● A solution of the compressible flow equations

∂ρ

∂t
+
∂ρui

∂xi
= 0

∂ρui

∂t
+
∂ρuiuj

∂xj
+
∂p

∂xi
=

[
viscous terms

]

● Approximately inviscid: interested in sound that propagates long
distances, many wavelengths

f = 4 kHz ⇒ λ = ao/f ≈ 0.1 m



What is sound?

● Low energy → low amplitude → linearize

ρ(x, t) = ρo + ρ′(x, t) ui(x, t) = 0 + u′i(x, t) p(x, t) = p0 + p′(x, t)

yielding

∂ρ′

∂t
+ ρo

∂u′i
∂xi

= 0

ρo
∂u′i
∂t

+
∂p′

∂xi
= 0



What is sound?

● Eliminate velocity:

∂

∂t
[mass] ⇒ ∂2ρ′

∂t2
+ ρo

∂2u′i
∂t∂xi

= 0

∂

∂xi
[momentum] ⇒ ρo

∂2u′i
∂t∂xi

+
∂2p′

∂xi∂xi
= 0

and subtract

∂2ρ′

∂t2
− ∂2p′

∂xi∂xi
= 0



What is sound?

● Speed of sound

ao =

(
∂p

∂ρ

)

s

≈ p′

ρ′
⇒ p′ = a2

oρ
′ + h.o.t.

yielding the linear, scalar wave equation for ρ′

∂2ρ′

∂t2
− a2

o

∂2ρ′

∂xi∂xi
= 0



What is sound?

● Speed of sound

ao =

(
∂p

∂ρ

)

s

≈ p′

ρ′
⇒ p′ = a2

oρ
′ + h.o.t.

yielding the linear, scalar wave equation for ρ′

∂2ρ′

∂t2
− a2

o

∂2ρ′

∂xi∂xi
= 0

or for p′

∂2p′

∂t2
− a2

o

∂2p′

∂xi∂xi
= 0



Solution Forms

● Plane waves: ω2 = a2
ok

2

ρ′ ∼ exp
[
i(k · x + ωt)

]
= exp

[
ik(k̂ · x ± aot)

]
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ρ′ ∼ exp
[
i(k · x + ωt)

]
= exp

[
ik(k̂ · x ± aot)

]

● Cylindrical waves (e.g. r2 = x2
1 + x2

2)

ρ′ ∼ H
(1 or 2)
0 (kr) exp [ikaot] ∼

[
2

πkr

]1/2

exp
[
∓ik(r − aot) ∓ i

π

4

]
∼ 1

r1/2



Solution Forms

● Plane waves: ω2 = a2
ok

2

ρ′ ∼ exp
[
i(k · x + ωt)

]
= exp

[
ik(k̂ · x ± aot)

]

● Cylindrical waves (e.g. r2 = x2
1 + x2

2)

ρ′ ∼ H
(1 or 2)
0 (kr) exp [ikaot] ∼

[
2

πkr

]1/2

exp
[
∓ik(r − aot) ∓ i

π

4

]
∼ 1

r1/2

● Spherical waves (r = |x|)

ρ′ ∼ 1

r
exp[ik(r ± aot)] ∼

1

r



Acoustic Perturbations Are Related

● Plane wave traveling in +x1:

ρ′ = ℜ
[
Aeikx−iωt

]
u′1 = ℜ

[
ao

ρo
Aeikx−iωt

]
p′ = ℜ

[
Aa2

oe
ikx−iωt

]

u′2 = u′3 = 0

so
p′ = ρoaou

′
1 ρ′ =

ρo

ao
u′1



Acoustic Intensity

● Acoustic intensity, mean power flux

I =
〈
p′u′

〉
=
a3

o

ρo

〈
(ρ′)2

〉

● Large r:

cylindrical: I ∼ 1

r
spherical: I ∼ 1

r2

● Intensity usually metric of practical interest



Sources of Sound



Sources of Sound

● A mass source...

∂ρ

∂t
+
∂ρui

∂xi
= Q(x, t)

∂ρui

∂t
+
∂ρuiuj

∂xj
+
∂p

∂xi
= viscous terms

● Linearize, differentiate, form wave equation,....

∂2ρ′

∂t2
− a2

o

∂2ρ′

∂xi∂xi
=

∂Q

∂t
≡ q(x, t)



Green’s Function Solution

● Greens function:

∂2G

∂t2
− a2

o

∂2G

∂xi∂xi
= δ(x)δ(t)

has solution

G(x, t) =
δ(x− aot)

4πao|x|
∼ 1

r

● Solution of
∂2ρ′

∂t2
− a2

o

∂2ρ′

∂xi∂xi
= q(x, t)

is

ρ′(x, t) =
1

4πa2
o

∫ q
(
y, t− |x−y|

ao

)

|x− y| dy



Source q 6= 0

ℓ

x

y

|x−
y|

ρ′(x, t) = 1
4πa2

o

∫ q
“

y,t−
|x−y|

ao

”

|x−y| dy

O

● Source scales: ℓ, u, ρo

● q ∼ ρou
2/ℓ2



Compact Source Approximation

ρ′(x, t) =
1

4πa2
o

∫ q
(
y, t− |x−y|

ao

)

|x− y| dy

● Source scales: ℓ, u, ρo

● q ∼ ρou
2/ℓ2

● Difference in emission times across source τemission = ℓ/ao

● Source changes on time scale τsource = ℓ/u

● Consider τemission ≪ τsource:

✦ τemission/τsource = u/ao ≡ m≪ 1 — low Mach number

✦ integrand: q
(
y, t− |x−y|

ao

)
≈ q

(
y, t− |x|

ao

)



Far-field Intensity

● Consider far field |x| ≫ ℓ, so

1

|x − y| ≈
1

|x|

● Compact-source and far-field approximations

ρ′(x, t) =
1

4πa2
o|x|︸ ︷︷ ︸

∼1/ra2
o

∫
q

(
y, t− |x|

ao

)

︸ ︷︷ ︸
∼ρou2/ℓ2

dy︸︷︷︸
∼ℓ3

thus: ρ′ ∼ ρo
ℓ

r
m2

● Intensity
I ∼ (ρ′)2 ∼ m4



Sources of Sound: Force

● A momentum source...

∂ρ

∂t
+
∂ρui

∂xi
= 0

∂ρui

∂t
+
∂ρuiuj

∂xj
+
∂p

∂xi
= Fi(x, t) + [ vis. terms ]

● Linearize, differentiate, inviscid, form acoustic equations,....

∂2ρ′

∂t2
− a2

o

∂2ρ′

∂xi∂xi
=

∂Fi

∂yi



Far-field, Compact

● Same Green’s function solution

ρ′(x, t) =
1

4πa2
o

∫ ∂Fi

(
y, t− |x−y|

ao

)

∂yi

1

|x − y| dy

● Far-field, compact (m≪ 1):

ρ′(x, t) =
1

4πa2
o|x|

∫ ∂Fi

(
y, t− |x|

ao

)

∂yi
dy

● Same source scaling (F ∼ ρou
2/ℓ) also yields

ρ′ ∼ ρo
ℓ

r
m2 and I ∼ ρ2 ∼ ρ2

o

(
ℓ

r

)2

m4



Far-field, Compact

● Same Green’s function solution

ρ′(x, t) =
1

4πa2
o

∫ ∂Fi

(
y, t− |x−y|

ao

)

∂yi

1

|x − y| dy

● Far-field, compact (m≪ 1):

ρ′(x, t) =
1

4πa2
o|x|

∫ ∂Fi

(
y, t− |x|

ao

)

∂yi
dy

● Same source scaling (F ∼ ρou
2/ℓ) also yields

ρ′ ∼ ρo
ℓ

r
m2 and I ∼ ρ2 ∼ ρ2

o

(
ℓ

r

)2

m4

but this is very wrong....



A Missed Cancellation

ρ′(x, t) =
1

4πa2
o|x|

∫ ∂Fi

(
y, t− |x|

ao

)

∂yi
dy

● Divergence theorem for compact region of finite Fi

∫ ∂Fi

(
y, t− |x|

ao

)

∂yi
dy = 0



Build Near-Cancellation into Formulation

ρ′(x, t) =
1

4πa2
o

∫ ∂F
(
y, t− |x−y|

ao

)

∂yi

1

|x − y| dy

=
1

4πa2
o

∂

∂xi

∫ F
(
y, t− |x−y|

ao

)

|x − y| dy

via

∂

∂xi

∫
f(y)g(x− y) dy =

∫
f(y)

∂

∂xi
g(x− y) dy

= −
∫
f(y)

∂

∂yi
g(x− y) dy

= +

∫
∂f(y)

∂yi
g(x− y) dy −

�
�

�
�

�
�

�
�

�
�

�
��:

0∫
∂

∂yi
[f(y)g(x− y)] dy



Far-field, Compact (again)

● Far-field, compact

ρ′(x, t) =
1

4πa2
o

∂

∂xi

∫ F
(
y, t− |x−y|

ao

)

|x− y| dy

≈ 1

4πa2
o

∂

∂xi

∫ F
(
y, t− |x|

ao

)

|x| dy

≈ 1

4πa2
o

∫ 

∂F

(
y, t− |x|

ao

)

∂xi

1

|x| + F

(
y, t− |x|

ao

)
∂

∂xi

(
1

|x|

)
 dy

= − 1

4πa2
o|x|

∫
∂F

∂t

(
y, t− |x|

ao

)
1

ao

∂|x|
∂xi

dy +O

(
1

|x|2
)



Far-field, Compact (again)

● Far-field, compact

ρ′(x, t) =
1

4πa2
o

∂

∂xi

∫ F
(
y, t− |x−y|

ao

)

|x− y| dy

≈ 1

4πa2
o

∂

∂xi

∫ F
(
y, t− |x|

ao

)

|x| dy

≈ 1

4πa2
o

∫ 

∂F

(
y, t− |x|

ao

)

∂xi

1

|x| + F

(
y, t− |x|

ao

)
∂

∂xi

(
1

|x|

)
 dy

= − 1

4πa2
o|x|

∫
∂F

∂t

(
y, t− |x|

ao

)
1

ao

∂|x|
∂xi

dy +O

(
1

|x|2
)

●
∂|x|
∂xi

=? ...



Far-field, Compact (again)

ρ′(x, t) =
1

4πa2
o|x|

∫
∂F

∂t

(
y, t− |x|

ao

)
1

ao

∂|x|
∂xi

dy

● Noting that
∂|x|
∂xi

=
∂

∂xi

√
x2

1 + x2
2 + x2

3 =
xi

|x|
yields

ρ′(x, t) =
1

4πa3
o|x|

xi

|x|

∫
∂F

∂t

(
y, t− |x|

ao

)

︸ ︷︷ ︸
F∼ρou2/ℓ;t∼ℓ/u

dy︸︷︷︸
ℓ3

so

ρ′ ∼ ρo

(
u

ao

)3 l

r
∼ m3 and I ∼ m6



Dipole Character

● Dipole — equivalent to nearly canceling equal and opposite q’s

1.0 - 0.5 0.5 1.0

- 0.4

0.2

0.2

0.4

-
- +-

I ∝ xi
|x| ∝ cos2(θ)

● Initial wrong approach missed cancellation (or got zero)

● Space derivative ∂yi of source was key factor

● This also affects how turbulence makes sound...



Turbulence As A Source of Sound



A Turbulent Jet

  

Source

Sound

● Source and sound are intuitively obvious



A Turbulent Jet

  

Source

Sound

● No obvious length/time-scale separation to clarify distinction

● u′u′/U2 = O(1) — beyond weakly nonlinear

● Simplifications of standard acoustics do not apply



A Turbulent Jet

  

Source

Sound

● So what do we know for sure...? A short list:



Our Only Truth

N (~q) = 0



Our Only Truth

N (~q) = 0

● The flow equations N govern the flow variables ~q



Our Only Truth

N (~q) = 0

● So what can we do...?



Give ~q a dual role

● Seems that we must use ~q in two ways simultaneously

● Rearrange N (~q) = 0 into L~q = S(~q)

✦ N — compressible flow equations

✦ L — wave propagation operator (usually linear)

✦ S — nominal noise source (usually nonlinear)



L = ∂tt − a2
o∇2

∂ρ

∂t
+
∂ρui

∂xi
= 0

∂ρui

∂t
+
∂ρuiuj

∂xj
+

∂p

∂xi
= viscous terms

● Turbulence fluctuations are not small... can’t just linearize

● ∂t[mass] − ∂xi [momentum] as before:

∂2ρ

∂t2
− a2

o

∂2ρ

∂xi∂xi
=

∂2Tij

∂xi∂xj

the Lighthill equation, where the Lighthill stress is

Tij = ρuiuj + (p− a2
oρ) + τviscous

● Note: this is an exact re-arrangement of the flow equations



Acoustic Analogy

∂2ρ

∂t2
− a2

o

∂2ρ

∂xi∂xi
=

∂2Tij

∂xi∂xj

● Treat Tij as analogous to externally applied stress

● Same solution procedure....

ρ(x, t) =
1

4πa2
o

∫ ∂2Tij

(
y, t− |x−y|

ao

)

∂yi∂yj

1

|x − y| dy

=
1

4πa2
o

∂2

∂xi∂xj

∫
Tij

(
y, t− |x− y|

ao

)
1

|x− y| dy



Acoustic Analogy

∂2ρ

∂t2
− a2

o

∂2ρ

∂xi∂xi
=

∂2Tij

∂xi∂xj

● Treat Tij as analogous to externally applied stress

● Same solution procedure....

ρ(x, t) =
1

4πa2
o

∫ ∂2Tij

(
y, t− |x−y|

ao

)

∂yi∂yj

1

|x − y| dy

=
1

4πa2
o

∂2

∂xi∂xj

∫
Tij

(
y, t− |x− y|

ao

)
1

|x− y| dy

● Compact source, far field....



Acoustic Analogy

∂2ρ

∂t2
− a2

o

∂2ρ

∂xi∂xi
=

∂2Tij

∂xi∂xj

● Compact-source, far-field assumptions...

ρ(x, t) =
1

4πa2
o

∂2

∂xi∂xj

∫
Tij

(
y, t− |x|

ao

)
1

|x| dy

=
1

4πa4
o|x|

xixj

|x|2
∫ ∂2Tij

(
y, t− |x|

ao

)

∂t2
dy +O

(
1

|x|2
)

● Scaling: Tij ≈ ρuiuj ∼ ρou
2...

ρ ∼ ρo
ℓ

r
m4 and I ∼ m8



Quadrupole Character

● Quadrupole — equivalent to nearly canceling equal and opposite q’s

+-
�1.0 �0.5 0.5 1.0

�0.2

�0.1

0.1

0.2

-- -
-
-+

I ∝ xixj

|x|2

∣∣∣∣
i=j

∝ cos4(θ)

+
-

-
+ 0.05 0.10 0.15

0.05

0.10

0.15
I ∝ xixj

|x|2

∣∣∣∣
i6=j

∝ cos(θ)2 sin2(θ)

● Far-field exact in the Mach number M → 0 limit...



Consequence: U 8

● Predicts that jet-noise power should scale as U8



Consequence: U 8

● Predicts that jet-noise power should scale as U8

UIUC Jet Noise Facility



Consequence: U 8

● Predicts that jet-noise power should scale as U8

Anechoic



Consequence: U 8

● Predicts that jet-noise power should scale as U8

Sound Power versus Exit Velocity

U8

U4



Predictions

● Gross features:

✦ U8 even for M approaching unity
✦ U6 with surfaces
✦ U4 with mass-source-like features
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Predictions

● Gross features:

✦ U8 even for M approaching unity
✦ U6 with surfaces
✦ U4 with mass-source-like features

● Detailed quantitative predictions

✦ Can calculate sound given prediction of ∂2Tij

∂xi∂xj
...

✦ Challenging....

■ depends upon turbulence ... in more complex manner than
needed in most turbulence modeling

■ Tij,ij includes non-source effects (refraction)
■ most of Tij is non-radiating



Complex Turbulence Statistic

● Can predict sound via prediction of ∂2Tij

∂xi∂xj
...

● Mean intensity: (I = 〈ρ2〉)

● Compact source, far field

I(x) =
xixjxkxl

16π2a5
∞|x|5

∫

∞

∫

∞

∂4

∂τ4
Tij(y, t)Tkl(y + ξ, t+ τ) dξ dy,

fourth-order space retarded-time covariance tensor....



Complex Turbulence Statistic

● Can predict sound via prediction of ∂2Tij

∂xi∂xj
...

● Mean intensity: (I = 〈ρ2〉)

● Compact source, far field

I(x) =
xixjxkxl

16π2a5
∞|x|5

∫

∞

∫

∞

∂4

∂τ4
Tij(y, t)Tkl(y + ξ, t+ τ) dξ dy,

fourth-order space retarded-time covariance tensor....

● Computed in DNS (Freund, Phys. Fluids 2003)

● Components have been measured

● No universal character



Refraction

● Appears as a source in:

∂2ρ

∂t2
− a2

o

∂2ρ

∂xi∂xi
=

∂2Tij

∂xi∂xj

● Freund & Fleischman, Int. J. Aeroac. (2002): direct assessment of
refraction in the high frequency limit



Refraction

● Appears as a source in:

∂2ρ

∂t2
− a2

o

∂2ρ

∂xi∂xi
=

∂2Tij

∂xi∂xj

● Freund & Fleischman, Int. J. Aeroac. (2002): direct assessment of
refraction in the high frequency limit
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Refraction

● Appears as a source in:

∂2ρ

∂t2
− a2

o

∂2ρ

∂xi∂xi
=

∂2Tij

∂xi∂xj

● Freund & Fleischman, Int. J. Aeroac. (2002): direct assessment of
refraction in the high frequency limit
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Refraction

● Appears as a source in:

∂2ρ

∂t2
− a2

o

∂2ρ

∂xi∂xi
=

∂2Tij

∂xi∂xj

● Freund & Fleischman, Int. J. Aeroac. (2002): direct assessment of
refraction in the high frequency limit
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Lighthill Source

● Tij,ij for M = 0.9, Re = 3600 DNS (Freund, 2001)

r/
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0 5 10 15 20 25 30
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Mostly Non-radiating

● Only ‘modes’ with supersonic phase velocity radiate:
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● Only ‘modes’ with supersonic phase velocity radiate:

● Consider two-dimensional example:

∂2ρ
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o

(
∂2ρ

∂x2
+
∂2ρ

∂y2

)
= S(x, y, t)



Mostly Non-radiating

● Only ‘modes’ with supersonic phase velocity radiate:

● Consider two-dimensional example:

∂2ρ

∂t2
− a2

o

(
∂2ρ

∂x2
+
∂2ρ

∂y2

)
= S(x, y, t)

  

x

y

Source



Mostly Non-radiating

● Only ‘modes’ with supersonic phase velocity radiate:

● Consider two-dimensional example:

∂2ρ

∂t2
− a2

o

(
∂2ρ

∂x2
+
∂2ρ

∂y2

)
= S(x, y, t)

● Fourier transform

f(x, y, t) =

∫∫
f̂(k, y, ω)eikxeiωt dk dω



Mostly Non-radiating

● Only ‘modes’ with supersonic phase velocity radiate:

● Consider two-dimensional example:

∂2ρ

∂t2
− a2

o

(
∂2ρ

∂x2
+
∂2ρ

∂y2

)
= S(x, y, t)

● Fourier transform

f(x, y, t) =

∫∫
f̂(k, y, ω)eikxeiωt dk dω

d2ρ̂

dy2
+

(
ω2 − a2

ok
2
)
ρ̂ = −Ŝ



Mostly Non-radiating

● Solutions
ρ̂(k, y, ω) = [· · ·] e±y

√
a2

ok2−ω2

decay (not waves) in ±y unless ω2 > a2
ok

2

● ω2 > a2
ok

2 corresponds to supersonic phase velocity
∣∣∣
ω

k

∣∣∣ > ao

● Most of turbulence in a M ≈ 1 jet is moving with convection velocity
(phase velocity) Uc . ao:

✦ subsonic phase velocity



M = 0.9



M = 0.9

● Don’t ‘see’ what makes the sound



M = 2.5: Supersonic Convection

● Eddies emit shock waves



Mc > 1 Basic Mechanism

Mc > 1
Mj

M∞



Mc > 1 Basic Mechanism

● Like sonic boom



Mc > 1 Basic Mechanism

● Like sonic boom

● ... but the aircraft–eddy appears and disappears



M = 0.9 Jet: Lighthill Source

● Tij,ij for M = 0.9, Re = 3600 DNS (Freund, 2001)
r/
r o

x/ro
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M = 0.9 Jet: Lighthill Source

● Source in wavenumber-frequency space

S(x, t) ⇒ Ŝ(k, ω)

ω
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M = 0.9 Jet: Lighthill Source

● Source in wavenumber-frequency space

S(x, t) ⇒ Ŝ(k, ω)

ω
r o
/
a
∞

kro
-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
-8

-6

-4

-2

0

2

4

6

8 radiating

radiating

non-radiating

non-radiating

Mc = 0.05

Mc = 0.3

Mc = 0.5

M
c

=
−1.

0M
c =

1.0

● Filtering down to radiating-only modes breaks locality

● Flows can look the same and yet have very different sound



Large Turbulent Structures

● Very similar looking ‘turbulence’ can have entirely different sound

● Two-dimensional mixing layer (Wei & Freund, JFM, 2006)

● Controlled flow is & 6 dB quieter

No Control v-control



Large-scale Structures



Makes Prediction Challenging

● Need to predict subtle aspects of turbulence....

● ω = 1.5a∞/ro:

|Ŝ
|/
ρ

j
U

j
r2 o

kro
-10 0 10

0

10000

20000

30000

● Need to faithfully represent components with small energy



Simplify Source

● Common mean + perturbation turbulence decomposition

Tij = T̄ij + ρ(ūiu
′
j + u′iūj)︸ ︷︷ ︸
shear

+ ρu′iu
′
j︸ ︷︷ ︸

self

+ (p′ − a2
∞ρ

′)δij︸ ︷︷ ︸
‘entropy’

− τ ′ij︸︷︷︸
viscous

● Neglect viscous source (universally accepted)

✦ Implicit result of Colonius & Freund (2000) even for Re = 2000



Directivity ( M = 0.9 Jet)
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Net Power

Component Power/ρjUj
3Aj Power/Power Tij

Total: Tij 8.3 ×10−5 1.00
Shear: T l

ij 8.7 ×10−5 1.05
Self: Tn

ij 6.9 ×10−5 0.83
Entropy: T s

ij 2.0 ×10−5 0.25

● Net powers of different components to not “add up”



Correlation Coefficients

Cβ−γ =
ρβργ

ρβ
rmsρ

γ
rms
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● Need to model terms and correlations



Non-local

Should be local if quadrupole: p = Tij ∗G,ij

0 30 60 90 120 150 180

100

101

102

α (degrees)

p
′ p

′ /
(ρ

2 j
U

4 j
)
×

10
1
0

All Tij

0 30 60 90 120 150 180

10-1

100

101

α (degrees)

p
′ p

′ /
(ρ

2 j
U

4 j
)
×

1
0
1
0

ρou
′
iu

′
j



Non-local

Should be local if quadrupole: p = Tij ∗G,ij
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● Compact sufficient for U8 but not for all details
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● Make prediction easier with more propagation physics in L?

● Common choices:

✦ Lighthill: L – homogeneous-medium wave operator

✦ Lilley (linearized): L – refraction due to parallel shear flow

✦ Goldstein: L – refraction due to mean flow (e.g.)
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Other options for L~q = S(~q)?

N (~q) = 0 ⇒ L~q = S(~q)

● Make prediction easier with more propagation physics in L?

● Common choices:

✦ Lighthill: L – homogeneous-medium wave operator

✦ Lilley (linearized): L – refraction due to parallel shear flow

✦ Goldstein: L – refraction due to mean flow (e.g.)

● One alternative: Ad hoc source/propagation combination

✦ Tam & Auriault: L has locally parallel flow with made up S

✦ Why when exact relations can be a starting point? – unjustified



Which L~q = S(~q) best?

● All L~q = S(~q) are exact

✦ Given S(~q), L−1S(~q) gives sound

✦ So how to choose?



Which L~q = S(~q) best?

● All L~q = S(~q) are exact

✦ Given S(~q), L−1S(~q) gives sound

✦ So how to choose?

● Simplest? −→ Lighthill (or related)

✦ L easily inverted

✦ S(~q) seems no more complex than others

✦ solutions of L~q = 0 well behaved

✦ disturbing that so much non-source stuff is in S



Anything Simpler?

● Better differentiation of source and propagation?

✦ complicates L−1S(~q)

✦ may simplify S(~q) – more like true source (unexplored)

● Inconvenient truth: the turbulent flow that constitutes S(~q) remains
mysterious



Anything Simpler?

● Better differentiation of source and propagation?

✦ complicates L−1S(~q)

✦ may simplify S(~q) – more like true source (unexplored)

● Inconvenient truth: the turbulent flow that constitutes S(~q) remains
mysterious

● Most robust?
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Robustness

● S is never known exactly

● Acoustic inefficiency allows far-field ~q errors ≫ S(~q) errors

✦ e.g. errors potentially disrupt cancellations

● Use formulation most robust to unavoidable errors in S

✦ Samanta, Freund, Wei, Lele, AIAA J. (2006)



Robustness

● Many potential ways to evaluate robustness...

● For now: empirical robustness evaluation using DNS data

● Work with time dependent formulations

✦ SGS noise models

✦ large-scale dynamics models (POD Galerkin projection, PSE)



Formulation

● Goldstein (2003) general acoustic analogy L~q = S(~q):

ρ̄
D̄

Dt

ρ′

ρ̄
+

∂

∂xj
ρ̄u′j = 0

ρ̄

(
D̄

Dt
u′i + u′j

∂ṽi

∂xj

)
+
∂p′e
∂xi

− ρ′

ρ̄

∂τ̃ij
∂xj

=
∂

∂xj
(e′ij − ẽij)

1

γ − 1

(
D̄p′e
Dt

+ γp′e
∂ṽj

∂xj
+ γ

∂

∂xj
p̄u′j

)
− u′i

∂τ̃ij
∂xj

=
∂

∂xj
(η′j − η̃j) + (e′ij − ẽij)

∂ṽi

∂xj

● Exact consequence of flow equations



Formulation

● Base flow (ρ̄, p̄, ṽi)

✦ “user” specified

✦ for explicit mean-flow refraction (e.g.)

✦ satisfies exact equations with sources T̃ij , H̃ij and H̃0

● Introduced new dependent variables

p′e ≡ p′ +
γ − 1

2
ρvivi + (γ − 1)H̃0 and u′i ≡ ρ

v′i
ρ̄
,



Formulation

● Noise source S(~q):

e′ij ≡ −ρv′iv′j +
γ − 1

2
δijρv

′
kv

′
k + σ′ij

ẽij ≡ T̃ij − δij(γ − 1)H̃0

η′i ≡ −ρv′ih′0 − q′i + σijv
′
j

η̃i ≡ H̃i − T̃ij ṽj

✦ zero mean for time averaged base flow



Formulation Summary
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e′ij − ẽij and η′i − η̃i



Formulation Summary

● Step I: pick base flow

✦ uniform (Lighthill-like)

✦ globally parallel flow (Lilley)

✦ spreading mean flow

● Step II: base flow defines source S(~q)

e′ij − ẽij and η′i − η̃i

● Step III: solve L~q = S(~q)

✦ same high-order schemes at DNS

✦ same mesh

✦ same wave-equation extrapolation to far field

✦ no special treatment of L~q = 0 solutions (!?!?)

✦ neglect diffusive transport



Locally Parallel Base Flow

● Mean-flow base flow but neglect streamwise derivatives

∂q̄

∂x1
= 0

● Rational approximation of mean-flow analogy

● Used by Tam & Auriault with ad hoc S(~q)

● Analyze in same way as true acoustic analogies using actual S
subject to same approximation



DNS

● Two-dimensional mixing layer

M1 = 0.9

M2 = 0.2

200δ
80δ

DNS Domain
Absorbing Buffer Zone

α

✦ Randomly excited

✦ Wei (2004) PhD dissertation; Wei & Freund, JFM (2006)

✦ 3907 fields stored every 4∆t



Source Errors

● Decompose DNS flow into empirical eigenfunctions (POD modes)

~q(x, t) =
N∑

i=1

ai(t)~ψi(x) N = 587

where ~ψ modes are constructed using snapshots and KE norm

E =

∫

V
ρuiui dx

● Expect:

✦ low modes: large scale, low frequency, high energy

✦ high modes: small scale, high frequency, low energy



Mode Spectrum
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Mode Shapes and a(t)

MODE 1 MODE 128
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Mode Shapes and a(t)

MODE 1 MODE 128
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Mode Shapes and a(t)

MODE 1 MODE 128
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● Lower modes: larger scale, lower frequency, higher energy

● Higher modes: smaller scale, higher frequency, lower energy



Errors to Assess Robustness

● High-frequency / small-scale errors: truncate series

~qe(x, t) =

Nt∑

i=1

ai(t)~ψi(x)

✦ e.g. missing scales in LES

● Low-frequency / large-scale errors: mess with mode 1 and/or 2

~qe(x, t) = ~q(x, t) − a1(t)

2
~ψ1(x)

~qe(x, t) = ~q(x, t) − a1(t)

2
~ψ1(x) − a2(t)

2
~ψ2(x)

✦ e.g. POD dynamical model, PSE



Errors

Case Energy Retained Description
A 100.0% Full source
B 99.3% 128 modes
C 91.3% 32 modes
D 92.5% a′

1 = a1/2
E 85.5% a′

1,2 = a1,2/2



Sound Pressure Spectra: φ = 50◦
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Sound Pressure Spectra: φ = 50o
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Sound Spectra: φ = 50o

None clearly more robust at 50◦



Sound Pressure Spectra: φ = 130◦
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Sound Pressure Spectra: φ = 130◦
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Sound Pressure Spectra: φ = 130◦
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Sound Spectra: φ = 130o
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Sound Spectra: φ = 130o

Lighthill-like analogy pathologically sensitive to S errors



Sound Field Visualization
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Error: Filtering

● Filter flow variables:
βf̂i−2 + αf̂i−1 + f̂i + αf̂i+1 + βf̂i+2 =

∑N
j=0

aj(fi−j+fi+j)
2

● Transfer function: T (k∆x) =
PN

n=0
an cos(nk∆x)

1+2α cos(k∆x)+2β cos(2k∆x)

T (k1∆x) = s1
T (k2∆x) = s2

● β = 0.16645, α = −0.66645

● a0 = 1
4(2 + 3α), a1 = 1

16(9 + 16α+ 10β),

● a2 = 1
4(α+ 4β), a3 = 1

16(6β − 1).



Error: Filtering
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● T (λ) = 0.5 for λ = 15.7δω

● Filter applied directly to DNS data

● Filtered data used to compute means, correlations and sources



Sound Pressure Spectra
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Sensitivity?

● Why is the Lighthill-like (uniform flow) so sensitive?
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A Crude Model

● a1(t) = − sinωt and a2(t) = cosωt⇒ form suggested by actual
POD analysis

● Convected harmonic wave modulated by a Gaussian envelope:
yp = e−ηx2

[a1(t) cos kx+ a2(t) sin kx]

● Velocity field: u1 = 1
2(M1 −M2)[tanh(σ(y − yp)) + 1] +M2

● Construct T11

● Solve Lighthill’s equation:
(
∇2 − 1

a2
∞

∂2

∂t2

)
ρ(x, t) = − 1

a2
∞

∂2ρu1u1

∂x1∂x1

● Solution: ρ(x, ω) = − 1
4i

∫
S(y, ω)H

(1)
0 (kω | x− y |)dy

● Two cases: (1) a1, a2; (2) a1/2, a2



Model Source
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Model Source

Full source
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Model Source

Numerical simulation
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Summary

● Sound constitutes a tiny amount of a flow’s energy

● Defining sound involves splitting the flow solution into source and
propagation

✦ resulting formulas for prediction

■ predict U8 scaling observed
■ challenging: turbulence complexity, phase velocity,....

✦ source simplifications have not significantly improved
predictions

✦ N (~q) = 0 ⇒ L~q = S(~q) not unique



Summary

● Assessed choice of L~q = S(~q) based upon robustness criterion

● Small-scale errors

✦ all analogies behaved similarly

✦ potential implications for SGS-noise modeling

● Large-scale errors

✦ large errors for uniform-flow base flow (Lighthill)

✦ analogies with principal shear in L were similarly robust

✦ potential implication for POD-dynamic, PSE models

● The high sensitivity of uniform base flow due to non-compact wavy
character

● Homogeneous solutions (L~q = 0) did not hinder predictions



Wither Prediction?

● Large-eddy simulation..... we are at the dawn of affordability
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Wither Prediction?

● Large-eddy simulation..... we are at the dawn of affordability

● Without engineering insights, there still wont be guidance regarding
what to do with predictions....... next talk
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