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Simulation Prediction of Jet Noise

● Jet noise has defied simple mechanistic description

✦ hampered design at fixed flow conditions (no U8)

✦ this is the turbulence problem: a problem of description



Simulation Prediction of Jet Noise

● Jet noise has defied simple mechanistic description

✦ hampered design at fixed flow conditions (no U8)

✦ this is the turbulence problem: a problem of description

● Large-eddy simulations making/nearly making quality predictions at
engineering conditions

✦ Bodony & Lele
✦ Bogey, Bailly, Juvé
✦ Shur, Spalart, et al.
✦ Mendez, Lele, et al.
✦ Uzun, Hussani
✦ Karabasov, Dowling et al.
✦ many others



Simulations

● Simulations have been only moderately helpful

✦ have not substantively clarified turbulence noise source
(e.g. Freund 2001)

✦ do not point the ‘direction’ toward quiet

✦ full space-time information nice but challenging to effectively
harness



Simulations

● Simulations have been only moderately helpful

✦ have not substantively clarified turbulence noise source
(e.g. Freund 2001)

✦ do not point the ‘direction’ toward quiet

✦ full space-time information nice but challenging to effectively
harness

● Adjoint-based optimization: circumvents turbulence complexity to
provide direction of design improvement
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Adjoint-Based Optimization

δJ =

(

∂J

∂~q

)

~F

δ~q +

(

∂J

∂ ~F

)

~q

δ ~F

● Brute force: guess δ ~F , calculate ~q & δ~q, calculate δJ , repeat,...
repeat, repeat, repeat..., repeat..., repeat, repeat, repeat, repeat ....

✦ extensive search is viable in experiments

✦ experiments lack geometric/actuation flexibility

■ ‘optimum’ constrained by existing hardware

✦ simulations provide geometric/actuation flexibility

■ remain hopelessly expensive for extensive searches

● Key problem: each δ ~F requires new ~q computation for δ~q



Adjoint-Based Optimization

● ~F ‘guess’ and new ~q are constrained to solve flow equations:

N (~q) = ~F

● Define M
M(~q, ~F ) = N (~q) − ~F = 0

● Variation

δM =

(

∂M

∂~q

)

~F

δ~q +

(

∂M

∂ ~F

)

~q

δ ~F = 0
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● Remove δ~q dependence from δJ by finding ~q ∗ that zeros first term

∂J

∂~q
= ~q ∗ ·

∂M

∂~q

● Removes need for repeated δ~q calculation to obtain

δJ

δ ~F
— ‘direction’ of better ~F
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● An aeroacoustic cost function

J =

∫ t1

t0

∫

R3

W (x)[p(x, t) − po]
2 dxdt

✦ W (x) weight localizes J in space – can be a point, surface, ...

✦ Can add penalty, craft for shape optimization,
target noise sources, ...

● Functional differentiation yields

∂J

∂~q
δ~q =

∫ t1

t0

∫

R3

2W (x)[p− po]
∂p

∂~q
δ~q dxdt

which is the l.h.s of the equation for ~q ∗: ∂J
∂~q

= ~q ∗ · ∂M
∂~q
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● Take inner · product on r.h.s. of ~q ∗ equation to match J definition

~q ∗ ·
∂M

∂~q
δ~q =

∫ t1

t0

∫

R3

~q ∗
∂M

∂~q
δ~q dxdt

● Integrate by parts

~q ∗ ·
∂M

∂~q
δ~q = −

∫ t1

t0

∫

R3

δ~qM∗~q ∗ dxdt+ b

✦ M∗ is the adjoint of the perturbed and linearized flow equations

✦ ~q ∗ is now interpreted as the solution of the adjoint

● Substitution with b = 0 yields adjoint differential equation for ~q ∗:

M∗(~q)~q ∗ = −2W (x)(p− po)
∂p

∂~q
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Boundary Terms

b = b|x|→∞ + bt0 + bt1

● b|x|→∞ = 0 by causality: no effect at |x| → ∞ at finite t1

✦ modeled with approximate radiation b.c. in ~q ∗ solver

● bt0 = 0 by causality: no δ~q before δ ~F ‘starts’ at t0

● bt1 = 0 by choice: start with ~q ∗ = 0 at t = t1, solve time reversed

✦ need time-reversed information propagation to determine
control needed
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The Aeroacoustic Adjoint System

M∗(~q)~q ∗ = −2W (x)(p− po)
∂p

∂~q

● Character similar to flow equations, same algorithms apply

● M∗(~q) requires space/time dependent flow solution ~q(x, t)

✦ needs resolved flow data at runtime

● Derivation tedious, but automatic

● Correctness testable:

✦ can confirm by finite difference

✦ anti-sound models
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Optimization

● Substituting J , M, ~q ∗ into δJ equation:

δJ =

[

(

∂J

∂ ~F

)

~q

− ~q ∗ ·

(

∂M

∂ ~F

)

~q

]

δ ~F = ~q ∗ δ ~F

● Thus we have a direction in which to improve control/design:

δJ

δ ~F
= ~q ∗

● Iteratively update the control/design

~F new = ~F old − r
δJ

δ ~F

● Standard conjugate gradient has been effective
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Demonstration: Anti-Sound

Uniform flow

S

Ω

C
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Iteration #
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2-D Mixing Layer

0 100
-80

80

M = 0.9

M = 0.2 DNS
Adjoint

Ω

C

● Models near-nozzle flow

● Reduce:

J (~q, ~F ) =

∫ t1

t0

∫

Ω

(p−p∞)2 dΩdt

with control ~F in C:

∂~q

∂t
= Ñ (~q) + ~F (x, t)

● Each space/time point of ~F is a
control parameter (107)
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Numerical Methods

● Both the flow and adjoint use the same discrete operators

● Sixth-order, coefficient optimized, finite-difference schemes

● Fourth-order Runge–Kutta time advancement

● Absorbing buffer zone boundary conditions



Sound Field



Adjoint Pressure



Adjoint Pressure

● J on Ω reduced by ∼ 10dB

● Reduced by & 5dB in all direc-
tions (not anti-sound)



Noise Reduction

● 7–11 dB noise reduction
J

Iteration #

0 5 10 15 20 250

0.1

0.2

0.3

0.4

Internal Energy Control
Y-momentum Control
X-momentum Control
Mass Control

Before: After:
Noisy on the line

Unsteady Vortical Flow Sound

7.4 dB quieter



Sound Directivity
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Anti-Sound?

0 100-80

80

Ω

C

x/δω

y
/
δ ω J

Iteration #

0 5 10 15 20 250
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Energy Control

Anti-sound



Anti-Sound: Far Field
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● Genuine change of flow
as source of sound
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Spectra

RESPONSE IN C: UNCHANGED BY CONTROL
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Spectra

RESPONSE DOWNSTREAM: NONLINEARITY
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Spectra

CONTROL
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Spectra

...frequency mismatch implicates nonlinearity

0 0.25 0.5 0.75 1



Directivity at Frequencies

No Control; Control
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Control Power

F̃ =

∫

L
Ek(x0, y, t)u(x0, y, t) dy , Ek =

1

2
ρ[(u− ū)2 + (v − v̄)2]

C

L

x0

ηρ(t) =
1

F̃

∫

C
φρ(x, y, t)T0/γ dxdy

ηu(t) =
1

F̃

∫

C
φu(x, y, t)u(x, y, t) dxdy

ηv(t) =
1

F̃

∫

C
φv(x, y, t)v(x, y, t) dxdy

ηe(t) =
1

F̃

∫

C
φe(x, y, t) dxdy

|ηρ| |ηu| |ηv| |ηe|

maximum 2.25 × 10−2 5.13 × 10−3 1.90 × 10−4 2.27 × 10−1

average 1.94 × 10−3 4.39 × 10−4 1.87 × 10−5 2.75 × 10−2



So what changed?



Mean Flow Spreading

δm =

∫ yb

ya

ρ(u− Ua)(Ub − u)

ρ∞∆U2
dy

δ m
/
δ m

0

x/δω

0 25 50 75 100
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Without Control
Control



TKE Developing in Space

Et(x) =

∫

80δω

−80δω
Ek dy

δm(x)

E
tδ

3 ω
/
a

2 ∞

x/δω

0 25 50 75 1000

0.05

0.1

0.15

0.2

0.25
No Control
Control



Large-scale Structures: Before/After



Harmonic Excitation

● Excite base flow with harmonics to induce order
(e.g. Colonius et al. 1997)

2ff/2 f0 ...

2ff0

Harmonics

Random

J

Iteration #
0 5 10 15 20 250

0.1

0.2

0.3
Random: -11dB

Harmonic: -0.7dB



Harmonic Excitation

● Excite base flow with harmonics to induce order
(e.g. Colonius et al. 1997)

2ff/2 f0 ...

2ff0

Harmonics

Random

J

Iteration #
0 5 10 15 20 250

0.1

0.2

0.3
Random: -11dB

Harmonic: -0.7dB

● Is there an underlying order induced in controlled case?

● Use empirical eigenfunctions (pod) as surrogates for Fourier modes
in streamwise direction
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~q(x, t) =
∑

i

ai(t)~ψi(x)
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Empirical Eigenfunctions

~q(x, t) =
∑

i

ai(t)~ψi(x)

a
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-10
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10
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20

q(x, t) = a1(t) cos kx+ a2(t) sin kx

● Circles in a1(t)–a2(t) advect the wave

● Smooth advection

✦ small radiation capable component
✦ supersonic phase from envelope
✦ acoustically inefficient



Empirical Eigenfunctions
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Empirical Eigenfunctions
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Small Changes in Convection
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Small Changes in Convection
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Small Changes in Convection



Small Changes in Convection

3-D?



Empirical Eigenfunctions

Freund (2001); Freund & Colonius (2009)
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Turbulent Mixing Layer
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Initial 5 Line Searches
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Initial 5 Line Searches
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● Sound reduced (∼ 30%), simulation terminated, DNS → LES



Jet LES
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● High-order, overset meshes



Far-field Sound Spectrum 30
◦

● Narrow-band spectra at 80D

● SPL = SPLmeasured − 10 log10(Rnorm/d)
2 − 10 log10(∆f)

● Overall sound pressure level (OASPL) matches within 1dB
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Streamwise Velocity: X–T
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Suppression of Axisymmetric Modes
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Summary

● Adjoint-based optimization can harness aeroacoustic simulation data
to point direction for sound reduction

✦ Mechanisms : provides loud and corresponding
perturbed-but-quite flow for comparison

✦ Design : can optimize design with predictive LES

● Demonstrated

✦ Anti-sound for validation

✦ 2-d mixing layer

■ genuine change in flow as source of sound
■ organization of underlying structures

✦ 3-d turbulent mixing layer — initial reduction

✦ Turbulent jet — reduction in 1st line search, ongoing



Summary

● Attractive method for jets

✦ turbulence description problem has not yielded a clear and
helpful mechanistic description...

✦ avoids trial-and-error aspect of current reduction strategies



Summary

● Attractive method for jets

✦ turbulence description problem has not yielded a clear and
helpful mechanistic description...

✦ avoids trial-and-error aspect of current reduction strategies

● Beyond jets: general approach for aeroacoustics, etc.



Summary

● Attractive method for jets

✦ turbulence description problem has not yielded a clear and
helpful mechanistic description...

✦ avoids trial-and-error aspect of current reduction strategies

● Beyond jets: general approach for aeroacoustics, etc.

● Adjoint optimization: Jameson (2003), Bewley et al. (2001)

● Jets/mixing layers:
Wei & Freund (2006); Kleinman & Freund (2006); Kim, Bodony,
Freund (2010); Freund (2011)
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