Adjoint-Based Optimization For Understanding And Suppressing Jet Noise

Jonathan B. Freund

Mechanical Science & Engineering Aerospace Engineering University of Illinois at Urbana-Champaign

NASA, AFOSR, ONR

Acknowledgments

• Prof. Mingjun Wei

• Dr. Randall Kleinman

- Dr. Jeonglae Kim
- Prof. Daniel Bodony

Background

Simulation Prediction of Jet Noise

- Jet noise has defied simple mechanistic description
 - \bullet hampered design at fixed flow conditions (no U^8)
 - this is the turbulence problem: a problem of description

Simulation Prediction of Jet Noise

Jet noise has defied simple mechanistic description

- hampered design at fixed flow conditions (no U^8)
- this is the turbulence problem: a problem of description
- Large-eddy simulations making/nearly making quality predictions at engineering conditions
 - Bodony & Lele
 - Bogey, Bailly, Juvé
 - Shur, Spalart, et al.
 - Mendez, Lele, et al.
 - 🔶 Uzun, Hussani
 - Karabasov, Dowling et al.
 - many others

Simulations

Simulations have been only moderately helpful

- have not substantively clarified turbulence noise source (*e.g.* Freund 2001)
- do not point the 'direction' toward quiet
- full space-time information nice but challenging to effectively harness

Simulations

Simulations have been only moderately helpful

- have not substantively clarified turbulence noise source (*e.g.* Freund 2001)
- do not point the 'direction' toward quiet
- full space-time information nice but challenging to effectively harness

 Adjoint-based optimization: circumvents turbulence complexity to provide direction of design improvement

Define 'good' quantitatively

$$\mathcal{J} = \mathcal{J}(\vec{q}, \vec{F})$$

♦ *q* — flow solution, *e.g. q* = [ρ , ρ **u**, *e*]^T at all **x** and *t*♦ *F* — design parameters/control

• Define 'good' quantitatively

$$\mathcal{J} = \mathcal{J}(\vec{q}, \vec{F})$$

$$\vec{q}$$
 — flow solution, e.g. $\vec{q} = [\rho, \rho \mathbf{u}, e]^T$ at all x and t
 \vec{F} — design parameters/control

• Design/control problem: minimum \mathcal{J} is quiet(er)

$$\delta \mathcal{J} = \left(\frac{\partial \mathcal{J}}{\partial \vec{q}}\right)_{\vec{F}} \,\delta \vec{q} + \left(\frac{\partial \mathcal{J}}{\partial \vec{F}}\right)_{\vec{q}} \,\delta \vec{F}$$

$$\delta \mathcal{J} = \left(\frac{\partial \mathcal{J}}{\partial \vec{q}}\right)_{\vec{F}} \,\delta \vec{q} + \left(\frac{\partial \mathcal{J}}{\partial \vec{F}}\right)_{\vec{q}} \,\delta \vec{F}$$

• Brute force: guess $\delta \vec{F}$, calculate $\vec{q} \& \delta \vec{q}$, calculate $\delta \mathcal{J}$, repeat,...

$$\delta \mathcal{J} = \left(\frac{\partial \mathcal{J}}{\partial \vec{q}}\right)_{\vec{F}} \,\delta \vec{q} + \left(\frac{\partial \mathcal{J}}{\partial \vec{F}}\right)_{\vec{q}} \,\delta \vec{F}$$

• Brute force: guess $\delta \vec{F}$, calculate $\vec{q} \& \delta \vec{q}$, calculate $\delta \mathcal{J}$, repeat, ..., repeat, repeat, repeat...,

$$\delta \mathcal{J} = \left(\frac{\partial \mathcal{J}}{\partial \vec{q}}\right)_{\vec{F}} \,\delta \vec{q} + \left(\frac{\partial \mathcal{J}}{\partial \vec{F}}\right)_{\vec{q}} \,\delta \vec{F}$$

• Brute force: guess $\delta \vec{F}$, calculate $\vec{q} \& \delta \vec{q}$, calculate $\delta \mathcal{J}$, repeat,... repeat, repeat, repeat..., repeat...,

$$\delta \mathcal{J} = \left(\frac{\partial \mathcal{J}}{\partial \vec{q}}\right)_{\vec{F}} \,\delta \vec{q} + \left(\frac{\partial \mathcal{J}}{\partial \vec{F}}\right)_{\vec{q}} \,\delta \vec{F}$$

• Brute force: guess $\delta \vec{F}$, calculate $\vec{q} \& \delta \vec{q}$, calculate $\delta \mathcal{J}$, repeat, ..., repeat, repeat, repeat, repeat, repeat

$$\delta \mathcal{J} = \left(\frac{\partial \mathcal{J}}{\partial \vec{q}}\right)_{\vec{F}} \,\delta \vec{q} + \left(\frac{\partial \mathcal{J}}{\partial \vec{F}}\right)_{\vec{q}} \,\delta \vec{F}$$

- Brute force: guess $\delta \vec{F}$, calculate $\vec{q} \& \delta \vec{q}$, calculate $\delta \mathcal{J}$, repeat, ..., repeat, repeat, repeat, repeat, repeat
 - extensive search is viable in experiments

$$\delta \mathcal{J} = \left(\frac{\partial \mathcal{J}}{\partial \vec{q}}\right)_{\vec{F}} \,\delta \vec{q} + \left(\frac{\partial \mathcal{J}}{\partial \vec{F}}\right)_{\vec{q}} \,\delta \vec{F}$$

- Brute force: guess $\delta \vec{F}$, calculate \vec{q} & $\delta \vec{q}$, calculate $\delta \mathcal{J}$, repeat, ..., repeat, repeat, repeat, repeat, repeat
 - extensive search is viable in experiments
 - experiments lack geometric/actuation flexibility
 - 'optimum' constrained by existing hardware

$$\delta \mathcal{J} = \left(\frac{\partial \mathcal{J}}{\partial \vec{q}}\right)_{\vec{F}} \,\delta \vec{q} + \left(\frac{\partial \mathcal{J}}{\partial \vec{F}}\right)_{\vec{q}} \,\delta \vec{F}$$

- Brute force: guess $\delta \vec{F}$, calculate \vec{q} & $\delta \vec{q}$, calculate $\delta \mathcal{J}$, repeat, ..., repeat, repeat, repeat, repeat, repeat
 - extensive search is viable in experiments
 - experiments lack geometric/actuation flexibility
 - 'optimum' constrained by existing hardware
 - simulations provide geometric/actuation flexibility
 - remain hopelessly expensive for extensive searches

$$\delta \mathcal{J} = \left(\frac{\partial \mathcal{J}}{\partial \vec{q}}\right)_{\vec{F}} \,\delta \vec{q} + \left(\frac{\partial \mathcal{J}}{\partial \vec{F}}\right)_{\vec{q}} \,\delta \vec{F}$$

- Brute force: guess $\delta \vec{F}$, calculate \vec{q} & $\delta \vec{q}$, calculate $\delta \mathcal{J}$, repeat, ..., repeat, repeat, repeat, repeat, repeat
 - extensive search is viable in experiments
 - experiments lack geometric/actuation flexibility
 - 'optimum' constrained by existing hardware
 - simulations provide geometric/actuation flexibility
 - remain hopelessly expensive for extensive searches
- Key problem: each $\delta \vec{F}$ requires new \vec{q} computation for $\delta \vec{q}$

• \vec{F} 'guess' and new \vec{q} are constrained to solve flow equations:

 $\mathcal{N}(\vec{q}) = \vec{F}$

• Define
$$\mathcal{M}$$

$$\mathcal{M}(\vec{q},\vec{F}) = \mathcal{N}(\vec{q}) - \vec{F} = 0$$

$$\delta \mathcal{M} = \left(\frac{\partial \mathcal{M}}{\partial \vec{q}}\right)_{\vec{F}} \,\delta \vec{q} + \left(\frac{\partial \mathcal{M}}{\partial \vec{F}}\right)_{\vec{q}} \,\delta \vec{F} = 0$$

• Apply $\vec{q}^* \cdot \delta \mathcal{M} = 0$ as constraint:

$$\begin{split} \delta \mathcal{J} &= \delta \mathcal{J} - \vec{q}^* \cdot \delta \mathcal{M} \\ &= \left[\left(\frac{\partial \mathcal{J}}{\partial \vec{q}} \right)_{\vec{F}} - \vec{q}^* \cdot \left(\frac{\partial \mathcal{M}}{\partial \vec{q}} \right)_{\vec{F}} \right] \, \delta \vec{q} + \left[\left(\frac{\partial \mathcal{J}}{\partial \vec{F}} \right)_{\vec{q}} - \vec{q}^* \cdot \left(\frac{\partial \mathcal{M}}{\partial \vec{F}} \right)_{\vec{q}} \right] \, \delta \vec{F} \end{split}$$

• Remove $\delta \vec{q}$ dependence from $\delta \mathcal{J}$ by finding \vec{q}^* that zeros first term

$$\frac{\partial \mathcal{J}}{\partial \vec{q}} = \vec{q}^* \cdot \frac{\partial \mathcal{M}}{\partial \vec{q}}$$

• Apply $\vec{q}^* \cdot \delta \mathcal{M} = 0$ as constraint:

$$\begin{split} \delta \mathcal{J} &= \delta \mathcal{J} - \vec{q}^* \cdot \delta \mathcal{M} \\ &= \left[\left(\frac{\partial \mathcal{J}}{\partial \vec{q}} \right)_{\vec{F}} - \vec{q}^* \cdot \left(\frac{\partial \mathcal{M}}{\partial \vec{q}} \right)_{\vec{F}} \right] \, \delta \vec{q} + \left[\left(\frac{\partial \mathcal{J}}{\partial \vec{F}} \right)_{\vec{q}} - \vec{q}^* \cdot \left(\frac{\partial \mathcal{M}}{\partial \vec{F}} \right)_{\vec{q}} \right] \, \delta \vec{F} \end{split}$$

• Remove $\delta \vec{q}$ dependence from $\delta \mathcal{J}$ by finding \vec{q}^* that zeros first term

$$\frac{\partial \mathcal{J}}{\partial \vec{q}} = \vec{q}^* \cdot \frac{\partial \mathcal{M}}{\partial \vec{q}}$$

• Removes need for repeated $\delta \vec{q}$ calculation to obtain

$$\frac{\delta \mathcal{J}}{\delta \vec{F}}$$
 — 'direction' of better \vec{F}

An aeroacoustic cost function

$$\mathcal{J} = \int_{t_0}^{t_1} \int_{\mathbb{R}^3} W(\mathbf{x}) [p(\mathbf{x}, t) - p_o]^2 \, d\mathbf{x} dt$$

- ♦ $W(\mathbf{x})$ weight localizes \mathcal{J} in space can be a point, surface, ...
- Can add penalty, craft for shape optimization, target noise sources, ...

An aeroacoustic cost function

$$\mathcal{J} = \int_{t_0}^{t_1} \int_{\mathbb{R}^3} W(\mathbf{x}) [p(\mathbf{x}, t) - p_o]^2 \, d\mathbf{x} dt$$

- ♦ $W(\mathbf{x})$ weight localizes \mathcal{J} in space can be a point, surface, ...
- Can add penalty, craft for shape optimization, target noise sources, ...
- Functional differentiation yields

$$\frac{\partial \mathcal{J}}{\partial \vec{q}} \,\delta \vec{q} = \int_{t_0}^{t_1} \int_{\mathbb{R}^3} 2W(x) [p - p_o] \,\frac{\partial p}{\partial \vec{q}} \,\delta \vec{q} \,d\mathbf{x} dt$$

which is the l.h.s of the equation for \vec{q}^* : $\frac{\partial \mathcal{J}}{\partial \vec{q}} = \vec{q}^* \cdot \frac{\partial \mathcal{M}}{\partial \vec{q}}$

• Take inner \cdot product on r.h.s. of \vec{q}^* equation to match \mathcal{J} definition

$$\vec{q^*} \cdot \frac{\partial \mathcal{M}}{\partial \vec{q}} \delta \vec{q} = \int_{t_0}^{t_1} \int_{\mathbb{R}^3} \vec{q^*} \frac{\partial \mathcal{M}}{\partial \vec{q}} \delta \vec{q} \, d\mathbf{x} dt$$

• Take inner \cdot product on r.h.s. of \vec{q}^* equation to match \mathcal{J} definition

$$\vec{q}^* \cdot \frac{\partial \mathcal{M}}{\partial \vec{q}} \delta \vec{q} = \int_{t_0}^{t_1} \int_{\mathbb{R}^3} \vec{q}^* \frac{\partial \mathcal{M}}{\partial \vec{q}} \delta \vec{q} \, d\mathbf{x} dt$$

Integrate by parts

$$\vec{q}^* \cdot \frac{\partial \mathcal{M}}{\partial \vec{q}} \delta \vec{q} = -\int_{t_0}^{t_1} \int_{\mathbb{R}^3} \delta \vec{q} \mathcal{M}^* \vec{q}^* \, d\mathbf{x} dt + b$$

- \blacklozenge \mathcal{M}^* is the adjoint of the perturbed and linearized flow equations
- $\mathbf{A} \vec{q}^*$ is now interpreted as the solution of the adjoint

• Take inner \cdot product on r.h.s. of \vec{q}^* equation to match \mathcal{J} definition

$$\vec{q}^* \cdot \frac{\partial \mathcal{M}}{\partial \vec{q}} \delta \vec{q} = \int_{t_0}^{t_1} \int_{\mathbb{R}^3} \vec{q}^* \frac{\partial \mathcal{M}}{\partial \vec{q}} \delta \vec{q} \, d\mathbf{x} dt$$

Integrate by parts

$$\vec{q^*} \cdot \frac{\partial \mathcal{M}}{\partial \vec{q}} \delta \vec{q} = -\int_{t_0}^{t_1} \int_{\mathbb{R}^3} \delta \vec{q} \mathcal{M}^* \vec{q^*} \, d\mathbf{x} dt + b$$

- \blacklozenge \mathcal{M}^* is the adjoint of the perturbed and linearized flow equations
- \vec{q}^* is now interpreted as the solution of the adjoint
- Substitution with b = 0 yields adjoint differential equation for \vec{q}^* :

$$\mathcal{M}^*(\vec{q})\vec{q}^* = -2W(\mathbf{x})(p-p_o)\frac{\partial p}{\partial \vec{q}}$$

$$b = b_{|\mathbf{x}| \to \infty} + b_{t_0} + b_{t_1}$$

$$b = b_{|\mathbf{x}| \to \infty} + b_{t_0} + b_{t_1}$$

• $b_{|\mathbf{x}|\to\infty} = 0$ by causality: no effect at $|\mathbf{x}| \to \infty$ at finite t_1

♦ modeled with approximate radiation b.c. in \vec{q}^* solver

$$b = b_{|\mathbf{x}| \to \infty} + b_{t_0} + b_{t_1}$$

• $b_{|\mathbf{x}|\to\infty} = 0$ by causality: no effect at $|\mathbf{x}| \to \infty$ at finite t_1

♦ modeled with approximate radiation b.c. in \vec{q}^* solver

• $b_{t_0} = 0$ by causality: no $\delta \vec{q}$ before $\delta \vec{F}$ 'starts' at t_0

$$b = b_{|\mathbf{x}| \to \infty} + b_{t_0} + b_{t_1}$$

- $b_{|\mathbf{x}|\to\infty} = 0$ by causality: no effect at $|\mathbf{x}| \to \infty$ at finite t_1
 - ♦ modeled with approximate radiation b.c. in \vec{q}^* solver
- $b_{t_0} = 0$ by causality: no $\delta \vec{q}$ before $\delta \vec{F}$ 'starts' at t_0
- $b_{t_1} = 0$ by choice: start with $\vec{q}^* = 0$ at $t = t_1$, solve time reversed
 - need time-reversed information propagation to determine control needed

The Aeroacoustic Adjoint System

$$\mathcal{M}^*(\vec{q})\vec{q}^* = -2W(\mathbf{x})(p-p_o)\frac{\partial p}{\partial \vec{q}}$$

• Character similar to flow equations, same algorithms apply

The Aeroacoustic Adjoint System

$$\mathcal{M}^*(\vec{q})\vec{q}^* = -2W(\mathbf{x})(p-p_o)\frac{\partial p}{\partial \vec{q}}$$

- Character similar to flow equations, same algorithms apply
- $\mathcal{M}^*(\vec{q})$ requires space/time dependent flow solution $\vec{q}(\mathbf{x},t)$
 - needs resolved flow data at runtime

The Aeroacoustic Adjoint System

$$\mathcal{M}^*(\vec{q})\vec{q}^* = -2W(\mathbf{x})(p-p_o)\frac{\partial p}{\partial \vec{q}}$$

- Character similar to flow equations, same algorithms apply
- $\mathcal{M}^*(\vec{q})$ requires space/time dependent flow solution $\vec{q}(\mathbf{x},t)$
 - needs resolved flow data at runtime
- Derivation tedious, but automatic
- Correctness testable:
 - can confirm by finite difference
 - anti-sound models

The Adjoint Equations

$$\begin{pmatrix} \frac{\partial \rho^{*}}{\partial t} + u_{i} \frac{\partial u^{*}_{i}}{\partial t} + \frac{u_{i}u_{i}}{2} \frac{\partial p^{*}}{\partial t} \end{pmatrix} + u_{j} \frac{\partial \rho^{*}}{\partial x_{j}} + \begin{pmatrix} u_{i}u_{j} + \frac{\tau_{ij}}{Re_{\infty}\rho} \end{pmatrix} \frac{\partial u^{*}_{i}}{\partial x_{j}} + \\ \begin{pmatrix} \frac{u_{i}u_{i}}{2}u_{j} + n \frac{\tau_{jk}u_{k} - q_{j}/Pr}{Re_{\infty}\rho} \end{pmatrix} \frac{\partial p^{*}}{\partial x_{j}} - \frac{T}{Re_{\infty}Pr\rho} \frac{\partial}{\partial x_{j}} \begin{pmatrix} \mu \frac{\partial p^{*}}{\partial x_{j}} \end{pmatrix} = f^{*}_{\rho^{*}} \\ \begin{pmatrix} \rho \frac{\partial u^{*}_{i}}{\partial t} + \rho u_{i} \frac{\partial p^{*}}{\partial t} \end{pmatrix} + \rho \frac{\partial \rho^{*}}{\partial x_{i}} + \rho u_{j} \begin{pmatrix} \frac{\partial u^{*}_{i}}{\partial x_{j}} + \frac{\partial u^{*}_{j}}{\partial x_{i}} \end{pmatrix} + \left[\rho u_{i}u_{j} (\rho E + p) \delta_{ij} - \frac{\tau_{ij}}{Re_{\infty}} \right] \frac{\partial p^{*}}{\partial x_{j}} + \\ \frac{1}{Re_{\infty}} \frac{\partial}{\partial x_{j}} \left[\mu \left(\frac{\partial u^{*}_{i}}{\partial x_{j}} + \frac{\partial u^{*}_{j}}{\partial x_{i}} \right) + \lambda \delta_{ij} \frac{\partial u^{*}_{k}}{\partial x_{k}} + \mu \left(u_{j} \frac{\partial p^{*}}{\partial x_{i}} + u_{i} \frac{\partial p^{*}}{\partial x_{j}} \right) \lambda \delta_{ij} \left(u_{k} \frac{\partial p^{*}}{\partial x_{k}} \right) \right] = f^{*}_{u^{*}_{i}} \\ \frac{1}{\gamma - 1} \frac{\partial p^{*}}{\partial t} + \frac{p\delta_{ij} - n\tau_{ij}/Re_{\infty}}{p} \frac{\partial u^{*}_{i}}{\partial x_{j}} + \left(\frac{\gamma}{\gamma - 1}u_{j} - n \frac{\tau_{jk}u_{k} - q_{j}/Pr}{Re_{\infty}p} \right) \frac{\partial p^{*}}{\partial x_{j}} \\ + \frac{T}{Re_{\infty}Prp} \frac{\partial}{\partial x_{j}} \left(\mu \frac{\partial p^{*}}{\partial x_{j}} \right) = f^{*}_{p^{*}} \end{pmatrix}$$

Optimization

• Substituting \mathcal{J} , \mathcal{M} , \vec{q}^* into $\delta \mathcal{J}$ equation:

$$\delta \mathcal{J} = \left[\left(\frac{\partial \mathcal{J}}{\partial \vec{F}} \right)_{\vec{q}} - \vec{q^*} \cdot \left(\frac{\partial \mathcal{M}}{\partial \vec{F}} \right)_{\vec{q}} \right] \, \delta \vec{F} = \vec{q^*} \, \delta \vec{F}$$

Optimization

• Substituting \mathcal{J} , \mathcal{M} , \vec{q}^* into $\delta \mathcal{J}$ equation:

$$\delta \mathcal{J} = \left[\left(\frac{\partial \mathcal{J}}{\partial \vec{F}} \right)_{\vec{q}} - \vec{q}^* \cdot \left(\frac{\partial \mathcal{M}}{\partial \vec{F}} \right)_{\vec{q}} \right] \, \delta \vec{F} = \vec{q}^* \, \delta \vec{F}$$

• Thus we have a direction in which to improve control/design:

$$\frac{\delta \mathcal{J}}{\delta \vec{F}} = \vec{q}^*$$

Optimization

• Substituting \mathcal{J} , \mathcal{M} , \vec{q}^* into $\delta \mathcal{J}$ equation:

$$\delta \mathcal{J} = \left[\left(\frac{\partial \mathcal{J}}{\partial \vec{F}} \right)_{\vec{q}} - \vec{q^*} \cdot \left(\frac{\partial \mathcal{M}}{\partial \vec{F}} \right)_{\vec{q}} \right] \, \delta \vec{F} = \vec{q^*} \, \delta \vec{F}$$

• Thus we have a direction in which to improve control/design:

$$\frac{\delta \mathcal{J}}{\delta \vec{F}} = \vec{q}^*$$

Iteratively update the control/design

$$\vec{F}^{\text{new}} = \vec{F}^{\text{old}} - r \frac{\delta \mathcal{J}}{\delta \vec{F}}$$

Optimization

• Substituting \mathcal{J} , \mathcal{M} , \vec{q}^* into $\delta \mathcal{J}$ equation:

$$\delta \mathcal{J} = \left[\left(\frac{\partial \mathcal{J}}{\partial \vec{F}} \right)_{\vec{q}} - \vec{q^*} \cdot \left(\frac{\partial \mathcal{M}}{\partial \vec{F}} \right)_{\vec{q}} \right] \, \delta \vec{F} = \vec{q^*} \, \delta \vec{F}$$

• Thus we have a direction in which to improve control/design:

$$\frac{\delta \mathcal{J}}{\delta \vec{F}} = \vec{q}^*$$

Iteratively update the control/design

$$\vec{F}^{\text{new}} = \vec{F}^{\text{old}} - r \frac{\delta \mathcal{J}}{\delta \vec{F}}$$

Standard conjugate gradient has been effective

Jet Noise

Demonstration: Anti-Sound

Demonstration: Anti-Sound

2-D Mixing Layer

Models near-nozzle flow

• Reduce:

$$\mathcal{J}(\vec{q},\vec{F}) = \int_{t_0}^{t_1} \int_{\Omega} (p - p_{\infty})^2 \, d\Omega dt$$

with control \vec{F} in C:

$$\frac{\partial \vec{q}}{\partial t} = \tilde{\mathcal{N}}(\vec{q}) + \vec{F}(\mathbf{x}, t)$$

• Each space/time point of \vec{F} is a control parameter (10⁷)

Numerical Methods

• Both the flow and adjoint use the same discrete operators

Numerical Methods

- Both the flow and adjoint use the same discrete operators
- Sixth-order, coefficient optimized, finite-difference schemes
- Fourth-order Runge–Kutta time advancement
- Absorbing buffer zone boundary conditions

Sound Field

Adjoint Pressure

Adjoint Pressure

Noise Reduction

Unsteady Vortical Flow

Before: Noisy on the line

After: 7.4 dB quieter

Internal Energy Control Y-momentum Control X-momentum Control Mass Control

Sound Directivity

Anti-Sound?

Anti-Sound: Far Field

INFLOW EXCITATION

RESPONSE IN \mathcal{C} : **UNCHANGED BY CONTROL**

No Control; Control

RESPONSE DOWNSTREAM: NONLINEARITY

No Control; Control

SOUND FIELD

No Control; Control

CONTROL

... frequency mismatch implicates nonlinearity

Directivity at Frequencies

Control Power

$$\tilde{F} = \int_{\mathcal{L}} E_k(x_0, y, t) u(x_0, y, t) \, dy \quad , \qquad E_k = \frac{1}{2} \rho [(u - \bar{u})^2 + (v - \bar{v})^2]$$

 $\mathcal{L} \qquad \eta_{\rho}(t) = \frac{1}{\tilde{F}} \int_{\mathcal{C}} \phi_{\rho}(x, y, t) T_{0} / \gamma \, dx dy$ $\eta_{u}(t) = \frac{1}{\tilde{F}} \int_{\mathcal{C}} \phi_{u}(x, y, t) u(x, y, t) \, dx dy$ $\eta_{v}(t) = \frac{1}{\tilde{F}} \int_{\mathcal{C}} \phi_{v}(x, y, t) v(x, y, t) \, dx dy$ $\eta_{e}(t) = \frac{1}{\tilde{F}} \int_{\mathcal{C}} \phi_{e}(x, y, t) \, dx dy$

So what changed?

Mean Flow Spreading

TKE Developing in Space

$$E_t(x) = \frac{\int_{-80\delta_\omega}^{80\delta_\omega} \overline{E_k} \, dy}{\delta_m(x)}$$

Large-scale Structures: Before/After

Harmonic Excitation

 Excite base flow with harmonics to induce order (*e.g.* Colonius *et al.* 1997)

Harmonic Excitation

 Excite base flow with harmonics to induce order (*e.g.* Colonius *et al.* 1997)

- Is there an underlying order induced in controlled case?
- Use empirical eigenfunctions (pod) as surrogates for Fourier modes in streamwise direction

$$\vec{q}(\mathbf{x},t) = \sum_{i} a_i(t) \vec{\psi}_i(\mathbf{x})$$

$$\vec{q}(\mathbf{x},t) = \sum_{i} a_i(t) \vec{\psi}_i(\mathbf{x})$$

-20

0 -10

-20

20 10

-10 -20

- Circles in $a_1(t)$ - $a_2(t)$ advect the wave
- Smooth advection
 - small radiation capable component
 - supersonic phase from envelope
 - acoustically inefficient

Small Changes in Convection

Small Changes in Convection

Small Changes in Convection

Small Changes in Convection

3-D?

Empirical Eigenfunctions

Turbulent Mixing Layer

Initial 5 Line Searches

$$\mathcal{J} = \int_{t_0}^{t_1} \mathcal{I}(t) \, dt$$

Initial 5 Line Searches

$$\mathcal{J} = \int_{t_0}^{t_1} \mathcal{I}(t) \, dt$$

• Sound reduced ($\sim 30\%$), simulation terminated, DNS \rightarrow LES

Jet LES

- Matches OSU Samimy *et al.* plasma actuated jet
- Mean inflow:
 CFD of OSU nozzle
- Inflow perturbation: random linear instability modes
- M = 1.3
- $Re = 1.1 \times 10^6$
- Mesh: 2.8×10^6 points
- Control: r.h.s. thermal source
- High-order, overset meshes

Far-field Sound Spectrum 30°

- Narrow-band spectra at 80D
- SPL = SPL_{measured} $10 \log_{10} (R_{\text{norm}}/d)^2 10 \log_{10} (\Delta f)$
- Overall sound pressure level (OASPL) matches within 1dB

Jet Noise Reduction

$$\mathcal{J} = \int_0^T \mathcal{I}(t) \, dt = \int_0^T \int_{\mathbf{x}} W(\mathbf{x}) [p'(\mathbf{x}, t)]^2 \, d\mathbf{x} dt$$

Jet Noise Reduction

$$\mathcal{J} = \int_0^T \mathcal{I}(t) \, dt = \int_0^T \int_{\mathbf{x}} W(\mathbf{x}) [p'(\mathbf{x}, t)]^2 \, d\mathbf{x} dt$$

Streamwise Velocity: *X***–***T*

(a) Uncontrolled

Streamwise Velocity

BEFORE

Streamwise Velocity

AFTER

Streamwise Velocity

?

Suppression of Axisymmetric Modes

 Adjoint-based optimization can harness aeroacoustic simulation data to point direction for sound reduction

- Adjoint-based optimization can harness aeroacoustic simulation data to point direction for sound reduction
 - Mechanisms: provides loud and corresponding perturbed-but-quite flow for comparison
 - Design: can optimize design with predictive LES

- Adjoint-based optimization can harness aeroacoustic simulation data to point direction for sound reduction
 - Mechanisms: provides loud and corresponding perturbed-but-quite flow for comparison
 - Design: can optimize design with predictive LES
- Demonstrated
 - Anti-sound for validation

- Adjoint-based optimization can harness aeroacoustic simulation data to point direction for sound reduction
 - Mechanisms: provides loud and corresponding perturbed-but-quite flow for comparison
 - Design: can optimize design with predictive LES
- Demonstrated
 - Anti-sound for validation
 - 2-d mixing layer
 - genuine change in flow as source of sound
 - organization of underlying structures

- Adjoint-based optimization can harness aeroacoustic simulation data to point direction for sound reduction
 - Mechanisms: provides loud and corresponding perturbed-but-quite flow for comparison
 - Design: can optimize design with predictive LES
- Demonstrated
 - Anti-sound for validation
 - 2-d mixing layer
 - genuine change in flow as source of sound
 - organization of underlying structures
 - 3-d turbulent mixing layer initial reduction

- Adjoint-based optimization can harness aeroacoustic simulation data to point direction for sound reduction
 - Mechanisms: provides loud and corresponding perturbed-but-quite flow for comparison
 - Design: can optimize design with predictive LES
- Demonstrated
 - Anti-sound for validation
 - 2-d mixing layer
 - genuine change in flow as source of sound
 - organization of underlying structures
 - 3-d turbulent mixing layer initial reduction
 - Turbulent jet reduction in 1st line search, ongoing

- Attractive method for jets
 - turbulence description problem has not yielded a clear and helpful mechanistic description...
 - avoids trial-and-error aspect of current reduction strategies

- Attractive method for jets
 - turbulence description problem has not yielded a clear and helpful mechanistic description...
 - avoids trial-and-error aspect of current reduction strategies
- Beyond jets: general approach for aeroacoustics, etc.

- Attractive method for jets
 - turbulence description problem has not yielded a clear and helpful mechanistic description...
 - avoids trial-and-error aspect of current reduction strategies
- Beyond jets: general approach for aeroacoustics, etc.
- Adjoint optimization: Jameson (2003), Bewley et al. (2001)
- Jets/mixing layers: Wei & Freund (2006); Kleinman & Freund (2006); Kim, Bodony, Freund (2010); Freund (2011)

