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Transition to turbulence 

Transition to turbulence  

•  is a multi-faceted, complex physical process.  
•  critically depends on the disturbance environment. 
•  is difficult to classify into « subprocesses ». 
•  is parameter-dependent. 
•  is important for the design of fluid systems. 
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magnetically driven 
Tokamak plasma flow  



Transition to turbulence 

Transition to turbulence has traditionally been described by a 
sequence of (linear) instabilities.   
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Transition to turbulence 

Transition to turbulence has traditionally been described by a 
sequence of (linear) instabilities.   
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laminar flow  

transitional flow (appearance of 
coherent structures, hairpin vortices)  

turbulent flow  

wall-bounded shear flow  



Transition to turbulence: a road map 
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(M. Morkovin) 

Stability theory is an integral 
part of the analysis of transition 
scenarios. 



Hydrodynamic stability 

Stability theory is concerned with the behavior of a fluid system with 
respect to a predefined base state. 

Stability has to be defined carefully.  

Stability is parameter-dependent.  

EPTT, Sao Paulo, Sept. 2012 



Two concepts of stability 

Linear stability: we are interested in the minimum critical parameter 
above which a specific initial condition of infinitesimal amplitude grows 
exponentially  

Energy stability: we are interested in the maximum critical 
parameter below which a general initial condition of finite amplitude 
decays  monotonically  

EPTT, Sao Paulo, Sept. 2012 



Two examples 

Rayleigh number (a non-dimensionalized temperature gradient) is the 
governing parameter 

Example 1: Rayleigh-Bénard convection (onset of convective instabilities 
can be described as an instability of the conductive state) 

Linear stability theory:  above a critical Rayleigh number of 1708 the 
conductive state becomes unstable to infinitesimal perturbations 

hot 

cold 
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Two examples 

Rayleigh number (a non-dimensionalized temperature gradient) is the 
governing parameter 

Example 1: Rayleigh-Bénard convection (onset of convective instabilities 
can be described as an instability of the conductive state) 

Energy stability theory:  below a critical Rayleigh number of 1708 finite-
amplitude perturbations superimposed on the conductive state decay 
monotonically in energy 

hot 

cold 
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Two examples 

Rayleigh number (a non-dimensionalized temperature gradient) is the 
governing parameter 

Example 1: Rayleigh-Bénard convection (onset of convective instabilities 
can be described as an instability of the conductive state) 

Experiments:  show the onset of convective instabilities at a critical 
Rayleigh number of about 1710 

hot 

cold 
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Two examples 

Reynolds number (a non-dimensionalized velocity) is the governing 
parameter 

Example 2: Plane Poiseuille flow (breakdown of the parabolic mean velocity 
profile) 

Linear stability theory:  above a critical Reynolds number of 5772 the 
parabolic velocity profile becomes unstable to infinitesimal perturbations 
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Two examples 

Reynolds number (a non-dimensionalized velocity) is the governing 
parameter 

Example 2: Plane Poiseuille flow (breakdown of the parabolic mean velocity 
profile) 

Energy stability theory:  below a critical Reynolds number of 49.6 finite-
amplitude perturbations superimposed on the parabolic velocity profile 
decay monotonically in energy 
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Two examples 

Reynolds number (a non-dimensionalized velocity) is the governing 
parameter 

Example 2: Plane Poiseuille flow (breakdown of the parabolic mean velocity 
profile) 

Experiments:  show the breakdown of the parabolic velocity profile at a 
critical Reynolds number of about 1000 
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Two examples 

Linear stability theory, energy stability theory and experiments are in 
excellent agreement for Rayleigh-Bénard convection 

Linear stability theory, energy stability theory and experiments show 
significant discrepancies for plane Poiseuille flow 

Can we explain the success and failure of stability theory for the 
above two examples? 

Is there a better way of investigating the stability of plane Poiseuille 
flow (and many other wall-bounded shear flows)?  

Questions:  
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A paradox 

The nonlinear terms in the Navier-Stokes equations conserve energy. 

The increase in energy for subcritical Reynolds numbers has to be 
accomplished by a linear process, without relying on an exponential 
instability; i.e. we need a linear instability without an unstable 
eigenvalue. 

Fact:  

Fact:  

During transition to turbulence we observe a substantial increase in kinetic 
perturbation energy, even for Reynolds numbers below the critical one. 

Conclusion:  
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Starting point are the   Navier-Stokes equations   (assuming incompressible flow) 

decomposition of the flow field into mean and perturbation 

u = U + εu�

further simplifying assumptions: uni-directional mean flow dependent on one 
spatial coordinate, e.g.,  

U = U(y)x̂

further simplifying assumptions: wave-like perturbation in the homogeneous 
directions 

u = û(y) exp(iαx + iβz)
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it is convenient to eliminate the pressure (and the continuity equation) by 
choosing the normal velocity and normal vorticity as the dependent variables 

∂

∂t

�
v̂
η̂

�
=

�
LOS 0
LC LSQ

� �
v̂
η̂

�

LOS

LSQ

LC

= Orr-Sommerfeld operator 

= Squire operator 

= coupling operator 
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Final step: discretization in the inhomogeneous direction (y) using spectral, 
compact- or finite-difference methods  

d

dt

�
v
η

�
=

�
LOS 0
LC LSQ

�

� �� �
L

�
v
η

�

����
q

d

dt
q = Lq
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Formally, this equation has a solution in form of the matrix exponential of L.  

d

dt
q = Lq

q = exp(tL)q0

The matrix exponential of L is the stability operator after the linearization 
step.  

q0 = q(t = 0)
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We can redefine the concept of stability based on the matrix exponential by 
considering the growth of perturbation energy over time.  

q = exp(tL)q0

G(t) = max
q0

�q�2

�q0�2

G(t) represents the amplification of perturbation energy maximized over all 
initial conditions. 

= max
q0

� exp(tL)q0�2

�q0�2
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We can redefine the concept of stability based on the matrix exponential by 
considering the growth of perturbation energy over time.  

q = exp(tL)q0

G(t) = max
q0

�q�2

�q0�2

G(t) represents the amplification of perturbation energy maximized over all 
initial conditions. 

= � exp(tL)�2
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In general, the matrix exponential is difficult to compute. In its place, 
eigenvalues of L have been used as proxies.  

In traditional stability analysis, the behavior of G(t) is deduced from the 
eigenvalues of L.  

� exp(tL)�2 = � exp(tSΛS−1)�2 = �S exp(tΛ)S−1�2

L = SΛS−1
eigenvalue decomposition 

traditional stability analysis 

Do the eigenvalues of L capture the behavior of G(t) ?  
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We can answer this question by computing upper and lower bounds 
(estimates) on G(t).  

lower bound 

The energy cannot decay at a faster rate than the one given by the least stable 
eigenvalue λmax

e2tλmax ≤ � exp(tL)�2

upper bound 

For the upper bound we use the eigenvalue decomposition of L.  

� exp(tL)�2 = �S exp(tΛ)S−1�2

≤ �S�2�S−1�2e2tλmax
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We can answer this question by computing upper and lower bounds 
(estimates) on G(t).  

e2tλmax ≤ � exp(tL)�2 ≤ �S�2�S−1�2e2tλmax

Two cases can be distinguished: 

κ(S) = �S�2�S−1�2 = 1 upper and lower bound coincide: the energy 
amplification is governed by the least stable 
eigenvalue 

1
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We can answer this question by computing upper and lower bounds 
(estimates) on G(t).  

e2tλmax ≤ � exp(tL)�2 ≤ �S�2�S−1�2e2tλmax

Two cases can be distinguished: 

κ(S) = �S�2�S−1�2 � 1 upper and lower bound can differ significantly: 
the energy amplification is governed by the least 
stable eigenvalue only for large times 

� 1
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This suggests distinguishing two different classes of stability problems.  

κ(S) = �S�2�S−1�2 = 1

κ(S) = �S�2�S−1�2 � 1

normal stability problems 

•  orthogonal eigenvectors 
•  eigenvalue analysis captures the dynamics 

nonnormal stability problems 

•  non-orthogonal eigenvectors 
•  eigenvalue analysis captures the asymptotic 
dynamics, but not the short-time behavior 
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The nonnormality of the system can give rise to transient energy amplification.  

Even though we experience exponential decay for large times, the non-
orthogonal superposition of eigenvectors can lead to short-time growth of 
energy.   

Geometric interpretation:  

EPTT, Sao Paulo, Sept. 2012 



Is there a better way of describing the short-time dynamics of nonnormal 
stability problems ?  κ(S) = �S�2�S−1�2 � 1

We start with a Taylor expansion of the matrix exponential about t=0.  

E(t) = �q, q� = �q�2

= �exp(tL)q0, exp(tL)q0�
≈ �(I + tL)q0, (I + tL)q0�
≈ �q0, q0� + t �q0, (L + LH)q0�
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The initial energy growth rate is given by 

E(t) ≈ �q0, q0� + t �q0, (L + LH)q0�

1
E

dE

dt

����
t=0+

=
�q0, (L + LH)q0�

�q0, q0�

(L + LH)

1
E

dE

dt

����
t=0+

= λmax(L + LH)

is Hermitian (symmetric) 

numerical abscissa of L 
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The numerical abscissa can be generalized to the numerical range.  

d

dt
�q�2 =

�
d

dt
q, q

�
+

�
q,

d

dt
q

�

= �Lq, q� + �q, Lq�

= 2Real {�Lq, q�}

F(L) =
�

z | z =
�Lq, q�
�q, q�

�Definition of the numerical range:  

set of all Rayleigh quotients of L  
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F(L) =
�

z | z =
�Lq, q�
�q, q�

�

Three important properties of the numerical range: 

1.  The numerical range is convex.  

2.   The numerical range contains the spectrum of L.  

3.   For normal L, the numerical range is the convex hull of the spectrum. 

set of all Rayleigh quotients of L  
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F(L) =
�

z | z =
�Lq, q�
�q, q�

�
set of all Rayleigh quotients of L  

Illustration:  

The numerical range is 
substantially larger than the 
convex hull of the spectrum. 

numerical abscissa 

A =




−5 4 4

−2− 2i 4
0.3 + i
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F(L) =
�

z | z =
�Lq, q�
�q, q�

�
set of all Rayleigh quotients of L  

Illustration:  

The numerical range is the 
convex hull of the spectrum. 

A =




−5

−2− 2i
0.3 + i
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For nonnormal stability problems:  

The numerical abscissa (numerical range) governs the very 
short time behavior. The sign of the numerical abscissa 
determines initial energy growth or decay.  

The least stable eigenvalue governs the long time behavior. 
The sign of the real part of          determines asymptotic 
energy growth or decay.  

λmax

revisit Rayleigh-Bénard convection and plane Poiseuille flow 

EPTT, Sao Paulo, Sept. 2012 



Rayleigh-Bénard convection is a normal stability problem 

The numerical range is the convex hull of the spectrum.  

The numerical range and the spectrum cross into the unstable 
half-plane at the same Rayleigh number.   

Initial energy growth and asymptotic instability occur at the 
same Rayleigh number.   

The spectrum governs the perturbation 
dynamics at all times.   

Ralin = Raener = 1708

hot 

cold 
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plane Poiseuille flow is a nonnormal stability problem 

The numerical range is larger than the convex hull of the spectrum.  

The numerical range crosses into the unstable half-plane 
« before » the spectrum crosses into the unstable half-plane.   

Initial energy growth is possible « before » asymptotic 
instability occurs.   

The spectrum governs the perturbation 
dynamics only in the asymptotic limit of 

Relin = 5772� Reener = 49.6

t→∞
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Summary 

1
E

dE

dt

����
t=0+

= λmax(L + LH)

G(t→∞) = lim
t→∞

� exp(tL)� = etλmax

short time 

all time 

long time 

(numerical abscissa) 

(matrix exponential norm) 

(eigenvalues) 

� exp(tL)�2
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The energy amplification curve G(t) is the envelope over many individual 
growth curves.  

For each point on this curve, a specific initial condition reaches its maximum 
energy amplification at this point (in time).   

Can we recover the initial condition that results in the maximum energy 
amplification at a given time?              optimal initial condition 
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equation that governs the optimal initial condition 

exp(t∗L)q0 = q(t∗) q0

q(t∗)

Assume that the initial condition satisfies                      and normalize the 
output such that  

exp(t∗L) q̄0 = � exp(t∗L)� q̄(t∗)

�q̄(t∗)� = 1

input (initial condition) 

output (final condition) 

�q0� = 1

input propagator amplification output 
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exp(t∗L) q̄0 = � exp(t∗L)� q̄(t∗)
input propagator amplification output 

The singular-value decomposition of a matrix A is  

A = UΣV H

unitary 
(orthogonal) 

unitary 
(orthogonal) 

diagonal 
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exp(t∗L) q̄0 = � exp(t∗L)� q̄(t∗)
input propagator amplification output 

The singular-value decomposition of a matrix A is  

AV = UΣ

=A v1 u1

σ1 = �A�
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exp(t∗L) q̄0 = � exp(t∗L)� q̄(t∗)
input propagator amplification output 

The singular-value decomposition of our matrix exponential at      is  

=v1 u1exp(t∗L)

G(t∗) = � exp(t∗L)�

svd (exp(t∗L)) = UΣV H

t∗
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exp(t∗L) q̄0 = � exp(t∗L)� q̄(t∗)
input propagator amplification output 

=v1 u1exp(t∗L)

G(t∗) = � exp(t∗L)�

optimal initial condition 
is the left principal 
singular vector 

Optimal final condition  
is the right principal 
singular vector 
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often we are interested in the response of our fluid system to external 
forces (modelling free-stream turbulence, acoustic waves, wall-
roughness etc.)  

in this case, our governing equation can be formulated as  

d

dt
q = Lq + f f model of external forces 

the response to forcing (particular solution, i.e., zero initial condition) is  

qp =
� t

0
exp((τ − t)L)f(τ) dτ

(memory integral) 

EPTT, Sao Paulo, Sept. 2012 



for the special case of harmonic forcing 

this simplifies to  

f = f̂eiωt

q̂p = (iω − L)−1f̂
and the optimal response (optimized over all possible forcing functions) becomes 

R(ω) = max
f̂

�q̂p�
�f̂�

= max
f̂

�(iω − L)−1f̂�
�f̂�

= �(iω − L)−1�

(resolvent norm) 
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eigenvalue-based analysis recovers the classical resonance condition  

�(iω − L)−1� = �S(iω − Λ)−1S−1� ≤ κ(S)
1

dist{iω,Λ}

for a  normal system, the classical resonance condition (closeness of forcing 
frequency to one of the eigenfrequencies) holds 

for a non-normal system, we can have a pseudo-resonance (large response to 
outside forcing) even though the forcing frequency is far from an eigenfrequency 
of the linear system 
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forcing 
(unit energy) 

transfer function amplification response  
(unit energy) 

=v1 u1

optimal harmonic forcing 
is the left principal 
singular vector 

optimal harmonic response 
is the right principal  
singular vector 

to obtain the optimal forcing we proceed as before (i.e., take the svd) 

(iω∗ − L)−1 f̄ = �(iω∗ − L)−1� q̄p

(iω∗ − L)−1

R(ω∗) = �(iω∗ − L)−1�
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Example: plane Poiseuille flow 

numerical range 

eigenvalues 
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Example: plane Poiseuille flow 

neutral curve  

R
e

=
57

72

transient growth 

exponential  
growth 

monotonic decay 
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Example: plane Poiseuille flow 

α = 1 β = 1 Re = 2500 α = 0 β = 2 Re = 2500
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Example: plane Poiseuille flow 

α = 1 β = 1 Re = 2500 α = 0 β = 2 Re = 2500
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Example: plane Poiseuille flow 

largest exponential growth  
(Tollmien-Schlichting wave) 

largest transient  
growth (streaks) 
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Re=10000 

Over a short time-horizon, structures with 
no or weak streamwise dependence are 
favored. 

Over a very long (infinite) time-horizon, 
structures with no or weak spanwise 
dependence are favored. 



Example: plane Poiseuille flow 

largest transient  
growth (streaks) 
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Re=10000 

largest exponential growth  
(Tollmien-Schlichting wave) 

Re=1000 

t=30 

t=60 

t=120 

impulse response 



Example: plane Poiseuille flow 

three-dimensional impulse response 
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largest exponential growth (Tollmien-
Schlichting wave) 

largest 
transient  
growth 
(streaks) 



Example: plane Poiseuille flow 
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largest exponential growth  
(Tollmien-Schlichting wave) 

largest 
transient  
growth 
(streaks) 

smoke visualization of boundary layer transition 
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q̂p = (iω − L)−1f̂

It is often instructive to compute the energy amplification component-wise. 

Recall the response to harmonic forcing  

and define a transfer function 

H(α,β,ω) = C(iω − L)−1B

�H�∞(α,β) = max
−∞<ω<∞

σmax(H)

and take the worst-case amplification (over all frequencies)  

weight matrices 
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ou
tp

ut
 

input input-output analysis 

�H
� ∞

(α
,β

)
=

m
ax

−
∞

<
ω
<
∞
σ
m
a
x
(H

)



 time-periodic flow 

Generalizations 

pseudo-Floquet analysis  

In many industrial applications (e.g., turbomachinery) the mean flow is periodic 
in time due to an oscillatory pressure gradient 

We have  

d

dt
q = L(t)q L(t + T ) = L(t)

period T 

with the formal solution   

q(t) = A(t)q0 initial condition 
propagator 

final solution 
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Generalizations 

periodicity requires that 

A(t + T ) = A(t) A(T ) = A(t) C

monodromy matrix 
(mapping over one period) 

qn = C qn−1 = Cn q0
initial state 
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 time-periodic flow pseudo-Floquet analysis  



Generalizations 

qn = C qn−1 = Cn q0

energy amplification from period to period 

G2
n = max

q0

�qn�2

�q0�2
= max

q0

�Cnq0�2

�q0�2
= �Cn�2

The eigenvalues of C are known as Floquet multipliers. 

Question: Do the Floquet multipliers describe the behavior of             ?  �Cn�2
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 time-periodic flow pseudo-Floquet analysis  



Generalizations 

as before, let us compute bounds 

ρ2n ≤ �Cn�2 ≤ κ2(S)ρ2n

largest Floquet 
multiplier 

Conclusion: only for normal monodromy matrices does the largest Floquet 
multiplier describe the behavior from period to period  

for nonnormal monodromy matrices there is a potential for transient 
amplification from period to period; only the asymptotic behavior                  
is governed by the largest Floquet multiplier  

n→∞
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 time-periodic flow pseudo-Floquet analysis  



Generalizations 

Example: pulsatile channel flow 

all Floquet multipliers are inside 
the unit disk indicating asymptotic 
stability (contractivity) as  n→∞

the resolvent contours reach 
outside the unit disk suggesting 
initial transient growth from period 
to period 
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 time-periodic flow pseudo-Floquet analysis  



Generalizations 

Example: pulsatile channel flow 

transient growth 

asymptotic  
contractivity 
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Generalizations 

Example: pulsatile channel flow 

transient growth 

asymptotic  
contractivity 

start 
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 time-periodic flow pseudo-Floquet analysis  



Summary  

  Nonnormal operators are ubiquitous in fluid dynamics and 
related fields. 

  In many cases multimodal effects are more relevant than 
single-mode phenomena.  

  Nonnormal analysis is computationally more involved; 
extensions to non-generic cases (time-dependent, nonlinear, 
stochastic, multi-dimensional) are possible.  

  Nonmodal analysis gives a more accurate picture of fluid 
flow behavior.    
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