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 recap: time-periodic flow 

Generalizations 

d

dt
q = L(t)q L(t + T ) = L(t) period T 

with the formal solution   q(t) = A(t)q0 initial condition 
propagator 

A(t + T ) = A(t) A(T ) = A(t) C

monodromy matrix 
(mapping over one period) 

from periodicity 

qn = C qn−1 = Cn q0
initial state 
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Generalizations 

Example: pulsatile channel flow 

transient growth 

asymptotic  
contractivity 

 recap: time-periodic flow 
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Generalizations 

Example: pulsatile channel flow 

transient growth 

asymptotic  
contractivity 

start 

large inter-period  
amplification 

 recap: time-periodic flow 
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 time-periodic and generally time-dependent flow 

Generalizations 

pseudo-Floquet analysis  
adjoint analysis 

Example: pulsatile channel flow 

Can we analyze the amplification of energy between one period, i.e., for a 
non-periodic system matrix ? 

d

dt
q = L(t)q

q(t) = A(t) q0

We have 

with the formal solution initial condition 
propagator final solution 
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 time-periodic and generally time-dependent flow 

Generalizations 

pseudo-Floquet analysis  
adjoint analysis 

Example: pulsatile channel flow 

We can formulate the optimal amplification of energy as 

G(t)2 = max
q0

�q, q�
�q0, q0�

= max
q0

�A(t)q0, A(t)q0�
�q0, q0�

= max
q0

�AH(t)A(t)q0, q0�
�q0, q0�
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 time-periodic and generally time-dependent flow 

Generalizations 

pseudo-Floquet analysis  
adjoint analysis 

Example: pulsatile channel flow 

G(t)2 = max
q0

�AH(t)A(t)q0, q0�
�q0, q0�

is a normal matrix AHA

the maximum is achieved for the principal eigenvector of  AHA

the principal eigenvector (and eigenvalue) can be found by power iteration  

q(n+1)
0 = ρ(n)AHA q(n)

0
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 time-periodic and generally time-dependent flow 

Generalizations 

pseudo-Floquet analysis  
adjoint analysis 

Example: pulsatile channel flow 

q(n+1)
0 = ρ(n)AHA q(n)

0

break the power iteration into two pieces 

w(t) = A q(n)
0

propagation of initial condition forward in time 

first step 
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 time-periodic and generally time-dependent flow 

Generalizations 

pseudo-Floquet analysis  
adjoint analysis 

Example: pulsatile channel flow 

q(n+1)
0 = ρ(n)AHA q(n)

0

break the power iteration into two pieces 

propagation of final condition backward in time 

second step q(n+1)
0 = ρ(n)AH(t)w(t)
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 time-periodic and generally time-dependent flow 

Generalizations 

pseudo-Floquet analysis  
adjoint analysis 

Example: pulsatile channel flow 

q(n+1)
0 = ρ(n)AHA q(n)

0

q(n)
0 A

w(t) = Aq(n)
0

AHAHAq(n)
0

ρ(n) direct problem 

adjoint problem 

scaling 

updating 
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 time-periodic and generally time-dependent flow 

Generalizations 

pseudo-Floquet analysis  
adjoint analysis 

Example: pulsatile channel flow 

q(n)
0 A

w(t) = Aq(n)
0

AHAHAq(n)
0

ρ(n) direct problem 

adjoint problem 

scaling 

updating 

      can be any discretized solution operator. The above technique (adjoint 
looping) can be applied to general time-dependent stability problems.  
A
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 time-periodic and generally time-dependent flow 

Generalizations 

pseudo-Floquet analysis  
adjoint analysis 

Example: pulsatile channel flow 

applying adjoint looping to the 
pulsatile (inter-period) stability 
problem 

one period 

significant inter-period 
transient energy growth 
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 time-periodic and generally time-dependent flow 

Generalizations 

pseudo-Floquet analysis  
adjoint analysis 

Another look at the direct-adjoint system  

q(n)
0 A

w(t) = Aq(n)
0

AHAHAq(n)
0

direct problem 

adjoint problem 

flow information 

sensitivity/gradient information 
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I −AHA correction 



 time-periodic and generally time-dependent flow 

Generalizations 

pseudo-Floquet analysis  
adjoint analysis 

reformulate the optimal growth problem variationally 

we wish to optimize 
J =

�q�2

�q0�2
→ max

subject to the constraint d

dt
q − Lq = 0
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 time-periodic and generally time-dependent flow 

Generalizations 

pseudo-Floquet analysis  
adjoint analysis 

rather than substituting the constraint directly into the cost functional … 

d

dt
q − Lq = 0

J =
�q�2

�q0�2
=
� exp(tL)q0�2

�q0�2
→ max

EPTT, Sao Paulo, Sept. 2012 

only valid for LTI systems 



 time-periodic and generally time-dependent flow 

Generalizations 

pseudo-Floquet analysis  
adjoint analysis 

… we enforce the equation via a Lagrange multiplier 

J =
�q�2

�q0�2
−

�
q̃,

�
d

dt
q − Lq

��
→ max

q̃

This has the advantage that the solution to the governing equation does 
not have to be known explicitly.  

Other constraints (such as initial and boundary conditions) can be 
added.  
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 time-periodic and generally time-dependent flow 

Generalizations 

pseudo-Floquet analysis  
adjoint analysis 

for an optimum we have to require all first variations of J to be zero   

δJ

δq̃
= 0

δJ

δq
= 0

J =
�q�2

�q0�2
−

�
q̃,

�
d

dt
q − Lq

��
→ max

�
δq̃,

�
d

dt
q − Lq

��
= 0

�
q̃,

�
d

dt
δq − L δq

��
= 0
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 time-periodic and generally time-dependent flow 

Generalizations 

pseudo-Floquet analysis  
adjoint analysis 

for an optimum we have to require all first variations of J to be zero   

δJ

δq̃
= 0

δJ

δq
= 0

J =
�q�2

�q0�2
−

�
q̃,

�
d

dt
q − Lq

��
→ max

�
q̃,

�
d

dt
δq − L δq

��
= 0

d

dt
q − Lq = 0
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 time-periodic and generally time-dependent flow 

Generalizations 

pseudo-Floquet analysis  
adjoint analysis 

for an optimum we have to require all first variations of J to be zero   

δJ

δq̃
= 0

δJ

δq
= 0

J =
�q�2

�q0�2
−

�
q̃,

�
d

dt
q − Lq

��
→ max

d

dt
q − Lq = 0

��
− d

dt
q̃ − LH q̃

�
, δq

�
= 0
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 time-periodic and generally time-dependent flow 

Generalizations 

pseudo-Floquet analysis  
adjoint analysis 

for an optimum we have to require all first variations of J to be zero   

δJ

δq̃
= 0

δJ

δq
= 0

J =
�q�2

�q0�2
−

�
q̃,

�
d

dt
q − Lq

��
→ max

d

dt
q − Lq = 0

− d

dt
q̃ − LH q̃ = 0

direct problem 

adjoint problem 
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KKT-condition 



 time-periodic and generally time-dependent flow 

Generalizations 

pseudo-Floquet analysis  
adjoint analysis 

adjoint variables can be interpreted as sensitivities  

J = obj−
�

q̃,

�
d

dt
q − Lq

��
→ max

d

dt
q − Lq = f

external force 

δJ = −�q̃, δf�

let us add an external body force to the governing equations 
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 time-periodic and generally time-dependent flow 

Generalizations 

pseudo-Floquet analysis  
adjoint analysis 

adjoint variables can be interpreted as sensitivities  

J = obj−
�

q̃,

�
d

dt
q − Lq

��
→ max

d

dt
q − Lq = f

external force 

let us add an external body force to the governing equations 

∇fJ = −q̃
sensitivity to external body force 
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 time-periodic and generally time-dependent flow 

Generalizations 

pseudo-Floquet analysis  
adjoint analysis 

Example: which adjoint variable measures the sensitivity to a mass source/sink?  

enforcing momentum 
conservation 

enforcing mass 
conservation 
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−�ξ,∇ · u� �∇ξ, δu�integration 

by parts 

ξ is the adjoint pressure 

J = obj− �ũ, NS(u)� − �ξ,∇ · u�



 time-periodic and generally time-dependent flow 

Generalizations 

pseudo-Floquet analysis  
adjoint analysis 

Example: which adjoint variable measures the sensitivity to a mass source/sink?  

enforcing momentum 
conservation 

enforcing mass 
conservation 

EPTT, Sao Paulo, Sept. 2012 

∇ · u = Q δJ = �ξ, δQ�
assuming a mass source/sink  

adjoint pressure =  
sensitivity to a mass source/sink  

J = obj− �ũ, NS(u)� − �ξ,∇ · u�



 time-periodic and generally time-dependent flow 

Generalizations 

pseudo-Floquet analysis  
adjoint analysis 

for the incompressible Navier-Stokes equations  

∇ · u = Q

u = uw on y = 0

∇FJ = ũ

∇QJ = p̃

∂u
∂t

+ advdiff(U,u) +∇p = F

∇uwJ = σ̃|w

forcing sensitivity 
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Sensitivity to internal changes  
(changes of specific eigenvalues with respect to parameter variations)     

general formulation     

A(p)q = λBq p Reynolds number  
wave number  
base-flow      

Re
α, β

U(y)

(A + δA)(q + δq) = (λ + δλ)B(q + δq)
perturbation expansion   

Generalizations 
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Sensitivity to internal changes  
(changes of specific eigenvalues with respect to parameter variations)     

general formulation     

(A + δA)(q + δq) = (λ + δλ)B(q + δq)

Generalizations 
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(A− λB)q + (A− λB)δq + (δA− δλB)q + (δA− δλB)δq = 0
0 ≈ 0

(higher order)   



Sensitivity to internal changes  
(changes of specific eigenvalues with respect to parameter variations)     

general formulation     

(A + δA)(q + δq) = (λ + δλ)B(q + δq)

Generalizations 
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(A− λB)δq + (δA− δλB)q ≈ 0



Sensitivity to internal changes  
(changes of specific eigenvalues with respect to parameter variations)     

general formulation     

Generalizations 
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q+(A− λB) = 0 (A+ − λ∗B+)q+ = 0

(A− λB)δq + (δA− δλB)q ≈ 0

q+(A− λB)δq + q+(δA− δλB)q ≈ 0
0

use adjoint 



Sensitivity to internal changes  
(changes of specific eigenvalues with respect to parameter variations)     

general formulation     

perturbation expansion   

δλ =
q+δAq

q+Bq

gradient   

∇pλ =
q+∇pAq

q+Bq

Generalizations 

EPTT, Sao Paulo, Sept. 2012 

A(p)q = λBq



Example: sensitivity to a scalar parameter 

Generalizations 

ν = U + 2icu

∇UA = −∂x

ut = (−ν∂x + γ∂xx + µ(x))� �� �
A

u

λ = σ + iω

complex Ginzburg-Landau 

eigenvalue sensitivity ∇Uλ = ũ+∇UAũ

Aũ = λũ

A+ũ+ = λ∗ũ+

EPTT, Sao Paulo, Sept. 2012 

= −ũ+∂xũ



Example: sensitivity to a scalar parameter 

Generalizations 

ν = U + 2icu

∇UA = −∂x

ut = (−ν∂x + γ∂xx + µ(x))� �� �
A

u

∇Uσ = Real(∇Uλ) ∇Uω = Imag(∇Uλ)

λ = σ + iω

complex Ginzburg-Landau 

eigenvalue sensitivity 

sensitivity of growth rate sensitivity of frequency 

∇Uλ = ũ+∇UAũ

Aũ = λũ

A+ũ+ = λ∗ũ+
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Sensitivity to internal changes  
(changes of specific eigenvalues with respect to parameter variations)     

Example: choose base flow profile as control variable 

p Reynolds number  
wave number  
base-flow      

Re
α, β

U(y)

∇Uλ = −(∇u)H ũ +∇ũ · u∗

relate mean flow modification to small control forces 

delay onset of instabilities to higher Reynolds numbers; increase stability margins 

Generalizations 
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Flow chart for sensitivity/receptivity analysis     

Generalizations 

base flow calculation 

LNS adjoint LNS 

adjoint modes global modes 

receptivity sensitivity 

Newton, Newton-Krylov 
selective frequency damping 

power iteration 
Arnoldi 

to baseflow modifications 
to localized feedback 
to structural changes 

to external forces 
to mass sources/sinks 
to forcing a the wall 
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Generalizations 

base flow calculation 

LNS adjoint LNS 

adjoint modes global modes 

receptivity sensitivity 

Ubase Vbase

Example: flow around a cylinder 
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Generalizations 

LNS adjoint LNS 

adjoint modes global modes 

receptivity sensitivity 

(power iteration) 

base flow calculation 

ũdirect ṽdirect

Example: flow around a cylinder 
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Generalizations 

LNS adjoint LNS 

adjoint modes global modes 

receptivity sensitivity 

base flow calculation 

ṽadjointũadjoint

(power iteration) 

Example: flow around a cylinder 
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Generalizations 

LNS adjoint LNS 

adjoint modes global modes 

receptivity sensitivity 

base flow calculation 

uwavemaker vwavemaker

Example: flow around a cylinder 
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Generalizations 

LNS adjoint LNS 

adjoint modes global modes 

receptivity sensitivity 

base flow calculation 

uwavemaker vwavemaker

Example: flow around a cylinder 

sensitivity to localized spatial feedback EPTT, Sao Paulo, Sept. 2012 



Generalizations 

LNS adjoint LNS 

adjoint modes global modes 

receptivity sensitivity 

base flow calculation Example: flow around a cylinder 

structural sensitivity 

∇Uλ = −(∇u)H ũ +∇ũ · u∗
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Generalizations 

LNS adjoint LNS 

adjoint modes global modes 

receptivity sensitivity 

base flow calculation Example: flow around a cylinder 

structural sensitivity 

∇Uλ = −(∇u)H ũ +∇ũ · u∗

EPTT, Sao Paulo, Sept. 2012 

place a small 
cylinder here 
to increase 
Rec to 70 



Generalizations 
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What if the operator perturbation is stochastic ? 

d

dt
q − Lq = 0

L(t) = LS + �µ(t)S

dµ = −νµdt+ dW

statistically steady part uncertain part 

stochastic process 

ν ~ auto-correlation time 



Generalizations 
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What if the operator perturbation is stochastic ? 

We have to describe the solution statistically: propagation of covariance (second-order moments) 

K = E(qqH)
evolution equation for the covariance matrix (expansion of propagator A(t)) 

d

dt
K = (LS + �2SD)K +K(LS + �2SD)H + �2(SKD +DKSH)

D =

� t

0
exp(τLs)S exp(−τLS) exp(−ντ) dτwith 



Generalizations 
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stochastic channel flow (perturbed base flow profile) ν = 1/5 � = 0.2

Re = 2000,α = 0.2,β = 2



nonlinear perturbation dynamics   

Generalizations 

adjoint analysis  
with check-pointing 

the variational formulation also allows us to add nonlinear constraints to the 
cost functional 

J = obj−
�

q̃,

�
d

dt
q −N(q)

��
→ max

nonlinear Navier-Stokes equations 

How does this affect the adjoint looping ?  
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nonlinear perturbation dynamics   

Generalizations 

adjoint analysis  
with check-pointing 

Example: nonlinear advective terms 

first variation �ũ,u∇u� �−u∇ũ, δu�

We have direct terms appearing in the adjoint equation. 

EPTT, Sao Paulo, Sept. 2012 

Adjoint equation is a variable-coefficient linear equation. 



nonlinear perturbation dynamics   

Generalizations 

adjoint analysis  
with check-pointing 

q(n)
0 direct nonlinear problem 

linear adjoint problem 

u∇u

−u∇ũ

u(0) u(t)· · · · · ·· · ·
the flow fields at the forward 
sweep have to be saved and 
injected into the backward 
sweep 

checkpointing 
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nonlinear perturbation dynamics   

Generalizations 

adjoint analysis  
with check-pointing 

q(n)
0 direct nonlinear problem 

linear adjoint problem 

u∇u

−u∇ũ

u(0) u(t)

For long-time integrations and high-dimensional problems we quickly reach the 
limits of storage devices. 
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nonlinear perturbation dynamics   

Generalizations 

adjoint analysis  
with check-pointing 

q(n)
0 direct nonlinear problem 

linear adjoint problem 

u∇u

−u∇ũ

u(0) u(t)

store flow fields at coarse intervals           and use as 
initial conditions for repeated forward integrations 

optimized checkpointing 

duplicate  
integration 
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no checkpointing (store everything) 

Generalizations 

total number of time-steps done 

tim
e 

stored direct flow field 
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no checkpointing (store everything) 

Generalizations 

total number of time-steps done 

tim
e 

stored direct flow field 
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no checkpointing (store everything) 

Generalizations 

total number of time-steps done 

tim
e 

stored direct flow field 
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uniform checkpointing (store at a few equispaced locations) 

Generalizations 

total number of time-steps done 

tim
e 

stored direct flow field 

EPTT, Sao Paulo, Sept. 2012 



uniform checkpointing (store at a few equispaced locations) 

Generalizations 

total number of time-steps done 

tim
e 

stored direct flow field 
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uniform checkpointing (store at a few equispaced locations) 

Generalizations 

total number of time-steps done 

tim
e 

extra 
work 

stored direct flow field 
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uniform checkpointing (store at a few equispaced locations) 

Generalizations 

total number of time-steps done 

tim
e 

extra 
work 

stored direct flow field 
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uniform checkpointing (store at a few equispaced locations) 

Generalizations 

total number of time-steps done 

tim
e 

extra 
work 

extra 
work 

extra 
work 

stored direct flow field 
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uniform checkpointing (store at a few equispaced locations) 

Generalizations 

total number of time-steps done 

tim
e 

extra 
work 

extra 
work 

extra 
work 
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six active checkpoints 



uniform checkpointing (store at a few equispaced locations) 

Generalizations 

total number of time-steps done 

tim
e 

extra 
work 

extra 
work 

extra 
work 
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five active checkpoints 



uniform checkpointing (store at a few equispaced locations) 

Generalizations 

total number of time-steps done 

tim
e 

extra 
work 

extra 
work 

extra 
work 
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four active checkpoints 



uniform checkpointing (store at a few equispaced locations) 

Generalizations 

total number of time-steps done 

tim
e 

extra 
work 

extra 
work 

extra 
work 
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three active checkpoints 



uniform checkpointing (store at a few equispaced locations) 

Generalizations 

total number of time-steps done 

tim
e 

extra 
work 

extra 
work 

extra 
work 

better: binomial checkpointing 
best: minimal-repetition dynamic checkpointing 
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Generalizations 
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We often have governing equations with auxiliary evolution equations (e.g., 
for eddy-viscosity), but these auxiliary variables may not be part of the cost 
objective.  

This leads to semi-norm constraints.  

q =

�
u
νt

�
d

dt

�
u
νt

�
=

�
f(u, νt)
g(νt, ...)

�

�q� ≡ �u� �q� = 0 q �= 0

governing 
equations 

turbulence 
model 

not a true norm 

We can have                       with          

causes singularities (non-convergence)  



Generalizations 
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We need additional constraints to avoid singularities. 

constrained variational approach (penality terms) 

optimization on hyper-spheres 

constraint hyper-sphere 

projection 



Generalizations 
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Is the 2-norm appropriate for all applications ? Can we consider a worst-case 
scenario ?  

dependence on chosen norm 

�a�p = (|ax|p + |ay|p)1/p

p = 1 p = 2 p = 4 p = ∞

introduce a p-norm 



Generalizations 
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localization of the optimal structures, symmetry breaking (work in progress)  

p = 2 p = ∞



multiple inhomogeneous directions/complex geometry  

Generalizations 

global mode analysis 

for most industrial applications we cannot assume the existence of 
homogeneous directions that can be treated by a Fourier transform 

rather, the eigenfunction will depend on more than one inhomogeneous 
coordinate direction 
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multiple inhomogeneous directions/complex geometry  

Generalizations 

global mode analysis 

q =





q1

q2
...

qN





L ∈ CN×N L ∈ CN2×N2

q =





q1,1

q1,2
...

qN,N





∼ N3 ∼ N6

state vector 

stability matrix 

operation count 
one inhomogeneous 
direction 

two inhomogeneous 
directions 
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multiple inhomogeneous directions/complex geometry  

Generalizations 

global mode analysis 

direct eigenvalue algorithms quickly become prohibitively expensive 

iterative eigenvalue algorithms (Arnoldi technique) have to be used 
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multiple inhomogeneous directions/complex geometry  

Generalizations 

global mode analysis 

≈L V

H

Arnoldi algorithm 

action of the linear operator L is expressed within an orthonormal basis V 

orthogonal basis 

Hessenberg 
matrix 

stability matrix 

V

orthogonal basis 

action of L action of H 
EPTT, Sao Paulo, Sept. 2012 



multiple inhomogeneous directions/complex geometry  

Generalizations 

global mode analysis 

≈L V

H

Arnoldi algorithm 

represent the (large) stability matrix by a low-rank approximation based on an 
orthogonal basis  

V H

orthogonal basis 

Hessenberg 
matrix 

stability matrix 
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multiple inhomogeneous directions/complex geometry  

Generalizations 

global mode analysis 

qk = L qk−1

j = 1 : k − 1
Hj,k−1 = �qj , qk�
qk = qk −Hj,k−1 qj

Hk,k−1 = �qk�
qk = qk/Hk,k−1

for

end

only multiplications by L are necessary 

eig{L} ≈ eig{H}
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multiple inhomogeneous directions/complex geometry  

Generalizations 

global mode analysis 

≈L V

V H

stability matrix 

computing global modes by diagonalizing  H = DΛD
−1

D D−1Λ

global modes 

EPTT, Sao Paulo, Sept. 2012 



multiple inhomogeneous directions/complex geometry  

Generalizations 

global mode analysis 

Examples of global modes: open cavity flow (two-dimensional) 
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multiple inhomogeneous directions/complex geometry  

Generalizations 

global mode analysis 

Examples of global modes: open cavity flow (two-dimensional) 

global spectrum 
global mode 
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multiple inhomogeneous directions/complex geometry  

Generalizations 

global mode analysis 

Examples of global modes: open cavity flow (two-dimensional) 

global spectrum 
global mode 
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multiple inhomogeneous directions/complex geometry  

Generalizations 

global mode analysis 

Examples of global modes: open cavity flow (two-dimensional) 

global spectrum 
global mode 
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multiple inhomogeneous directions/complex geometry  

Generalizations 

global mode analysis 

Examples of global modes: open cavity flow (two-dimensional) 

global spectrum 
global mode 
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multiple inhomogeneous directions/complex geometry  

Generalizations 

global mode analysis 

Examples of global modes: jet in cross flow (three-dimensional) 

global mode snapshot 

jet 

cross flow 

Arnoldi 
algorithm 
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Arnoldi algorithm (a Krylov subspace technique) to compute the 
Hessenberg matrix H 

Jacobian-free framework 

DNS 

ARPACK 
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Summary  

  A variational approach for fluid stability problems provides 
a flexible and effective framework that allows the treatment 
time-invariant, time-periodic, time-dependent, linear and 
nonlinear problems.   

  Adjoint variables can be interpreted as carriers of gradient/
sensitivity information to external driving terms.  

  Weighted (scalar) products of direct and adjoint variables 
yield structural sensitivity information and can be used for 
complex flow optimizations or the influence analysis of 
particular terms in the governing equations.  

  Semi-norm constraints and p-norm extensions add even 
more flexibility. 
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