The relation between the mean flow profile and the topology of turbulent fluctuations in a turbulent channel flow

J.C. Vassilicos

Department of Aeronautics, Imperial College London, U.K.
Work done with V. Dallas, S. Goto and N. Mazellier.
see http://www3.imperial.ac.uk/tmfc

Start with flows away from walls

Periodic turbulence in the computer

Jets

Grid turbulence in the wind tunnel

Regular grids and fractal cross grids

Grid turbulence in the wind tunnel

Fractal I grids

G.I. Taylor (1935): isotropic turbulence

$$
\epsilon=15 \nu<\left(\frac{\partial u}{\partial x}\right)^{2}>=15 \nu u^{\prime 2} / \lambda^{2}
$$

$$
\epsilon=C_{\epsilon} u^{\prime 3} / L
$$

where C_{ϵ} is indep of $R e_{\lambda}$ as

$$
R e_{\lambda} \rightarrow \infty
$$

Laboratory experiments and numerical simulations support the view that C_{ϵ} is independent of $R e_{\lambda}$ in the limit $R e_{\lambda} \rightarrow \infty$ but suggest that C_{ϵ} is not independent of flow conditions, e.g. see Batchelor 1953, Sreenivasan 1984 and 1998, Kaneda et al 2003, Pearson et al 2004, Burattini, Lavoie \& Antonia 2005.

30 data sets from 7 different turbulent flows

9 data sets from CL of 2 round air jets

Nozzle diameter	exit velocity	turb intensity	$R e_{\lambda}$
$d=2.25 \mathrm{~cm}$	$50 \mathrm{~m} / \mathrm{s}$	26%	380
$d=5 \mathrm{~cm}$	$18 \mathrm{~m} / \mathrm{s} \& 30 \mathrm{~m} / \mathrm{s}$	$28 \% \& 27 \%$	$390 \& 490$

streamwise distance from nozzle	L
$50 d, 60 d, 70 d, 80 d, 90 d, 100 d, 110 d$	4.9 cm to 10.5 cm
$50 d$	12 cm and 10.4 cm

17 data sets from centerline of 4

wind tunnel grid-generated turbulent flows

	Section size, length	Mesh	solidi
classical grid	$75 \mathrm{~cm} \times 75 \mathrm{~cm}, 4 \mathrm{~m}$	$M=7.5 \mathrm{~cm}$	34%
classical grid	$46 \mathrm{~cm} \times 46 \mathrm{~cm}, 5 \mathrm{~m}$	$M=3.2 \mathrm{~cm}$	34%
fractal cross grid	$91 \mathrm{~cm} \times 91 \mathrm{~cm}, 5.4 \mathrm{~m}$	$M_{\text {eff }}=5.7 \mathrm{~cm}$	21%
fractal I grid	$46 \mathrm{~cm} \times 46 \mathrm{~cm}, 5 \mathrm{~m}$	$M_{\text {eff }}=3.55 \mathrm{~cm}$	25%

U_{∞}	streamwise x	u^{\prime} / U
9 and $16 \mathrm{~m} / \mathrm{s}$	$35 M, 38 M$ and $42 M$	3.3%
$2.5,5,10$ and $15.5 \mathrm{~m} / \mathrm{s}$	$40 M$	2.5%
$6,8,12$ and $16 \mathrm{~m} / \mathrm{s}$	$75 M_{e f f}$	2.7%
$10 \mathrm{~m} / \mathrm{s}$	$65 M_{e f f}, 72 M_{\text {eff }}$ and $83 M_{\text {eff }}$	7%

Continued

$R e_{\lambda}$	L
130 and 180	5.9 to 6.8 cm
$40,56,81$ and 89	2.4 cm
$89,110,137$ and 184	5.7 cm
237	6.3 cm

Also, 4 data sets from "chunk" turbulence in wind tunnel S1 at Modane (24 m diameter) with mean inlet velocities 19.9, 20, 20.8 and 20.6m/s; 7\% turbulence intensities and $R e_{\lambda}=1890,1860,2180$ and 2380 respectively. L from 1.64 to $2.13 m$.

Rice 1944

In 1944, Rice proved that the average distance \bar{l} between consecutive zero-crossings of a statistically stationary zero-mean stochastic function $u(x)$ is equal to the inverse of $<\left|\frac{d u}{d x}\right|>p(u=0)$ if $u(x)$ and $\frac{d u}{d x}$ are statistically independent.

If, furthermore, $u(x)$ is statistically gaussian, then
$\sqrt{2 \pi}<u^{2}>^{1 / 2} p(u=0)=1$; in which case

$$
\bar{l}=\sqrt{2 \pi}<u^{2}>^{1 / 2} /<\left|\frac{d u}{d x}\right|>
$$

Finally, if $\frac{d u}{d x}$ is also statistically gaussian, then
$<\left|\frac{d u}{d x}\right|>=\sqrt{\frac{2}{\pi}}<\left(\frac{d u}{d x}\right)^{2}>^{1 / 2}$; in which case

$$
\bar{l}=\pi<u^{2}>^{1 / 2} /<\left(\frac{d u}{d x}\right)^{2}>^{1 / 2}
$$

Rice 1944 and Liepmann 1949, 1952

$$
\bar{l}=\pi<u^{2}>^{1 / 2} /<\left(\frac{d u}{d x}\right)^{2}>^{1 / 2}
$$

Sreenivasan, Prabhu \& Narasimha (1983) demonstrated that this relation holds for many different turbulence signals in many different turbulent flows (longitudinal velocity fluctuations in boundary layers and a wake, wall shear stress in a channel and temperature derivatives in a heated boundary layer) and suggested, as a result, that the assumption of gaussianity may, in fact, not be necessary.

If $u(x)$ is the longitudinal velocity fluctuation component, then $<u^{2}>^{1 / 2} /<\left(\frac{d u}{d x}\right)^{2}>^{1 / 2}=u^{\prime} /<\left(\frac{d u}{d x}\right)^{2}>^{1 / 2}$ is the Taylor microscale λ.
The average distance \bar{l} between consecutive zero-crossings of $u(x)$ is such that $\bar{l}=\pi \lambda$.

Liepmann 1949, 1952

$$
\bar{l}=\pi \lambda
$$

where \bar{l} is the average distance between consecutive zero-crossings of $u(x)$.

Realising that Rice's 1944 theorem implies that $\bar{l} \propto \lambda$ holds in turbulence even if $\bar{l}=\pi \lambda$ doesn't quite, Liepmann used the constant C defined by $C<\left|\frac{d u}{d x}\right|>=\sqrt{\frac{2}{\pi}}<\left(\frac{d u}{d x}\right)^{2}>^{1 / 2}$.

The result of Rice and Liepmann is

$$
\bar{l}=C \pi \lambda
$$

For gaussian $d u / d x, C=1$. $C \neq 1$ measures deviations from gaussianity.

Number density of zero-crossings

Sreenivasan and colleagues (see Ann. Rev.Fluid Mech. 1991) and Davilicos (2003, PRL 91(14), 144501) demonstrated that the number density n_{s} of zero-crossings of the longitudinal velocity fluctuation component $u(x)$ is a power-law function of L / η_{c} where $2 \pi / \eta_{c}$ is the filter wavenumber of a low-pass filter applied on $u(x)$. Specifically, they found that

$$
n_{s}\left(L / \eta_{c}\right)=\frac{C_{s}^{\prime}}{L}\left(L / \eta_{c}\right)^{2 / 3}
$$

in terms of a dimensionless constant C_{s}^{\prime}.

Low-pass filtering operation: illustration

E.g. multiscale streamline structure in $d=2$ (closed streamlines because of conservation of mass).

$$
n_{s}=1 \text { and } L / \eta_{c}=1
$$

Number density of zero-crossings

Sreenivasan and colleagues (see Ann. Rev.Fluid Mech. 1991) and Davilicos (2003, PRL 91(14), 144501) demonstrated that the number density n_{s} of zero-crossings of the longitudinal velocity fluctuation component $u(x)$ is a power-law function of L / η_{c} where $2 \pi / \eta_{c}$ is the filter wavenumber of a low-pass filter applied on $u(x)$. Specifically, they found that

$$
n_{s}\left(L / \eta_{c}\right)=\frac{C_{s}^{\prime}}{L}\left(L / \eta_{c}\right)^{2 / 3}
$$

in terms of a dimensionless constant C_{s}^{\prime}.

Confirmation

C_{s}^{\prime} is a dimensional constant characterising the largest eddies of the turbulence. Indeed, the value of C_{s}^{\prime} can be obtained unaltered after low-pass filtering a turbulence data set irrespective of the filter size η_{c} as long as η_{c} is between η_{*} and L.

Inner cutoff length-scale η_{*}

$n_{s}\left(L / \eta_{c}\right)=\frac{C_{s}^{\prime}}{L}\left(L / \eta_{c}\right)^{2 / 3}$ valid for $\eta_{*} \leq \eta_{c} \leq L$
$A \equiv \eta_{*} / \eta=8.2+8.9 \log R e_{\lambda}$

C_{s}^{\prime} is a large-scale constant

C_{s}^{\prime} differs from flow to flow; for example, it is significantly larger for classical grid turbulence than for jet turbulence.

Bring everything together

$$
\begin{gathered}
\epsilon=15 \nu u^{\prime 2} / \lambda^{2}=C_{\epsilon} u^{\prime 3} / L \\
\bar{l}=C \pi \lambda \\
\bar{l}=n_{s}^{-1}\left(L / \eta_{*}\right) \\
n_{s}\left(L / \eta_{*}\right)=\frac{C_{s}^{\prime}}{L}\left(L / \eta_{*}\right)^{2 / 3} \\
\eta_{*}=A \eta=A\left(\nu^{3} / \epsilon\right)^{1 / 4} \\
\text { ॥MPLY }
\end{gathered}
$$

This relation suggests that the dimensionless (small-scale) dissipation rate C_{ϵ} is directly and strongly dependent on the large-scale dimensionless number C_{s}^{\prime}. This large-scale number is something like a number of large-scale eddies. Modify this number and you modify the turbulence dissipation rate. This may be the reason why the high Reynolds number values of C_{ϵ} obtained in various laboratory and numerical experiments seem to differ from turbulent flow to turbulent flow.

Calculate C_{s}^{\prime}

from

$$
C_{s}^{\prime}=n_{s}\left(L / \eta_{*}\right) L\left(L / \eta_{*}\right)^{-2 / 3}
$$

The monotonic increase of $A \equiv \eta_{*} / \eta$

with Reynolds number accounts for much of the

$R e_{\lambda}$-dependence of C_{ϵ} (as it equals $K \frac{\left(C C_{s}^{\prime}\right)^{3}}{A^{2}}$)

Once much of the $R e_{\lambda}$-dependence

is removed, $C_{\epsilon} A^{2} / K$ can be compared to $C_{s}^{\prime 3}$

Qualitative agreement with $C_{\epsilon} A^{2} / K=C_{s}^{\prime 3}$ which is

$$
C_{\epsilon}=K\left(\frac{C C^{\prime}}{A^{2 / 3}}\right)^{3} \text { with } C=1 \text { (gaussian stats) }
$$

Not quite $C_{\epsilon}=K\left(\frac{C_{s}^{\prime}}{A^{2 / 3}}\right)^{3}$

More like $C_{\epsilon}=K\left(\frac{C C_{s}^{\prime}}{A^{2 / 3}}\right)^{3}+$ something or, better,

$$
C_{\epsilon}=K\left(\frac{C C_{s}^{\prime}}{A^{2 / 3}}\right)^{3} \text { with } C=C\left(\log R e_{\lambda}\right) \neq 1
$$

A check and a bonus

B calculated from $\bar{l}=B \lambda$ and C calculated from
$C<\left|\frac{d u}{d x}\right|>=\sqrt{\frac{2}{\pi}}<\left(\frac{d u}{d x}\right)^{2}>^{1 / 2}$ so as to check that $B=C \pi$

A bonus: define the voids length-scale $\lambda_{v} \equiv<(l-\bar{l})^{2}>^{1 / 2}=D \lambda$ and find $D \sim R e_{\lambda}^{1 / 3}$.

$C_{\epsilon}=K\left(\frac{C C_{s}^{\prime}}{A^{2 / 3}}\right)^{3}$

Deviations remain, but they are all below 16% of $\frac{C_{\epsilon}}{K\left(\frac{C C^{\prime} / 3}{A^{2} / 3}\right)^{3}}=1$. Most of these deviations are $\frac{C_{c}}{K\left(\frac{C C^{\prime}}{A^{\prime} / 3}\right)^{3}}$ slightly
larger than 1 and may be due to varying degrees of anisotropy, slight large-scale non-gaussianity, slight large-small-scale statistical dependence and errors in η_{*}.

$$
C_{\epsilon} \sim C_{s}^{\prime 3}
$$

Most of the non-universal behaviour of C_{ϵ} is accounted for by the universal strong dependence of C_{ϵ} on C_{s}^{\prime}, i.e. $C_{\epsilon} \sim C_{s}^{\prime 3}$, and the non-universality of $C_{s}^{\prime 3}$ which characterises, in some sense, the number of large-scale eddies, i.e. the topography of the large scales of the turbulence.

The Reynolds number dependence of C_{ϵ}

results mostly from its dependence on the slow growth (with Reynolds number) of the range of viscous scales of the turbulence, i.e. on $A=\eta_{*} / \eta \approx 8.2+8.9 \log R e_{\lambda}$. However, a smaller part also results from the slow increase (with Reynolds number) of the non-gaussianity of the small scales, i.e. $C^{3} \approx\left(0.87+0.11 \log R e_{\lambda}\right)^{2}$. This type of fit has been chosen such that the Reynolds number dependence of C_{ϵ}, which is all in C^{3} / A^{2} because of $C_{\epsilon}=K\left(\frac{C C_{s}^{\prime}}{A^{2 / 3}}\right)^{3}$, tends to a constant as $R e_{\lambda} \rightarrow \infty$.
C^{3} / A^{2} tends to $\approx 1.5 \times 10^{-4}$ as $\log R e_{\lambda} \rightarrow \infty$. Hence,

$$
\begin{gathered}
C_{\epsilon} \approx 10^{-4} 1.5\left(15 \pi^{2}\right)^{3 / 2} C_{s}^{\prime 3} \approx 0.275 C_{s}^{\prime 3} \\
\text { in the limit } \log R e_{\lambda} \gg 1
\end{gathered}
$$

$$
C_{\epsilon} \approx 0.275 C_{s}^{\prime 3} \text { for } \log R e_{\lambda} \gg 1
$$

Most of the Reynolds number dependence of C_{ϵ} at small to moderate values of $\log R e_{\lambda}$ comes from $A=\eta_{*} / \eta$, but the non-gaussianity of $d u / d x$ catches up as $\log R e_{\lambda}$ increases bringing in its own Reynolds number dependence which eventually compensates that of A.

In that limit,

$$
C_{\epsilon} \approx 0.275 C_{s}^{\prime 3}
$$

The limit $\log R e_{\lambda} \rightarrow \infty$

The dotted curve is $C^{3} / A^{2} \approx\left(\frac{0.87+0.11 \log R e_{\lambda}}{8.2+8.9 \log R e_{\lambda}}\right)^{2} \rightarrow \approx 1.510^{-4}$.

C_{ϵ} in the limit $\log R e_{\lambda} \rightarrow \infty$

0.5 or 0.6 may not be the real asymptotic value of C_{ϵ}. The real asymptotic value may be between 0.07 and 0.09 , i.e. an order of magnitude smaller because of the very slow asymptotics in $\log R e_{\lambda}$. Need $R e_{\lambda}$ up to at least 10^{9} to see this!

CONCLUSIONS SO FAR

The dimensionless dissipation rate constant C_{ϵ} of homogeneous isotropic fluid turbulence is such that

$$
C_{\epsilon}=f\left(\log R e_{\lambda}\right) C_{s}^{\prime 3}
$$

where $f\left(\log R e_{\lambda}\right)$ is a dimensionless function of $\log R e_{\lambda}$ which appears to tend to 0.275 (by extrapolation!) in the limit where $\log R e_{\lambda} \gg 1$ (as opposed to just $R e_{\lambda} \gg 1$).

The dimensionless number C_{s}^{\prime} reflects the number of "large-scale eddies" and is therefore non-universal.

Most of the non-universal asymptotic values of C_{ϵ} stem, therefore, from its universal dependence on C_{s}^{\prime} and can be calculated from it!

CONCLUSIONS SO FAR

The Reynolds number dependence of C_{ϵ} at values of $\log R e_{\lambda}$ close to and not much larger than 1 is primarily governed by the slow growth (with Reynolds number) of the range of viscous scales of the turbulence.

The eventual Reynolds number independence of C_{ϵ} is achieved by an eventual balance between this slow growth and the increasing non-gaussianity of the small-scales.

However this happens in $\log R e_{\lambda}$ asymptotics and values of $R e_{\lambda}$ as high as at least 10^{9} are needed to reach the asymptotic constant.

Generalised Rice theorem

For high Reynolds number HIT

$$
\lambda \sim l_{s}
$$

where λ is the Taylor microscale $\left(\epsilon=15 \nu u^{\prime 2} / \lambda^{2}\right)$ and l_{s} is the average distance between neighboring stagnation points defined as the $-1 / 3$ power of the number density of stagnation points. Stagnation points are points where the turbulent fluctuation velocity is 0 .

Proved in HIT under assumptions of (i) statistical independence between large and small scales and (ii) absence of small-scale intermittency effects.

Rice theorem

$$
\begin{aligned}
& n_{0} \equiv \text { number denirty of zero-crosings of } a(x) \\
& h_{0}=\langle\delta[u(x)]| \frac{d_{n}}{d_{0}}| \rangle \\
& =\int P\left(u, u^{\prime}\right) \delta(u)\left|u^{\prime}\right| d u d u \text {. } \\
& \text { IF } P\left(u, u^{\prime}\right)=p(u) p^{\prime}\left(u^{\prime}\right) \\
& \text { Then } \\
& h_{0}=p(u=0)\langle | \frac{d u}{d x}| \rangle
\end{aligned}
$$

Generalised Rice theorem

From zero-crosnings to stagnation point

$$
\underline{u}=(u, v, w)=(0,0,0)
$$

Generalise as follows:
number 7 stagnation points within vole V as

$$
\begin{aligned}
& \int d v|\underline{\Xi}[u(x)]||\underline{\nabla} H[v(x)]||\underline{V} H[w(x)]| \\
= & \int d v \delta[u(x)] \delta[v(x)] \delta[v(x)]|\nabla u||\underline{V} v||\nabla v|
\end{aligned}
$$

Hence, the number dervicty of stagnation point is given by

$$
n_{S}=\langle\delta(u) \delta(v) \delta(w)| \underline{\nabla} u| | \underline{\nabla} v| | \underline{\nabla} v| \rangle
$$

Generalised Rice theorem

$$
\text { IF } P\left(\underline{u}, \nabla_{u}\right)=p_{l}(\underline{u}) \quad P_{s}(\Xi \underline{u})
$$

THen

$$
n_{s}=P_{l}(u=0)\langle | \nabla u| | \nabla v| | \nabla w| \rangle
$$

Assuming that $p_{s}(\nabla \underline{n})$ scales with

$$
\sigma \equiv\left\langle\left(\frac{\partial}{r x} u\right)^{2}\right\rangle^{1 / 2}
$$

and that Pe (u) soles with $u^{\prime}=\left\langle a^{2}\right\rangle^{1 / 2}$
we get

$$
\begin{aligned}
& h_{s} \\
& \sim \frac{\sigma^{3}}{u^{\prime 3}} \\
& \Rightarrow \quad l_{s} \equiv n_{s}^{-1 / 3}=B \frac{u^{\prime}}{\sigma}=B \lambda
\end{aligned}
$$

where B is a dimarimbless constant.

Number density of stagnation points

The number density of stagnation points in homogeneous isotropic turbulence scales as [PRL 91, 144501 (2003)]

$$
n_{s}\left(L / \eta_{c}\right)=\frac{C_{s}}{L^{3}}\left(L / \eta_{c}\right)^{2}
$$

Compare this with the number density of zero-crossings of the longitudinal velocity component
$n_{s}\left(L / \eta_{c}\right)=\frac{C_{s}^{\prime}}{L}\left(L / \eta_{c}\right)^{2 / 3}$

$$
\begin{gathered}
C_{\epsilon}=15^{3 / 2} \frac{C_{s}}{A^{2} B^{3}} \\
\text { FOLLOWS FROM } \\
\epsilon=15 \nu u^{\prime 2} / \lambda^{2}=C_{\epsilon} u^{\prime 3} / L \\
\lambda=B l_{s} \\
l_{s}=n_{s}^{-3}\left(L / \eta_{*}\right) \\
n_{s}\left(L / \eta_{*}\right)=\frac{C_{s}}{L^{3}}\left(L / \eta_{*}\right)^{2} \\
\eta_{*}=A \eta=A\left(\nu^{3} / \epsilon\right)^{1 / 4}
\end{gathered}
$$

$E(k)$ for 24 DNS of HIT: $60 \leq R e_{\lambda} \leq 170$

 $E(k) \sim k^{p}, p=2,4$ at $k \ll k_{\text {peak }}: 4$ values of ν and 3 of $k_{\text {peak }}$

C_{ϵ} and $\tilde{C}_{\epsilon} \equiv C_{\epsilon} B^{3} / C_{s}$

C_{ϵ} is a function of p but \tilde{C}_{ϵ} is not.

These DNS results support

$$
C_{\epsilon}\left(p, R e_{\lambda}\right) \sim C_{s}(p) / A^{2}\left(R e_{\lambda}\right) B^{3}\left(R e_{\lambda}\right) .
$$

(see Goto \& V PoF 21, (2009) for more details)

CONCLUSION

$$
C_{\epsilon}=f\left(R e_{\lambda}\right) C_{s}
$$

where C_{s} is the number of large-scale stagnation points
and $f\left(R e_{\lambda}\right) \sim A^{-2}\left(R e_{\lambda}\right) B^{-3}\left(R e_{\lambda}\right)$ is determined by the opposing (perhaps balancing) effects of (i) the slow growth (with Reynolds number) of the range of viscous scales of the turbulence - represented by $A\left(R e_{\lambda}\right)$, and (ii) the increasing non-gaussianity of the small-scales (small-scale intermittency) - represented by $B\left(R e_{\lambda}\right)$.

DNS of turbulent channel flow

$$
\begin{gathered}
R e_{\tau} \equiv \frac{u_{\tau} \delta}{\nu} \approx 110 \text { to } 400: \text { too small?...perhaps not for } \\
\text { everything... }
\end{gathered}
$$

We use a code developed at the University of Poitiers by S. Laizet \& E. Lamballais: 6th order compact finite difference scheme; fractional step method for incompressible N.S. using 3-stage 3d order R-K scheme; Poisson pressure equation solved in Fourier space (with staggered grid and FFT on non-uniform grid).

DNS of turbulent channel flow

Periodic boundary conditions except at the walls, where
(i) either $u=0$;
or the boundary conditions and near wall forcings are borrowed from numerical studies of flow control schemes aimed at drag reduction, i.e.
(ii) either $\mathbf{u}=0$ with forcing $\mathbf{f}=(-A \sin (2 \pi y / \Lambda) H(\Lambda-y), 0,0)$ added to N.S. (Xu, Dong, Maxey \& Karniadakis JFM 2007) with $A=0.16 U_{c}^{2} / \delta \approx 2 u_{\tau}^{2} / \delta_{\nu}$ and $\Lambda=11 \delta_{\nu}$;
(iii) or $\mathbf{u}(x, t)=(0, a \cos (\alpha(x-c t)), 0)$ (Min, Kang, Meyer \& Kim JFM 2006) with $a / U_{c}=0.05, \alpha=0.5 / \delta$ and $c=-2 U_{c}$; (iv) or $\mathbf{u}=0$ at walls and $v\left(x, y_{d}, z, t\right)$ replaced by
$-v\left(x, y_{d}, z, t\right)$ where $y_{d}=10 \delta_{\nu}$ at every time step (Choi, Moin \& Kim JFM 1994).
Notation: $\delta_{\nu} \equiv \nu / u_{\tau}$ and U_{c} is the mean centre-line velocity.
We set the bulk velocity U_{b} equal to $2 / 3$ by varying the mean pressure gradient accordingly at all times in all simulations.

DNS of turbulent channel flow

(a) Xu et al

(b) Min et al

Case	Forcing	Re_{c}	Re_{τ}	L_{x}	L_{z}	$N_{x} \times N_{y} \times N_{z}$
A	No	4250	178.99	$4 \pi \delta$	$4 \pi \delta / 3$	$200 \times 129 \times 200$
A1	Xu et. al.	4250	114.40	$4 \pi \delta$	$4 \pi \delta / 3$	$200 \times 129 \times 200$
A2	Min et. al.	4250	222.27	$4 \pi \delta$	$4 \pi \delta / 3$	$200 \times 129 \times 200$
A3	Choi et. al.	4250	141.63	$4 \pi \delta$	$4 \pi \delta / 3$	$200 \times 129 \times 200$
B	No	2400	109.48	$4 \pi \delta$	$2 \pi \delta$	$100 \times 65 \times 100$
C	No	10400	390.99	$2 \pi \delta$	$\pi \delta$	$256 \times 257 \times 256$

$\nu \frac{d}{d y} \bar{U}-<u v>=u_{\tau}^{2}(1-y / \delta)$ for all y in all cases except with Xu et al forcing where it holds for $y>\Lambda$ and $2 \delta-y>\Lambda$.

When $R e_{\tau}=\delta / \delta_{\nu} \gg 1$

one might expect an intermediate region $\delta_{\nu} \ll y \ll \delta$ where production balances dissipation locally (Townsend 1961),
i.e.

$$
-<u v>\frac{d}{d y} \bar{U} \approx \epsilon .
$$

$\nu \frac{d}{d y} \bar{U}-\langle u v\rangle=u_{\tau}^{2}(1-y / \delta)$ implies $-<u v>\approx u_{\tau}^{2}$ in this intermediate region as $\delta / y \rightarrow \infty$ and $\delta_{\nu} / y \equiv 1 / y_{+} \rightarrow 0$. (Assuming that, in this limit, $\frac{d}{d \ln y_{+}} \bar{U}_{+}$does not increase faster than y_{+}^{p} with $p \geq 1$.)

It then follows that, in this equilibrium intermediate region,

$$
\epsilon \approx \frac{u_{\tau}^{3}}{\kappa y} \text { IFF } \frac{d}{d y} \bar{U} \approx \frac{u_{\tau}}{\kappa y}
$$

$P \equiv-<u v>\frac{d}{d y} \bar{U}$ balances ϵ

Mean flow profiles

Karman "constant"

$B=\bar{U}_{+}-\frac{\ln y_{+}}{\kappa}$

$$
\text { Look at } \epsilon \approx \frac{u_{\tau}^{3}}{k y} \text { instead of } \frac{d}{d y} \bar{U} \approx \frac{u_{\tau}}{k y}
$$

Generalised Rice theorem for high Reynolds number HIT (Mazellier \& V 2008 PoF 20, 014102; Goto \& V 2009 PoF 21, 035104):

$$
\lambda \sim l_{S}
$$

where λ is the Taylor microscale $\left(\epsilon=15 \nu u^{\prime 2} / \lambda^{2}\right)$ and l_{s} is the average distance between neighboring stagnation points defined as the $-1 / 3$ power of the number density of stagnation points. Stagnation points are points where the turbulent fluctuation velocity is 0 .

Proved in HIT under assumptions of (i) statistical independence between large and small scales and (ii) absence of small-scale intermittency effects.

$\lambda \sim l_{s}$ in TCF?

Does $\lambda \sim l_{s}$ hold in the intermediate equilibrium region of Turbulent Channel Flow (TCF) in the sense that

$$
\lambda=B_{1} l_{s}
$$

where

B_{1} is independent of y and Reynolds number for Reynolds number >> 1?

Stagnation points of fluctuating velocities

Points where $\mathbf{u}^{\prime} \equiv \mathbf{u}-\bar{U} \mathbf{e}_{\mathbf{x}}=0$

Number of stagnation points

$N_{s} \equiv$ total number of points where all components of the velocity fluctuations around the local mean are zero in a thin slab of dimensions $L_{x} \times L_{z} \times \delta_{y}\left(\delta_{y}\right.$ small, $\left.\delta_{y} \sim \delta_{\nu}\right)$ parallel to the channel's $y=0$ wall.
Observation : $N_{s}=N_{s}\left(y_{+}\right) \sim y_{+}^{-1}$.

Townsend-Perry schematic picture

Streaks

lengths and spacings $\sim z$

Streaks

lengths and spacings $\sim z$

$B_{1} \equiv \lambda / l_{s}$

Calculate λ from $\epsilon=2 \nu\left\langle s_{i j} s_{i j}\right\rangle=\frac{\nu}{3} \frac{2 E}{\lambda^{2}}$ where
$E \equiv \frac{1}{2}<\left|\mathbf{u}^{\prime}\right|^{2}>$
and
calculate l_{s} from $l_{s} \equiv \sqrt{\frac{L_{x} L_{y}}{N_{s}}}$.

$B_{1} \equiv \lambda / l_{s}$

Concentrate on dissipation

$\epsilon=\frac{\nu}{3} \frac{2 E}{\lambda^{2}}=\frac{\nu}{3} \frac{2 E}{B_{1}^{2} l_{s}^{2}}=\frac{\nu}{3} \frac{2 E}{B_{1}^{2} L_{x} L_{z}} N_{s}=\frac{\nu}{3} \frac{2 E}{B_{1}^{2}} \delta_{\nu} n_{s}$
where the number density $n_{s} \equiv N_{s} /\left(L_{x} L_{z} \delta_{\nu}\right)$.
Combine with $-<u v>\frac{d}{d y} \bar{U}=B_{2} \epsilon$ and $\frac{d}{d y} \bar{U}=\frac{u_{\tau}}{k y}$ as well as $C \equiv-\frac{2 E}{3<u v>}$ (classical claims: κ and C are constants
$(\kappa \approx 0.4, C \approx 2)$ as $R e_{\tau} \rightarrow \infty$)
It then follows that

$$
n_{s}=\frac{C_{s}}{\delta_{\nu}^{3}} y_{+}^{-1}
$$

where

$$
C_{s}=\frac{B_{1}^{2}}{\kappa B_{2} C}
$$

$n_{s}=\frac{C_{s}}{\delta_{\nu}^{3}} y_{+}^{-1}$ with C_{s} about constant even though κ and C are not constant.

$n_{s}=\frac{C_{s}}{\delta_{\nu}^{3}} y_{+}^{-1}$ with C_{s} about constant even though κ and C are not constant.

$n_{s}=\frac{C_{s}}{\delta_{\gamma}^{3}} y_{+}^{-1}$ with C_{s} about constant
in the unforced cases...

but not quite in the forced cases

Recap

κ and $C \equiv-\frac{2 E}{3<u v>}$

Meaning of $B_{1} \equiv \lambda / l_{s}$ constant

The eddy turnover time τ is given by $\epsilon=E / \tau$.
Hence, from $\epsilon=\frac{2 \nu}{3} \frac{E}{\lambda^{2}}, 3 \lambda^{2}=2 \nu \tau$.
Therefore, B_{1} constant means $l_{s}^{2} / \nu \sim \tau$
This means that in the equilibrium layer, the time it takes for viscous diffusion to spread over neighboring stagnation points is the same proportion of the eddy turnover time (i.e.
the time it takes to cascade the energy to the smallest scales) at all locations and all Reynolds numbers.

Meaning of C_{s} constant

$$
n_{s}=\frac{C_{s}}{\delta_{\nu}^{3}} y_{+}^{-1} \text { implies } l_{s}^{2}=C_{s}^{-1} \delta_{\nu} y
$$

From $\epsilon=\frac{\nu}{3} \frac{2 E}{\lambda^{2}}$ and $B_{1}=\lambda / l_{s}$ it then follows that

$$
\begin{aligned}
\epsilon= & \frac{2}{3} \frac{E u_{\tau}}{\kappa_{* y}} \text { with } \kappa_{*} \equiv B_{1}^{2} / C_{s} \\
& \text { instead of } \epsilon=\frac{u_{\tau}^{3}}{\kappa y}
\end{aligned}
$$

Therefore, C_{s} constant means $\tau \sim y / u_{\tau}$ in the equilibrium layer where the constant of proportionality $3 \kappa_{*} / 2$ is the same at all locations and all Reynolds numbers.
Indeed k_{*} is related to the stagnation point constants B_{1} and C_{s} and is constant if they are constant.
κ_{*} IS THE STAGNATION POINT KARMAN COEFFICIENT

Start from B_{1} and C_{s} constants

B_{1} constant and C_{s} constant as $R e_{\tau} \rightarrow \infty$ in the equilibrium layer mean that $\epsilon=\frac{2}{3} \frac{E u_{\tau}}{\kappa_{*} y}$, $\kappa_{*}=B_{1}^{2} / C_{s}$ in that layer and that limit.

In the equilibrium layer $-<u v>\frac{d}{d y} \bar{U} \approx \epsilon$, in fact
$-<u v>\frac{d}{d y} \bar{U}=B_{2} \epsilon$ with $B_{2} \rightarrow 1$ as $R e_{\tau} \rightarrow \infty$.
This means that $-<u v>\frac{d}{d y} \bar{U}=B_{2} \frac{2}{} \frac{E u_{\tau}}{k_{*} y}$
In the equilibrium layer and in the limit $R e_{\tau} \rightarrow \infty$, $-\langle u v\rangle \rightarrow u_{\tau}^{2}$ and even $B_{2} \rightarrow 1$ (Brouwers, PoF 2007): hence

$$
\frac{d}{d y} \bar{U}=\frac{2}{3} E_{+} \frac{u_{\tau}}{\kappa_{*} y} \text { with } \kappa_{*}=B_{1}^{2} / C_{s}
$$

$C_{s}, B_{1}^{2}, \frac{3}{2} \frac{P y}{E u_{\tau}}$ and $1 / \kappa$

$$
\frac{d}{d y} \bar{U}=\frac{u_{\tau}}{k_{s} y}\left(2 E_{+} / 3\right)
$$

(results obtained using the DNS data of Hoyas \& Jimenez, PoF 2006)
$n=-\frac{y}{\bar{U}} \frac{d}{d y} \bar{U}=2 / 15$ vs. y_{+}and, effectively, $E_{+} y_{+}^{2 / 15}$ vs. y_{+}.

Main conclusions

1. The DNS suggest that $B_{1}=\lambda / l_{s}$ and $C_{s}=n_{s} \delta_{\nu}^{3} y_{+}$may be constants in the limit $R e_{\tau} \rightarrow \infty$ and in the region $\delta_{\nu} \ll y<\delta$, their asymptotic values being reached at $R e_{\tau}$ as low as a few hundred.
2. This is equivalent to stating that in the limit $R e_{\tau} \rightarrow \infty$ and in the region $\delta_{\nu} \ll y<\delta$,
the eddy turnover time τ is proportional to l_{s}^{2} / ν and also equals $\frac{3}{2} \kappa_{*} y / u_{\tau}$ with $\kappa_{*}=B_{1}^{2} / C_{s}$.
3. Either of these equivalent statements (1 or 2 above) implies that in the limit $R e_{\tau} \rightarrow \infty, \frac{d}{d y} \bar{U}=E_{+} \frac{u_{\tau}}{\kappa_{*} y}$ in the equilibrium region $\delta_{\nu} \ll y \ll \delta$ where we may expect production to balance dissipation.

Concluding remarks I

1. According to classical similarity scalings, as $R e_{\tau} \rightarrow \infty$, $E \sim u_{\tau}^{2}$ independently of y in the equilibrium range $\delta_{\nu} \ll y \ll \delta$. If this is true, then the log-law will be recovered from $\frac{d}{d y} \bar{U}=E_{+} \frac{u_{\tau}}{\kappa_{*}}$ but with a Karman constant that is proportional to κ_{*} which is inversely proportional to C_{s}, the number of stagnation points (number of "eddies"?) within a volume δ_{ν}^{3} at the upper edge of the buffer layer. Why would anyone expect this number to be universal (same for pipes and channels, lab ones and DNS ones)? If it is not, then the Karman constant might not be universal either.

Concluding remarks II

2. However, various DNS and experiments seem to suggest that E does not scale as u_{τ}^{2} in the equilibrium region as $R e_{\tau} \rightarrow \infty$. If this is the case, then there is, strictly speaking, no log-law and mean flow data fitted by a log-law may yield non-universal Karman "constants" as a result of $\kappa_{*}=B_{1}^{2} / C_{s}$ but also as a result of the weak dependence of E on y, and its consequence on $\frac{d}{d y} \bar{U}=E_{+} \frac{u_{\tau}}{k_{*} y}$.
If E does not scale with u_{τ}^{2}, then $\epsilon \sim E u_{\tau} / y$ (NOT $\epsilon \sim u_{\tau}^{3} / y$). NEW INTERMEDIATE ASYMPTOTICS

Alternative intermediate asympotitics

Instead of assuming independence of $\frac{d}{d y} \bar{U}$ on ν and δ where $\delta_{\nu} \ll y \ll \delta$ (which neglects small effect of inactive motions), apply such asympotic assumptions to τ, which implies $\tau \sim y / u_{\tau}$.
Then use $P \sim \epsilon$ to obtain $\frac{d}{d y} \bar{U}$.
Then, $l_{s} \sim \sqrt{\nu \tau}$ leads to $\kappa_{*}=B_{1}^{2} / C_{s}$.

And two final points of caution

(i) B_{1} may have its own weak (logarithmic?) dependencies on $R e_{\tau}$ and y_{+}if small-scale intermittency effects are taken into account (see Mazellier \& V PoF 20, 014102). These dependencies will cause weak dependencies of κ_{*} on $R e_{\tau}$ and y_{+}.
(ii) For $\frac{d}{d y} \bar{U}=E_{+} \frac{u_{\tau}}{\kappa * y}$ to hold, the Reynolds number must be so large that $-\langle u v\rangle \approx u_{\tau}^{2}$ and $P \approx \epsilon$. If some small cross-stream diffusion of turbulent kinetic energy remains and, for example, $P \approx 0.9 \epsilon$ as often seems to be the case, then the value of the measured $1 / \kappa_{*}$ will be 90% of C_{s} / B_{1}^{2}.

More details can be found in:
V. Dallas, J.C. Vassilicos \& G.F. Hewitt 2009 Stagnation von Karman coefficient. Phys. Rev. E 80, 046306.

FOR MORE

SEE http://www3.imperial.ac.uk/tmfc

