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Start with flows away from walls

Periodic turbulence in the computer
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Grid turbulence in the wind tunnel

Regular grids and fractal cross grids
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Grid turbulence in the wind tunnel

Fractal I grids
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G.I. Taylor (1935): isotropic turbulence

ǫ = 15ν < (∂u
∂x)2 >= 15νu′2/λ2

ǫ = Cǫu
′3/L

where Cǫ is indep of Reλ as
Reλ → ∞

Laboratory experiments and numerical simulations support
the view that Cǫ is independent of Reλ in the limit Reλ → ∞
but suggest that Cǫ is not independent of flow conditions,
e.g. see Batchelor 1953, Sreenivasan 1984 and 1998,
Kaneda et al 2003, Pearson et al 2004, Burattini, Lavoie &
Antonia 2005.
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30 data sets from 7 different turbulent flows
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9 data sets from CL of 2 round air jets

Nozzle diameter exit velocity turb intensity Reλ

d = 2.25cm 50m/s 26% 380
d = 5cm 18m/s & 30m/s 28% & 27% 390 & 490

streamwise distance from nozzle L
50d, 60d, 70d, 80d, 90d, 100d, 110d 4.9cm to 10.5cm

50d 12cm and 10.4cm
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17 data sets from centerline of 4

wind tunnel grid-generated turbulent flows

Section size, length Mesh solidity
classical grid 75cm × 75cm, 4m M = 7.5cm 34%
classical grid 46cm × 46cm, 5m M = 3.2cm 34%

fractal cross grid 91cm × 91cm, 5.4m Meff = 5.7cm 21%
fractal I grid 46cm × 46cm, 5m Meff = 3.55cm 25%

U∞ streamwise x u′/U

9 and 16m/s 35M , 38M and 42M 3.3%
2.5, 5, 10 and 15.5m/s 40M 2.5%

6, 8, 12 and 16m/s 75Meff 2.7%
10m/s 65Meff , 72Meff and 83Meff 7%
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Continued

Reλ L
130 and 180 5.9 to 6.8cm

40, 56, 81 and 89 2.4cm
89, 110, 137 and 184 5.7cm

237 6.3cm

Also, 4 data sets from “chunk” turbulence in
wind tunnel S1 at Modane ( 24m diameter) with
mean inlet velocities 19.9, 20, 20.8 and 20.6m/s;
7% turbulence intensities and
Reλ = 1890, 1860, 2180 and 2380 respectively.
L from 1.64 to 2.13m.
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Rice 1944

In 1944, Rice proved that the average distance l between
consecutive zero-crossings of a statistically stationary
zero-mean stochastic function u(x) is equal to the inverse of
< |du

dx | > p(u = 0) if u(x) and du
dx are statistically independent.

If, furthermore, u(x) is statistically gaussian, then√
2π < u2 >1/2 p(u = 0) = 1; in which case

l =
√

2π < u2 >1/2 / < |du
dx | >

Finally, if du
dx is also statistically gaussian, then

< |du
dx | >=

√
2
π < (du

dx)2 >1/2; in which case

l = π < u2 >1/2 / < (du
dx)2 >1/2
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Rice 1944 and Liepmann 1949, 1952

l = π < u2 >1/2 / < (du
dx)2 >1/2

Sreenivasan, Prabhu & Narasimha (1983) demonstrated
that this relation holds for many different turbulence signals
in many different turbulent flows (longitudinal velocity
fluctuations in boundary layers and a wake, wall shear
stress in a channel and temperature derivatives in a heated
boundary layer) and suggested, as a result, that the
assumption of gaussianity may, in fact, not be necessary.

If u(x) is the longitudinal velocity fluctuation component,
then < u2 >1/2 / < (du

dx)2 >1/2= u′/ < (du
dx)2 >1/2 is the Taylor

microscale λ.
The average distance l between consecutive
zero-crossings of u(x) is such that l = πλ.
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Liepmann 1949, 1952

l = πλ
where l is the average distance between consecutive

zero-crossings of u(x).

Realising that Rice’s 1944 theorem implies that l ∝ λ holds
in turbulence even if l = πλ doesn’t quite, Liepmann used

the constant C defined by C < |du
dx | >=

√
2
π < (du

dx)2 >1/2.

The result of Rice and Liepmann is

l = Cπλ
For gaussian du/dx, C = 1. C 6= 1 measures deviations from

gaussianity.
– p. 14



Number density of zero-crossings

Sreenivasan and colleagues (see Ann. Rev.Fluid Mech.
1991) and Davilicos (2003, PRL 91(14), 144501)
demonstrated that the number density ns of zero-crossings
of the longitudinal velocity fluctuation component u(x) is a
power-law function of L/ηc where 2π/ηc is the filter
wavenumber of a low-pass filter applied on u(x).
Specifically, they found that

ns(L/ηc) =
C ′

s
L (L/ηc)

2/3

in terms of a dimensionless constant C ′

s.
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Low-pass filtering operation: illustration

E.g. multiscale streamline structure in d = 2 (closed
streamlines because of conservation of mass).

ns = 1 and L/ηc = 1 – p. 16



Low-pass filtering operation: illustration

ns = 3 and L/ηc ≈ 3
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Low-pass filtering operation: illustration

ns = 7 and L/ηc ≈ 9

ns ∼ (L/ηc)
D with D ≈ 0.75
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Number density of zero-crossings

Sreenivasan and colleagues (see Ann. Rev.Fluid Mech.
1991) and Davilicos (2003, PRL 91(14), 144501)
demonstrated that the number density ns of zero-crossings
of the longitudinal velocity fluctuation component u(x) is a
power-law function of L/ηc where 2π/ηc is the filter
wavenumber of a low-pass filter applied on u(x).
Specifically, they found that

ns(L/ηc) =
C ′

s
L (L/ηc)

2/3

in terms of a dimensionless constant C ′

s.
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Confirmation
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C ′

s is a dimensional constant characterising the largest
eddies of the turbulence. Indeed, the value of C ′

s can be
obtained unaltered after low-pass filtering a turbulence data
set irrespective of the filter size ηc as long as ηc is between

η∗ and L.
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Inner cutoff length-scaleη∗
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ns(L/ηc) = C′

s

L (L/ηc)
2/3 valid for η∗ ≤ ηc ≤ L

A ≡ η∗/η = 8.2 + 8.9 log Reλ
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C ′
s is a large-scale constant
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C ′

s differs from flow to flow; for example, it is significantly
larger for classical grid turbulence than for jet turbulence.
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Bring everything together

ǫ = 15νu′2/λ2 = Cǫu
′3/L

l = Cπλ

l = n−1
s (L/η∗)

ns(L/η∗) =
C ′

s
L (L/η∗)2/3

η∗ = Aη = A(ν3/ǫ)1/4

IMPLY
– p. 23



Cǫ = K(
CC ′

s

A2/3)
3

with K = (15π2)3/2 ≈ 1801.3

This relation suggests that the dimensionless (small-scale)
dissipation rate Cǫ is directly and strongly dependent on the
large-scale dimensionless number C ′

s. This large-scale
number is something like a number of large-scale eddies.
Modify this number and you modify the turbulence
dissipation rate. This may be the reason why the high
Reynolds number values of Cǫ obtained in various
laboratory and numerical experiments seem to differ from
turbulent flow to turbulent flow. – p. 24



CalculateC ′
s

from

C ′
s = ns(L/η∗)L(L/η∗)−2/3
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The monotonic increase ofA ≡ η∗/η

with Reynolds number accounts for much of the

Reλ-dependence of Cǫ (as it equals K (CC ′
s)

3

A2 )
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Once much of theReλ-dependence

is removed, CǫA
2/K can be compared to C ′

s
3
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Qualitative agreement with CǫA
2/K = C ′

s
3 which is

Cǫ = K(CC′

s

A2/3 )
3 with C = 1 (gaussian stats)
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Not quite Cǫ = K( C ′
s

A2/3)
3
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More like Cǫ = K(CC′

s

A2/3 )
3 + something or, better,

Cǫ = K(CC′

s

A2/3 )
3 with C = C(log Reλ) 6= 1
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Get C from C < |du
dx| >=

√
2
π < (du

dx)2 >1/2
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Note 1: C3 qualitatively matches CǫA
2/(KC ′

s
3)

Note 2: C3 ≈ (0.87 + 0.11 log Reλ)2 is an acceptable fit
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A check and a bonus

B calculated from l = Bλ and C calculated from

C < |du
dx | >=

√
2
π < (du

dx)2 >1/2 so as to check that B = Cπ
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A bonus: define the voids length-scale λv ≡< (l − l)2 >1/2= Dλ

and find D ∼ Re
1/3
λ .
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Cǫ = K(
CC ′

s

A2/3)
3
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Deviations remain, but they are all below 16% of
Cǫ

K(
CC′

s

A2/3
)3

= 1. Most of these deviations are Cǫ

K(
CC′

s

A2/3
)3

slightly

larger than 1 and may be due to varying degrees of
anisotropy, slight large-scale non-gaussianity, slight

large-small-scale statistical dependence and errors in η∗. – p. 31



Cǫ ∼ C ′
s
3

Most of the non-universal behaviour of Cǫ is

accounted for by the universal strong

dependence of Cǫ on C ′
s, i.e. Cǫ ∼ C ′

s
3, and the

non-universality of C ′
s
3 which characterises, in

some sense, the number of large-scale eddies,

i.e. the topography of the large scales of the

turbulence.
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The Reynolds number dependence ofCǫ

results mostly from its dependence on the slow growth (with
Reynolds number) of the range of viscous scales of the
turbulence, i.e. on A = η∗/η ≈ 8.2 + 8.9 log Reλ.
However, a smaller part also results from the slow increase
(with Reynolds number) of the non-gaussianity of the small
scales, i.e. C3 ≈ (0.87 + 0.11 log Reλ)2. This type of fit has
been chosen such that the Reynolds number dependence
of Cǫ, which is all in C3/A2 because of Cǫ = K(CC′

s

A2/3 )
3, tends

to a constant as Reλ → ∞.
C3/A2 tends to ≈ 1.5 × 10−4 as log Reλ → ∞. Hence,

Cǫ ≈ 10−41.5(15π2)3/2C ′
s
3 ≈ 0.275C ′

s
3

in the limit log Reλ ≫ 1

– p. 33



Cǫ ≈ 0.275C ′
s
3 for log Reλ ≫ 1

Most of the Reynolds number dependence of Cǫ
at small to moderate values of log Reλ comes
from A = η∗/η, but the non-gaussianity of
du/dx catches up as log Reλ increases bringing
in its own Reynolds number dependence which
eventually compensates that of A.

In that limit,

Cǫ ≈ 0.275C ′
s
3

– p. 34



The limit log Reλ → ∞
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Cǫ in the limit log Reλ → ∞
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0.5 or 0.6 may not be the real asymptotic value of Cǫ. The
real asymptotic value may be between 0.07 and 0.09, i.e.
an order of magnitude smaller because of the very slow
asymptotics in log Reλ. Need Reλ up to at least 109 to see
this!

– p. 36



CONCLUSIONS SO FAR

The dimensionless dissipation rate constant Cǫ of
homogeneous isotropic fluid turbulence is such that

Cǫ = f (log Reλ)C
′
s
3

where f(log Reλ) is a dimensionless function of log Reλ

which appears to tend to 0.275 (by extrapolation!) in the
limit where log Reλ ≫ 1 (as opposed to just Reλ ≫ 1).

The dimensionless number C ′

s reflects the number of
“large-scale eddies” and is therefore non-universal.

Most of the non-universal asymptotic values of Cǫ stem,
therefore, from its universal dependence on C ′

s and can be
calculated from it!

– p. 37



CONCLUSIONS SO FAR

The Reynolds number dependence of Cǫ at values of
log Reλ close to and not much larger than 1 is primarily
governed by the slow growth (with Reynolds number) of the
range of viscous scales of the turbulence.

The eventual Reynolds number independence of Cǫ is
achieved by an eventual balance between this slow growth
and the increasing non-gaussianity of the small-scales.

However this happens in log Reλ asymptotics and values of
Reλ as high as at least 109 are needed to reach the
asymptotic constant.

– p. 38



Generalised Rice theorem

For high Reynolds number HIT

λ ∼ ls
where λ is the Taylor microscale (ǫ = 15νu′2/λ2) and ls is the

average distance between neighboring stagnation points
defined as the −1/3 power of the number density of

stagnation points. Stagnation points are points where the
turbulent fluctuation velocity is 0.

Proved in HIT under assumptions of (i) statistical
independence between large and small scales and (ii)
absence of small-scale intermittency effects.

– p. 39



Rice theorem
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Rice theorem
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Generalised Rice theorem
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Generalised Rice theorem

– p. 43



Number density of stagnation points

The number density of stagnation points in homogeneous
isotropic turbulence scales as [PRL 91, 144501 (2003)]

ns(L/ηc) = Cs
L3(L/ηc)

2

Compare this with the number density of zero-crossings of
the longitudinal velocity component

ns(L/ηc) =
C ′

s
L (L/ηc)

2/3

– p. 44



Cǫ = 153/2 Cs
A2B3

FOLLOWS FROM
ǫ = 15νu′2/λ2 = Cǫu

′3/L

λ = Bls

ls = n−3
s (L/η∗)

ns(L/η∗) = Cs
L3(L/η∗)2

η∗ = Aη = A(ν3/ǫ)1/4
– p. 45



E(k) for 24 DNS of HIT: 60 ≤ Reλ ≤ 170

E(k) ∼ kp, p = 2, 4 at k ≪ kpeak: 4 values of ν and 3 of kpeak
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Cǫ and C̃ǫ ≡ CǫB
3/Cs

Cǫ is a function of p but C̃ǫ is not.
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These DNS results support
Cǫ(p,Reλ) ∼ Cs(p)/A2(Reλ)B3(Reλ).

(see Goto & V PoF 21, (2009) for more details)
– p. 47



CONCLUSION

Cǫ = f (Reλ)Cs

where Cs is the number of large-scale stagnation points

and f(Reλ) ∼ A−2(Reλ)B−3(Reλ) is determined by the
opposing (perhaps balancing) effects of (i) the slow growth
(with Reynolds number) of the range of viscous scales of
the turbulence – represented by A(Reλ), and (ii) the
increasing non-gaussianity of the small-scales (small-scale
intermittency) – represented by B(Reλ).

– p. 48



DNS of turbulent channel flow

Reτ ≡ uτδ
ν ≈ 110 to 400: too small?...perhaps not for

everything...

We use a code developed at the University of Poitiers by S.
Laizet & E. Lamballais: 6th order compact finite difference
scheme; fractional step method for incompressible N.S.
using 3-stage 3d order R-K scheme; Poisson pressure
equation solved in Fourier space (with staggered grid and
FFT on non-uniform grid).

– p. 49



DNS of turbulent channel flow

Periodic boundary conditions except at the walls, where
(i) either u = 0;
or the boundary conditions and near wall forcings are
borrowed from numerical studies of flow control schemes
aimed at drag reduction, i.e.
(ii) either u = 0 with forcing f = (−A sin(2πy/Λ)H(Λ− y), 0, 0)
added to N.S. (Xu, Dong, Maxey & Karniadakis JFM 2007)
with A = 0.16U2

c /δ ≈ 2u2
τ/δν and Λ = 11δν ;

(iii) or u(x, t) = (0, a cos(α(x − ct)), 0) (Min, Kang, Meyer &
Kim JFM 2006) with a/Uc = 0.05, α = 0.5/δ and c = −2Uc;
(iv) or u = 0 at walls and v(x, yd, z, t) replaced by
−v(x, yd, z, t) where yd = 10δν at every time step (Choi, Moin
& Kim JFM 1994).
Notation: δν ≡ ν/uτ and Uc is the mean centre-line velocity.
We set the bulk velocity Ub equal to 2/3 by varying the mean
pressure gradient accordingly at all times in all simulations. – p. 50



DNS of turbulent channel flow

(a) Xu et al (b) Min et al

ν d
dyU− < uv >= u2

τ (1 − y/δ) for all y in all cases except with
Xu et al forcing where it holds for y > Λ and 2δ − y > Λ.

– p. 51



When Reτ = δ/δν ≫ 1

one might expect an intermediate region δν ≪ y ≪ δ where
production balances dissipation locally (Townsend 1961),

i.e.
− < uv > d

dyU ≈ ǫ.

ν d
dyU− < uv >= u2

τ (1 − y/δ) implies − < uv >≈ u2
τ in this

intermediate region as δ/y → ∞ and δν/y ≡ 1/y+ → 0.
(Assuming that, in this limit, d

d ln y+
U+ does not increase

faster than yp
+ with p ≥ 1.)

It then follows that, in this equilibrium intermediate region,

ǫ ≈ u3
τ

κy IFF d
dyU ≈ uτ

κy – p. 52



P ≡ − < uv > d
dyU balancesǫ
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Mean flow profiles

10
0

10
1

10
2

0

5

10

15

20

25

30

 y+

 U
+

 

 

Case A

Case A1

Case A2
Case A3
Case B

Case C

– p. 54



Karman “constant”
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B = U+ − ln y+
κ
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Look at ǫ ≈ u3
τ

κy instead of d
dyU ≈ uτ

κy

Generalised Rice theorem for high Reynolds number HIT
(Mazellier & V 2008 PoF 20, 014102; Goto & V 2009 PoF 21,
035104):

λ ∼ ls
where λ is the Taylor microscale (ǫ = 15νu′2/λ2) and ls is the

average distance between neighboring stagnation points
defined as the −1/3 power of the number density of

stagnation points. Stagnation points are points where the
turbulent fluctuation velocity is 0.

Proved in HIT under assumptions of (i) statistical
independence between large and small scales and (ii)
absence of small-scale intermittency effects.

– p. 57



λ ∼ ls in TCF?

Does λ ∼ ls hold in the intermediate equilibrium region of
Turbulent Channel Flow (TCF) in the sense that

λ = B1ls

where
B1 is independent of y and

Reynolds number for
Reynolds number >> 1?

– p. 58



Stagnation points of fluctuating velocities

Points where u
′ ≡ u − Uex = 0
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Number of stagnation points

Ns ≡ total number of points where all components of the
velocity fluctuations around the local mean are zero in a
thin slab of dimensions Lx × Lz × δy (δy small, δy ∼ δν)

parallel to the channel’s y = 0 wall.
Observation : Ns = Ns(y+) ∼ y−1

+ .
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Townsend-Perry schematic picture

– p. 61



Streaks

lengths and spacings ∼ z
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Streaks

lengths and spacings ∼ z

– p. 63



B1 ≡ λ/ls

Calculate λ from ǫ = 2ν < sijsij >= ν
3

2E
λ2 where

E ≡ 1
2 < |u′|2 >

and
calculate ls from ls ≡

√
LxLy

Ns
.
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B1 ≡ λ/ls
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Concentrate on dissipation

ǫ = ν
3

2E
λ2 = ν

3
2E

B2
1 l2s

= ν
3

2E
B2

1LxLz
Ns = ν

3
2E
B2

1

δνns

where the number density ns ≡ Ns/(LxLzδν).

Combine with − < uv > d
dyU = B2ǫ and d

dyU = uτ

κy as well as

C ≡ − 2E
3<uv> (classical claims: κ and C are constants

(κ ≈ 0.4, C ≈ 2) as Reτ → ∞)

It then follows that

ns = Cs
δ3
ν
y−1
+

where
Cs =

B2
1

κB2C – p. 66



ns = Cs
δ3
ν
y−1

+ with Cs about constant

even though κ and C are not constant.
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ns = Cs
δ3
ν
y−1

+ with Cs about constant

even though κ and C are not constant.
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ns = Cs
δ3
ν
y−1

+ with Cs about constant

in the unforced cases...
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but not quite in the forced cases
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Recap
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κ and C ≡ − 2E
3<uv>
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Meaning of B1 ≡ λ/ls constant

The eddy turnover time τ is given by ǫ = E/τ .

Hence, from ǫ = 2ν
3

E
λ2 , 3λ2 = 2ντ .

Therefore, B1 constant means l2s/ν ∼ τ

This means that in the equilibrium layer, the time it takes for
viscous diffusion to spread over neighboring stagnation

points is the same proportion of the eddy turnover time (i.e.
the time it takes to cascade the energy to the smallest

scales) at all locations and all Reynolds numbers.

– p. 73



Meaning of Cs constant

ns = Cs

δ3
ν
y−1
+ implies l2s = C−1

s δνy

From ǫ = ν
3

2E
λ2 and B1 = λ/ls it then follows that

ǫ = 2
3

Euτ

κ∗y
with κ∗ ≡ B2

1/Cs

instead of ǫ = u3
τ

κy

Therefore, Cs constant means τ ∼ y/uτ

in the equilibrium layer where the constant of proportionality
3κ∗/2 is the same at all locations and all Reynolds numbers.

Indeed κ∗ is related to the stagnation point constants B1

and Cs and is constant if they are constant.
κ∗ IS THE STAGNATION POINT KARMAN COEFFICIENT

– p. 74



Start from B1 and Cs constants

B1 constant and Cs constant as Reτ → ∞ in the equilibrium
layer mean that ǫ = 2

3
Euτ

κ∗y
, κ∗ = B2

1/Cs in that layer and that
limit.

In the equilibrium layer − < uv > d
dyU ≈ ǫ, in fact

− < uv > d
dyU = B2ǫ with B2 → 1 as Reτ → ∞.

This means that − < uv > d
dyU = B2

2
3

Euτ

κ∗y

In the equilibrium layer and in the limit Reτ → ∞,
− < uv >→ u2

τ and even B2 → 1 (Brouwers, PoF 2007):
hence

d
dyU = 2

3E+
uτ

κ∗y
with κ∗ = B2

1/Cs
– p. 75



Cs, B2
1, 3

2
Py
Euτ

and 1/κ
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d
dyU = uτ

κsy
(2E+/3)
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Case C
DNS Data, Reτ=950

DNS Data, Reτ=2000
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Main conclusions

1. The DNS suggest that B1 = λ/ls and Cs = nsδ
3
νy+ may be

constants in the limit Reτ → ∞ and in the region δν ≪ y < δ,
their asymptotic values being reached at Reτ as low as a
few hundred.

2. This is equivalent to stating that in the limit Reτ → ∞ and
in the region δν ≪ y < δ,
the eddy turnover time τ is proportional to l2s/ν and also
equals 3

2κ∗y/uτ with κ∗ = B2
1/Cs.

3. Either of these equivalent statements (1 or 2 above)
implies that in the limit Reτ → ∞, d

dyU = E+
uτ

κ∗y
in the

equilibrium region δν ≪ y ≪ δ where we may expect
production to balance dissipation.
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Concluding remarks I

1. According to classical similarity scalings, as Reτ → ∞,
E ∼ u2

τ independently of y in the equilibrium range
δν ≪ y ≪ δ. If this is true, then the log-law will be recovered
from d

dyU = E+
uτ

κ∗y
but with a Karman constant that is

proportional to κ∗ which is inversely proportional to Cs, the
number of stagnation points (number of “eddies”?) within a
volume δ3

ν at the upper edge of the buffer layer. Why would
anyone expect this number to be universal (same for pipes
and channels, lab ones and DNS ones)? If it is not, then the
Karman constant might not be universal either.
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Concluding remarks II

2. However, various DNS and experiments seem to suggest
that E does not scale as u2

τ in the equilibrium region as
Reτ → ∞. If this is the case, then there is, strictly speaking,
no log-law and mean flow data fitted by a log-law may yield
non-universal Karman “constants” as a result of κ∗ = B2

1/Cs

but also as a result of the weak dependence of E on y, and
its consequence on d

dyU = E+
uτ

κ∗y
.

If E does not scale with u2
τ , then ǫ ∼ Euτ/y (NOT ǫ ∼ u3

τ/y).
NEW INTERMEDIATE ASYMPTOTICS
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Alternative intermediate asympotitics

Instead of assuming independence of d
dyU on ν and δ where

δν ≪ y ≪ δ (which neglects small effect of inactive motions),

apply such asympotic assumptions to τ , which implies
τ ∼ y/uτ .
Then use P ∼ ǫ to obtain d

dyU .

Then, ls ∼
√

ντ leads to κ∗ = B2
1/Cs.
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And two final points of caution

(i) B1 may have its own weak (logarithmic?) dependencies
on Reτ and y+ if small-scale intermittency effects are taken
into account (see Mazellier & V PoF 20, 014102). These
dependencies will cause weak dependencies of κ∗ on Reτ

and y+.

(ii) For d
dyU = E+

uτ

κ∗y
to hold, the Reynolds number must be

so large that − < uv >≈ u2
τ and P ≈ ǫ. If some small

cross-stream diffusion of turbulent kinetic energy remains
and, for example, P ≈ 0.9ǫ as often seems to be the case,
then the value of the measured 1/κ∗ will be 90 % of Cs/B

2
1 .

More details can be found in:
V. Dallas, J.C. Vassilicos & G.F. Hewitt 2009 Stagnation von
Karman coefficient. Phys. Rev. E 80, 046306.
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FOR MORE

SEE http://www3.imperial.ac.uk/tmfc

– p. 83
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