
Giraffe User’s Manual v. 2.0.64

Generic Interface Readily Accessible for Finite

Elements

Developed at University of São Paulo, Brazil

January 2020

Prof. Alfredo Gay Neto

Giraffe User’s Manual version 2.0.64

2

Table of Contents

Introduction .. 5

General information .. 6

Installing Giraffe .. 6

Running Giraffe ... 6

Input file .. 7

Output files .. 11

Tutorials... 13

Nodes .. 14

Elements .. 15

Beam_1 ... 16

Pipe_1 .. 18

Shell_1 ... 19

Mass_1 .. 22

SpringDashpot_1 ... 23

RigidBody_1 ... 24

Truss_1 .. 27

Particles ... 28

Sphere ... 29

Materials ... 30

Hooke .. 31

ElasticPlasticIsoHardening ... 32

Orthotropic .. 33

CoordinateSystems ... 34

CADData .. 35

STLSurface ... 36

NURBSSurface ... 37

Sections ... 40

General .. 41

Rectangle ... 42

SuperEllipse ... 43

Tube ... 44

Giraffe User’s Manual version 2.0.64

3

UserDefined .. 45

SectionDetails .. 50

SolidSection ... 51

MultiCellSection .. 52

PipeSections .. 53

ShellSections ... 54

Homogeneous ... 55

Composite ... 56

RigidBodyData ... 57

ElementSets ... 60

NodeSets ... 61

SurfaceSets .. 62

BoolTable ... 63

Environment .. 65

Loads ... 67

NodalLoad ... 68

NodalFollowerLoad ... 69

PipeLoad .. 70

ShellLoad ... 71

Displacements ... 72

NodalDisplacement ... 73

DisplacementField ... 74

Constraints .. 75

NodalConstraint .. 76

SpecialConstraints ... 77

SameDisplacement .. 78

SameRotation .. 79

RigidNodeSet ... 80

HingeJoint .. 81

UniversalJoint .. 83

TranslationalJoint .. 85

Contacts ... 87

NSSS ... 88

SSSS ... 90

InitialConditions .. 92

Points ... 93

Giraffe User’s Manual version 2.0.64

4

Arcs .. 94

Surfaces ... 96

RigidTriangularSurface_1 .. 98

RigidOscillatorySurface_1 ... 99

FlexibleSECylinder_1 ... 101

FlexibleTriangularSurface_2 .. 104

FlexibleArcExtrusion_1 .. 105

RigidArcRevolution_1 .. 107

RigidNURBS_1 ... 109

Monitors .. 110

PostFiles .. 111

SolverOptions .. 114

SolutionSteps... 115

Static .. 117

Dynamic ... 119

Modal .. 121

ConcomitantSolution .. 122

ConvergenceCriteria .. 123

Acknowledgements ... 126

References ... 127

Appendix ... 129

Selection by element properties in Giraffe data using ParaviewTM 129

Post-processing modal analysis using ParaviewTM .. 134

Giraffe User’s Manual version 2.0.64

5

Introduction
Giraffe is the acronym of “Generic Interface Readily Accessible for Finite Elements”. It is

a platform coded using C++ language, with the objective of generating a base-interface to be

used by researchers, to implement their own finite element formulations. Giraffe does not have

the mission of being a completely generic platform, which would be too ambitious. Structural

problems, however, which may include translational and rotational degrees of freedom, such as

possible multiphysics applications, can be sketched in such a way that permits creating a

platform to embrace new elements, new contact formulations, new constraint equations,

among other features. With that aim, “Giraffe Project” was started on 2014 by Prof. Alfredo Gay

Neto, at University of São Paulo, Brazil.

Giraffe has started as a generalization of a previous-developed finite element code,

named “FemCable”, which had the objective of simulating offshore structures: risers for oil

exploitation. It had implementations of geometric nonlinear beam elements and classical node

to surface contact formulation. Since a natural expansion required including new contact

models, new structural elements and other resources, Giraffe was designed to have all the

models included in “FemCable”. Furthermore, it was thought to embrace easy inclusion of new

resources, using object orientation programming. Giraffe is under continuous development by

Prof. Alfredo Gay Neto and co-workers.

On 2018 Giraffe was completely re-structured to encompass a new broad of resources.

The new code structure provides new possibilities for modeling, with a higher versatility. This

includes the possibility of defining a sequence of solutions, possibly mixing static and dynamic

methods, according to convenience. Furthermore, “BoolTable" keyword has replaced “Steps”

keyword, no longer available. “BoolTable” provides an easier way to define in which solution

step each resource will be included or not included in simulation. With that, one may

straightforwardly switch on/off boundary conditions, loads, joints, contacts, etc. This leads to

the possibility of creating scenarios where load sequence is an issue. Furthermore, it provides

numerical strategies to achieve solution of challenging nonlinear problems. Also, post-

processing possibilities have changed, with a more organized set of post files, for post-

processing using ParaviewTM environment. With respect to the user input file, there is a slight

change between Giraffe 1.0 and Giraffe 2.0 syntax, since some commands have changed, there

are new ones and others were discontinued. Users are invited to have a look at new tutorials, in

order to get used to new resources.

This user’s manual has some brief explanations on how to use Giraffe to simulate

structural models using the available elements, contact algorithms and special constraints. The

focus is to explain the syntax of the Giraffe input file. Examples may be found in Giraffe tutorials

documentation.

Suggestions are always welcome and can be emailed to Prof. Alfredo Gay Neto:

alfredo.gay@usp.br.

Enjoy!

Alfredo Gay Neto

São Paulo, Brazil, 2018.

mailto:alfredo.gay@usp.br

Giraffe User’s Manual version 2.0.64

6

General information
Installing Giraffe

 Currently Giraffe is available only for WindowsTM 64 bit. To install Giraffe, please follow

the instructions depicted next:

1. Copy to your computer and install the patches "vcredist_x64" e

"ww_icl_redist_intel64_2016.4.246", available in the folder "/Giraffe 2.0/Giraffe

Install/".

2. Copy to your computer the folder with the desired Giraffe version, located in "/Giraffe

2.0/Giraffe Software/". For example, the folder "Giraffe 2.0.0 (beta)".

3. In your computer, inside the copied Giraffe version folder, copy all contents available in

the folder "/Giraffe 2.0/Giraffe Install/GiraffeDLL/". Alternatively, one may copy such

contents to another folder in the computer. In this case, it will be necessary to edit the

environment variable “Path”. In Windows this may be done by going on: Control

Panel\All Control Panel Items\System. Enter the option “Advanced System Settings”-

>Environment Variables. Locate the Environment variable “Path” and edit it, including

the desired directory where dll files are located. With that, the system automatically

seeks for this location when executing Giraffe.

4. If desired, in your computer, inside the copied Giraffe version folder, copy also input file

examples, available in the folder "Giraffe Input".

5. Execute Giraffe in your computer by double clicking the executable file.

 Note: Giraffe usage is restricted. No user is permitted to supply third-part people with

copies of Giraffe with no previous authorization of the developer.

Running Giraffe

To perform a simulation, just open Giraffe executable file. The instruction: “Enter the

name of input file” will be given in the screen. Type the desired file name. Then, wait until the

simulation finishes. In Figure 1 the file name typed is “beam01”. Do not include the extension of

the input file in this typing procedure. If you type “beam01.inp” Giraffe will not find the file.

Giraffe User’s Manual version 2.0.64

7

Figure 1 – Giraffe command window

Input file

Prior to perform a simulation, Giraffe creates a model database with all needed setup.

This is done by reading a user input file containing all the commands to construct necessary data

for the model, such as nodes, elements, loads, constraints, options for solution, etc. After

reading and verifying if input data is consistent, the model is solved.

Giraffe reads a single input text file1. It must be located inside a folder with the same

name of the input file. It is mandatory the usage of the file extension “*.inp” for the input file.

Files with different extensions or with no extensions will result in error messages when Giraffe

tries to read them.

Figure 2 shows Giraffe directory and some input files folders. For example, the folder

“beam01”. The input file named “beam01.inp” is located inside the “beam01” folder (Figure 3).

The folder with the input file can be located in two possible directories:

• The directory of “Giraffe.exe” executable file or

• The public “/Documents/Giraffe/” folder.

When trying to read an input file, Giraffe first seeks for it in the same directory of the

“Giraffe.exe” executable file. If not succeed, it tries to read a file located in public

“Documents/Giraffe” folder. If not succeed in this second try, an error message is prompted to

the user.

1 Some exceptions are treated locally in this manual, when extra inputs are to be provided by the user.

Giraffe User’s Manual version 2.0.64

8

Figure 2 – Giraffe executable file directory example

Figure 3 – Input file folder example

This user’s manual presents and gives examples of each keyword to be used as a part of

Giraffe input file. Giraffe is prepared to read the input file keywords independently of any pre-

defined sequence. For example, one may first define the finite element nodes and, after, define

elements. Alternatively, one may first define the elements and, after, the nodes. Therefore, the

sequence of commands here provided is not mandatory for compounding the input file

structure.

To interrupt Giraffe reading process of an input file, the user optionally is allowed to

introduce the keyword EOF, indicating “end of file”. This causes Giraffe to read the input file

only up to that position. If this keyword is not included in input file, Giraffe will read the whole

input file contents.

Explanatory user-comments can be included in some parts of the input file. Comments

syntax for Giraffe input file is analogous to C and C++ language, as follows. Single line comments

can be included by starting a new line with “//…”. Comments can also span multiple lines, for

this purpose one may use “/*…*/”. An example of a commented input file is shown below:

//Comment 0
Nodes 5
//Comment 1
Node 1 0 2.5 0
Node 2 0.1 2.5 0
Node 3 0.2 2.5 0
//Comment 2
Node 4 0.3 2.5 0

Giraffe User’s Manual version 2.0.64

9

Node 5 0.4 2.5 0

//Comment 3
CoordinateSystems 2
CS 1 E1 0 1 0 E3 1 0 0
CS 2 E1 1 0 0 E3 0 1 0

Materials 1
Hooke 1 E 2e9 Nu 0.30 Rho 8000

//Comment 4
Sections 2
SuperEllipse 1 A 0.1 B 0.06 N 2 AMeshFDM 100
SuperEllipse 2 A 0.06 B 0.1 N 2 AMeshFDM 100

/*
Large comment
with multiple lines
*/

Elements 2
//Comment 5
Beam_1 1 Mat 1 Sec 1 CS 1 Nodes 1 2 3
//Comment 6
Beam_1 2 Mat 1 Sec 1 CS 1 Nodes 3 4 5

Note that it is possible to make comments between first level keywords (e.g.: Nodes,

Elements, Sections). It is also possible to make comments between second-level keywords (e.g.:

Node, CS, Hooke, Beam_1).

Note: the user cannot introduce comments between lower-level keywords, for example:

Node 1 X /*not allowed*/ 0.1 Y 2.5 Z 0 CONSTR 0

 Next, an example of Giraffe input file is shown. The reader finds on it a basic structure

to establish a simple finite element model of a cantilever beam initially aligned in global Z

direction (tutorial01).

/* Example of an input file for Giraffe */
//Creation of nodes
Nodes 11

//Number X Y Z
Node 1 0 0 0.0

Node 2 0 0 0.1

Node 3 0 0 0.2

Node 4 0 0 0.3

Node 5 0 0 0.4

Node 6 0 0 0.5

Node 7 0 0 0.6

Node 8 0 0 0.7

Giraffe User’s Manual version 2.0.64

10

Node 9 0 0 0.8

Node 10 0 0 0.9

Node 11 0 0 1.0

//Creation of node sets
NodeSets 2

NodeSet 1 Nodes 1 List 1

NodeSet 2 Nodes 1 List 11

//Creation of elements
Elements 5

Beam_1 1 Mat 1 Sec 1 CS 1 Nodes 1 2 3

Beam_1 2 Mat 1 Sec 1 CS 1 Nodes 3 4 5

Beam_1 3 Mat 1 Sec 1 CS 1 Nodes 5 6 7

Beam_1 4 Mat 1 Sec 1 CS 1 Nodes 7 8 9

Beam_1 5 Mat 1 Sec 1 CS 1 Nodes 9 10 11

//Creation of materials
Materials 1

Hooke 1 E 1e7 Nu 0.3 Rho 2000

//Creation of sections
Sections 1

Rectangle 1 B 0.1 H 0.1

//Creation of coordinate systems
CoordinateSystems 1

CS 1 E1 1 0 0 E3 0 0 1

//Creation of the solution steps
SolutionSteps 1

Static 1

EndTime 1

TimeStep 0.1

MaxTimeStep 0.1

MinTimeStep 0.01

MaxIt 20

MinIt 3

ConvIncrease 4

IncFactor 1.0

Sample 2

//Creation of loads
Loads 1

NodalLoad 1 NodeSet 2 CS 1 NTimes 2

//Time FX FY FZ MX MY MZ
0 0 0 0 0 0 0

1 1000 0 0 0 0 0

//Creation of constraints
Constraints 1

NodalConstraint 1 NodeSet 1

 UX BoolTable 1

 UY BoolTable 1

 UZ BoolTable 1

 ROTX BoolTable 1

 ROTY BoolTable 1

Giraffe User’s Manual version 2.0.64

11

 ROTZ BoolTable 1

//Creation of solver options
SolverOptions

Processors 4 LinSys Direct

//Creation of monitors
Monitor Sample 1

MonitorNodes 1 11

//Creation of post files
PostFiles

MagFactor 1.0

WriteMesh 1

WriteRenderMesh 1

WriteRigidContactSurfaces 0

WriteFlexibleContactSurfaces 0

WriteForces 0

WriteConstraints 0

WriteSpecialConstraints 0

WriteContactForces 0

WriteRenderRigidBodies 0

WriteRenderParticles 0

Output files

During solution process Giraffe automatically saves all requested output files. They are

saved inside the folder where the input file was read.

Figure 4 – Example of a simulation folder (from file “beam01.inp”)

Each output file type is described next.

File “output.inp”

It is a text file that simply reflects the read information from the input file and may be

used to check if Giraffe read input file correctly in some cases.

Giraffe User’s Manual version 2.0.64

12

File “simulation_report.txt”

It is a text file that simply reflects the Giraffe screen output, showing convergence

history of all time-steps of simulation.

Post files

Folder “/post” is always created after solving a simulation. Inside it, Giraffe creates sub-

folders with outputs for each solution step. Figure 5 shows an example of “/post” folder contents

for the example “beam01.inp”. Note that in this case a single folder “/post/solution_1” was

created. This is because a single solution step was requested in the input file. In case the user

requests more solution steps, more folders will be automatically created inside the “/post”

folder. A concomitant solution also creates a sub-folder on “/post”.

Note that there are “.pvd” files inside the “/post” folder. These are to be used together

with ParaviewTM post processor. ParaviewTM “.pvd” files creates links to other files located inside

solution folders, which contain the simulation results established by PostFiles keyword.

Depending on which results are requested, more or less “.pvd” files will be saved. For this

example, only mesh and render mesh were requested, which lead for only two types of “.pvd”

files. ParaviewTM “.pvd” files are very useful for creating animations or high-quality images.

These files links ParaviewTM to read the whole time series of subsequent node positions, node

and element results. Inside PARAVIEWTM
, when referring to element results meaning, one may

look at each element results sequence list, contained in each element presented on this user’s

manual.

The “whole_solution_mesh.pvd” and “whole_solution_rendermesh.pvd” files contains

the same contents of the solutions “.pvd” files, but encompassing all solution steps. These are

useful for a visualization in ParaviewTM of the whole time-history of the simulation. For current

example, since a single solution step was requested, “.pvd” files for solution 1 and whole “.pvd”

files will be the same.

Figure 5 – “/post” folder example

 Also, inside the “/post/solution_i” folder (for i = 1,…,n – solution steps), Giraffe writes

configuration text files, with nodes and elements results, adopting the same sampling employed

Giraffe User’s Manual version 2.0.64

13

for saving ParaviewTM post-processing files. An example of inside contents of “/post/solution_1”

is shown in Figure 6.

Figure 6 – “/post/solution_1” folder

 Note that in “/post/solution_1” there are also “.vtu” files, which are to be read by

ParaviewTM, being referred in already mentioned “.pvd” files.

Monitor files

When requested, monitors are very useful for analyzing and creating time series with

information about a given node, element, contact region or node set of interest. Monitors are

created from the beginning of the simulation. They are updated until the simulation finishes,

during the whole solution process. The Figure 7 shows an example of “monitors” folder.

Figure 7 – Monitors folder example

Tutorials

 This document has no tutorials. A specific tutorials document containing examples of

Giraffe input files is available.

Giraffe User’s Manual version 2.0.64

14

Nodes
Starts a command block for creation of nodes to be used to compound a finite element mesh or

particles positions.

Syntax:

Nodes N
Node ID X Y Z

• N: number of nodes

• ID: current node identification number

• X: current node X coordinate (on a global coordinate system)

• Y: current node Y coordinate (on a global coordinate system)

• Z: current node Z coordinate (on a global coordinate system)

Example:

Nodes 3
Node 1 1.0 0.0 3.0
Node 2 0.0 2.5 -5.1
Node 3 0.0 0.0 -10.0

Additional information:

 Each node is defined by the keyword Node followed by the node identification number

(must be an ascending sequence starting from number one), coordinates X, Y and Z.

After reading the input file, Giraffe checks all nodes, elements and particles connectivity.

Based on this check, it evaluates how many degrees of freedom (DOFs) and which nature of

DOFs have to be assigned for each node.

Giraffe User’s Manual version 2.0.64

15

Elements
Starts a command block for creation of elements to be used to compound a finite element mesh.

Syntax:

Elements N

Name ID data

• N: number of elements

• Name: current element name

• ID: current element identification number

• data: current element data (depends on element resources and requirements)

Example:

Elements 2
Beam_1 1 Mat 1 Sec 1 CS 1 Nodes 1 2 3
Shell_1 2 Mat 1 Sec 1 Nodes 1 2 3 4 5 6

Additional information:

 Each element is defined by a specific keyword followed by the element identification

number (must be an ascending sequence starting from number one) and additional data. Each

element available and its input data is explained next.

Giraffe User’s Manual version 2.0.64

16

Beam_1

Creates an initially straight beam finite element defined by three nodes.

Syntax:

Beam_1 EID Mat MID Sec SID CS CSID Nodes ID1 ID2 ID3

• EID: current element identification number

• MID: material identification number

• SID: element cross-section identification number

• CSID: coordinate system identification number

• ID1, ID2 and ID3: identification number of nodes defining the element

Example:

Beam_1 1 Mat 1 Sec 1 CS 1 Nodes 1 2 3

Additional information:

This is a 3D beam element, with three equally spaced nodes. Three displacement and three

rotation DOFs are defined for each node. Then, each element has eighteen DOFs. The Beam_1

element uses two Gauss points for integration. The nodes used to create the Beam_1 element

have to be established by the keyword Nodes, followed by the node numbers corresponding to

nodes 1, 2 and 3 in a local reference (Figure 8). The only environmental field loading that can be

used with this element is the self-weight induced by the gravitational field, defined by BoolTable

environment data.

Figure 8 – Beam_1 element local nodes numbering reference

This element internally assumes its local framework containing e3 axis aligned with axial

direction of the beam. Then, local directions e1 and e2 are orthogonal to the beam direction. For

establishing the cross section correct alignment one has to choose the element coordinate

system such that e3 lies at the element axial direction and e1 is aligned with the direction used

to define the cross section (see Sections). More details about theoretical details of this beam

formulation can be found in [1] and [2]. For post-processing Beam_1 element results, one has

the following sequence (to be chosen in ParaviewTM post-processing):

Giraffe User’s Manual version 2.0.64

17

Table 1 – Beam_1 element results

Element result index Meaning

0 Shear force in direction e1

1 Shear force in direction e2

2 Axial force (in direction e3)

3 Bending moment around direction e1

4 Bending moment around direction e2

5 Torsion moment (around direction e3)

Giraffe User’s Manual version 2.0.64

18

Pipe_1

Creates an initially straight pipe finite element defined by three nodes.

Syntax:

Pipe_1 EID PipeSec PSID CS CSID Nodes ID1 ID2 ID3

• EID: current element identification number

• PSID: pipe cross-section identification number

• CSID: coordinate system identification number

• ID1, ID2 and ID3: identification number of nodes defining the element

Example:

Pipe_1 1 PipeSec 1 CS 1 Nodes 1 2 3

Additional information:

This is a 3D pipe element. The structural behavior is the same as Beam_1 element.

However, the input attributes are different. It is possible to make use of Pipe_1 with

environmental loading, such as weight, Morison sea current drag loading, internal and external

pressure loading.

For post-processing Pipe_1 element results, one has the following sequence (to be

chosen in ParaviewTM post-processing):

Table 2 – Pipe_1 element results

Element result index Meaning

0 Shear force in direction e1

1 Shear force in direction e2

2 Axial force (in direction e3)

3 Bending moment around direction e1

4 Bending moment around direction e2

5 Torsion moment (around direction e3)

Giraffe User’s Manual version 2.0.64

19

Shell_1

Creates an initially planar shell element defined by six nodes.

Syntax:

Shell_1 EID Mat MID Sec SID CS CSID Nodes ID1 ID2 ID3 ID4
ID5 ID6

• EID: current element identification number

• MID: material identification number

• SID: shell section identification number

• CSID: optional coordinate system identification number. Necessary for composite shell

structures

• ID1, ID2, ID3, ID4, ID5 and ID6: identification number of nodes defining the element

Example:

Shell_1 1 Mat 1 Sec 1 Nodes 1 2 3 4 5 6

Example for composite shell structures:

Shell_1 1 Mat 1 Sec 1 CS 1 Nodes 1 2 3 4 5 6

Additional information:

 This is a triangular shell element with six nodes. It uses three points to integrate along

the element area. The sequence of nodes must be provided according to the numbering

sequence shown in Figure 9. Note that the direction chosen to increase the number of nodes

implicitly defines the normal of the shell element, according to the right-hand rule. The user can

establish the external normal direction 𝒏 by performing the cross product between the vectors

𝒗𝟏 = (𝑷𝟐 − 𝑷𝟏) and 𝒗𝟐 = (𝑷𝟑 − 𝑷𝟏), such that 𝒏 =
𝒗𝟏×𝒗𝟐

‖𝒗𝟏×𝒗𝟐‖
.This external normal direction is

used to define pressure loading on shell elements.

Figure 9 – Shell_1 element local nodes numbering reference

More details about theoretical details of this shell formulation can be found in [3].

To establish a local coordinate system, Giraffe uses the reference configuration of the

shell element. The direction 𝐞3
r is the normal direction of the shell, at reference configuration.

The local 𝐞1
r is defined by the global x direction projection on the shell reference plane. If this

Giraffe User’s Manual version 2.0.64

20

projection is null, then 𝐞1
r is defined by the global y direction projection on the shell plane.

Finally, 𝐞2
r = 𝐞3

r × 𝐞1
r .

When dealing with composite shell structures it is necessary to set a local coordinate

system. Each local coordinate system will define the principal material axes orientation and the

stacking order of the laminas in the shell element.

For post-processing Shell_1 element results, one has the following sequence (to be

chosen in ParaviewTM post-processing):

Giraffe User’s Manual version 2.0.64

21

Table 3 – Shell_1 element results

Element result index Meaning

0 Force in direction e1 (cutting plane with normal direction e1)

1 Force in direction e2 (cutting plane with normal direction e1)

2 Force in direction e3 (cutting plane with normal direction e1)

3 Moment in direction e1 (cutting plane with normal direction e1)

4 Moment in direction e2 (cutting plane with normal direction e1)

5 Moment in direction e3 (cutting plane with normal direction e1)

6 Force in direction e1 (cutting plane with normal direction e2)

7 Force in direction e2 (cutting plane with normal direction e2)

8 Force in direction e3 (cutting plane with normal direction e2)

9 Moment in direction e1 (cutting plane with normal direction e2)

10 Moment in direction e2 (cutting plane with normal direction e2)

11 Moment in direction e3 (cutting plane with normal direction e2)

Giraffe User’s Manual version 2.0.64

22

Mass_1

Creates a single-node lumped mass element.

Syntax:

Mass_1 EID Mass MV Node NID

• EID: current element identification number

• MV: mass value

• NID: identification number of the node defining the element

Example:

Mass_1 1 Mass 150.3 Node 1

Additional information:

This is a lumped mass element. It can be used to model a portion of mass not included

in the finite element model, but that may affect the system response due to gravitational field

loads and/or inertial loads.

This element has no direct influence in system’s stiffness, but only in the mass matrix

coefficients related to translational DOFs and external loads, corresponding to inertial and

gravitational field.

This element has no specific results for post-processing.

Giraffe User’s Manual version 2.0.64

23

SpringDashpot_1

Creates a two-node spring and dashpot element.

Syntax:

SpringDashpot_1 EID Stiffness SV Damping DV Nodes ID1 ID2

• EID: current element identification number

• SV: stiffness value

• DV: damping value

• ID1 and ID2: identification number of the nodes defining the element

Example:

SpringDashpot_1 1 Stiffness 200.2 Damping 1.34 Nodes 1 2

Additional information:

This is a spring and dashpot element. It can be used in applications were the

stiffness/damping coefficients are known a priori.

k

c

1

2

Figure 10 – SpringDashpot_1 element local nodes numbering reference

It is a two-node element (see local nodes numbering in Figure 10), with a linear stiffness

“k” – proportional to the relative displacement of the nodes – and a linear damping “c” –

proportional to the relative velocity of the nodes, projected on the direction of the line that

connects the two nodes. The element is geometrically nonlinear. Then, the direction affected by

the stiffness/damping follows the current position of the element nodes. It can handle large rigid

body rotations and translations.

Table 4 – SpringDashpot_1 element results

Element
result index

Meaning

0 Spring elongation (positive value: augmenting the length, negative value:
diminishing the length)

1 Elastic force from spring (positive value: tension, negative value:
compression)

2 Damping force from dashpot (positive value: relative velocity increasing the
damper length, negative value: relative velocity decreasing the damper

length)

Giraffe User’s Manual version 2.0.64

24

RigidBody_1

Creates a single-node rigid body element.

Syntax:

RigidBody_1 EID RigidBodyData RBID CS CID Node NID

• EID: current element identification number

• RBID: rigid body data identification number

• CID: coordinate system identification number

• NID: identification number of the node defining the element

Example:

RigidBody_1 1 RigidBodyData 1 CS 1 Node 1

Additional information:

This is a rigid body element with mass and inertia properties. It can be used in multibody

systems to represent relatively stiff components.

 It is a single-node element that accounts for mass and inertia properties from a 3D solid

body (provided within RigidBodyData). Each rigid body element has a unique identification

number that follows the keyword “RigidBody_1”. Each element receives its properties and

therefore it is necessary to indicate the identification number of the RigidBodyData.

Rigid bodies are oriented in Giraffe according to local Coordinate System (CS). The

objective of this local CS is to orient the global axes from the CAD file in the Giraffe three-

dimensional space. The CAD origin is placed at the Rigid Body node. This is illustrated in Figure

11.

Figure 11 – Orientation of RigidBody_1 elements

Giraffe User’s Manual version 2.0.64

25

In Figure 11 (a) a generic CAD model is represented. It was modelled in the yz plane.

Suppose the orientation shown in Figure 11 (b) is desired in Giraffe, then the local CS

represented by E1, E2 and E3 has to be specified. For example, in Figure 11 (b) the axes were

oriented according to the following CS:

CS 1
CSYS 1 E1 1 0 0 E3 0 1 0

This means that the x axis of the CAD file was aligned with the X axis in Giraffe, and the z axis

was aligned with the Y axis. Note that the main objective of this CS is to orient the geometry in

Giraffe. It is a very important feature since it is directly related to the inertia properties and it is

used for postprocessing purposes (to visualize geometry in ParaViewTM).

The Node used to create RigidBody_1 can be placed anywhere. Therefore, the CAD

model has to be generated in a way that its origin coincides with the position of this node. It is

very convenient to create the RigidBody_1 node at the center of mass or at some place that will

be constrained during the simulation, Figure 12 and Figure 13 clarify this question.

Figure 12 – RigidBody_1 positioning in Giraffe platform: Example 1

Figure 13 – RigidBody_1 positioning in Giraffe platform: Example 2

Giraffe User’s Manual version 2.0.64

26

RigidBody_1 is usually used in conjunction with special constraints, especially rigid node

set. For example, one may be interested in monitoring kinematic quantities of a point located

anywhere in the body. In order to do that, it is necessary to create a node at the position of

interest and then to define a rigid node set from the RigidBody_1 Node (pilot node) to the node

of interest (slave node). Nodes at different locations of the body can be added to rigid node set.

The kinematic quantities can be obtained via Monitors.

 To obtain quantities such as Kinetic Energy (T), Linear Momentum (L) and Angular

Momentum about the center of mass (HG) one can request element Monitors.

 This element has no specific results for post-processing using ParaviewTM.

Giraffe User’s Manual version 2.0.64

27

Truss_1

Creates a two-node truss element.

Syntax:

This element type has two possible syntax entries shown below:

Truss_1 EID Mat MID Sec SID Nodes ID1 ID2
Truss_1 EID PipeSec PSID Nodes ID1 ID2

• EID: current element identification number

• MID: material identification number

• CSID: cross-section data identification number

• PSID: pipe cross-section data identification number

• ID1 and ID2: identification number of the nodes defining the element

Example:

Truss_1 1 Mat 1 Sec 1 Nodes 1 2
Truss_1 2 PipeSec 1 Nodes 2 3

Additional information:

This is a 3D truss element. There are two possible entries for establishing such element:

by material and cross-section data or by pipe cross-section data. When establishing material

data, this element can handle large strain. Material model may be chosen between:

(i) linear-elastic (Hooke)

(ii) elastic-plastic with isotropic hardening

 Alternatively, if pipe cross-section data is defined, the element employs only axial

stiffness and adopts is as constant. Additionally, it may be used to define environmental loading

such as weight and Morison sea current drag and added mass loading.

For post-processing Truss_1 element results one has the following sequence (to be

chosen in ParaviewTM post-processing):

Table 5 – Truss_1 element results

Element result index Meaning

0 Element axial tension

1 Cross-section area

2 Element length

3 Plastic deformed length

4 Kirchhoff stress

Giraffe User’s Manual version 2.0.64

28

Particles
Starts a command block for creation of particles.

Syntax:

Particles N

Name ID data

• N: number of particles

• Name: current particle name

• ID: current particle identification number

• data: current particle data (depends on particle resources and requirements)

Example:

Particles 2
Sphere 1 Mat 1 CS 1 Radius 2.5 Node 1
Sphere 2 Mat 1 CS 1 Radius 1.5 Node 1

Additional information:

 Each particle is defined by a specific keyword followed by the particle identification

number (must be an ascending sequence starting from number one) and additional data. Each

particle available and its input data is explained next.

Giraffe User’s Manual version 2.0.64

29

Sphere

Creates a spherical particle.

Syntax:

Sphere PID Mat MID CS CSID Radius RV Node NID

• PID: current particle identification number

• MID: material identification number

• CSID: coordinate system identification number

• RV: sphere radius value

• NID: identification number of the node defining the particle

Example:

Sphere 1 Mat 1 CS 1 Radius 2.5 Node 1

Additional information:

This is a spherical particle centered at a given nodal position. Three displacement and

three rotation DOFs are defined for the node. In order to provide Giraffe the necessary data to

evaluate the sphere mass and its moment of inertia, one has to choose a material identification

number and a radius value for the particle. Furthermore, a coordinate system has to be chosen,

as the reference orientation of the sphere. This CS is used for rendering plot of the sphere. The

particle follows a rigid body kinematics behavior.

Giraffe User’s Manual version 2.0.64

30

Materials
Starts a command block for creation of materials.

Syntax:

Materials N

Name ID data

• N: number of materials

• Name: current material name

• ID: current material identification number

• data: current material data (depends on material resources and requirements)

Example:

Materials 1
Hooke 1 E 210E9 Nu 0.3 Rho 7800

Additional information:

 Each material is defined by a specific keyword followed by the material identification

number (must be an ascending sequence starting from number one) and additional data. Each

material available and its input data is explained next.

Giraffe User’s Manual version 2.0.64

31

Hooke

Creates a linear-elastic material (Hooke’s law)

Syntax:

Hooke MID E EV Nu NV Rho RV

• MID: current material identification number

• EV: Young’s Modulus value

• NV: Poisson’s ratio value

• RV: specific mass value

Example:

Hooke 1 E 210E9 Nu 0.3 Rho 7800

Additional information:

Even defining a Hooke material behavior, each element formulation makes use of

different techniques to mount the constitutive equation. Different strain energy functions can

be used. More details on the constitutive equation assumed for each element formulation can

be found in the papers referenced in this manual, such as [3] and [1].

Giraffe User’s Manual version 2.0.64

32

ElasticPlasticIsoHardening

Creates an elastic-plastic material with isotropic hardening rule.

Syntax:

ElasticPlasticIsoHardening MID E EV Nu NV Rho RV H HV YieldingStrength YSV

• MID: current material identification number

• EV: Young’s Modulus value

• NV: Poisson’s ratio value

• RV: specific mass value

• HV: linear hardening slope value

• YSV: yielding strength value

Example:

ElasticPlasticIsoHardening 1 E 210000 Nu 0.3 Rho 8E-9 H
 10000 YieldingStrength 250

Additional information:

This material model is not available for all elements. Please, check availability for the

element of interest prior to usage.

Giraffe User’s Manual version 2.0.64

33

Orthotropic

Creates an orthotropic material

Syntax:

Orthotropic MID E1 E1V E2 E2V G12 G12V G23 G23V Nu12
 N12V Rho RV

• MID: current material identification number

• E1V: Young’s Modulus value at direction principal direction 1

• E2V: Young’s Modulus value at direction principal direction 2

• G12V: Shear Modulus value associated with directions 1 and 2

• G23V: Shear Modulus value associated with directions 2 and 3

• N12V: Poisson’s ratio value associated with directions 1 and 2

• RV: specific mass value

Example:

Orthotropic 1 E1 41e9 E2 10.4e9 G12 4.3e9 G23 4.3e9 Nu12 0.28
 Rho 1970

Additional information:

This material model is not available for all elements. Please, check availability for the

element of interest prior to usage. Orthotropic material constants orientation as defined in

Figure 14.

(a) Directions 1 and 2 (b) Direction 3
Figure 14 – Orthotropic material orientation

Giraffe User’s Manual version 2.0.64

34

CoordinateSystems
Starts a command block for creation of coordinate systems.

Syntax:

CoordinateSystems N

CS ID E1 E1XV E1YV E1ZV E3 E3XV E3YV E3ZV

• N: number of coordinate systems

• ID: current coordinate system identification number

• E1XV, E1YV and E1ZV: components of direction E1

• E3XV, E3YV and E3ZV: components of direction E3

Example:

CoordinateSystems 2
CS 1 E1 1 0 0 E3 0 1 0
CS 2 E1 0 1 0 E3 0 0 1

Additional information:

Each coordinate system is defined by the keyword CS followed by an identification

number (must be an ascending sequence starting from number one). The coordinate systems

are Cartesian and are defined by three unit-vectors, named E1, E2 and E3. Only E1 and E3

components have to be defined. The orientation E2 is internally calculated using the cross

product.

Giraffe User’s Manual version 2.0.64

35

CADData
Starts a command block for creation of Computer Aided Design (CAD) data.

Syntax:

CADData N

Name ID data

• N: number of CAD data inputs

• Name: current CAD data type name

• ID: current CAD data identification number

• data: current CAD data information (depends on CAD data resources and
requirements)

Example:

CADData 2

NURBSSurface 1 box.txt

STLSurface 2 body.stl

Additional information:

 Each CAD data is defined by a specific keyword followed by the CAD data identification

number (must be an ascending sequence starting from number one) and additional data. Each

CAD data available and its input data is explained next.

Giraffe User’s Manual version 2.0.64

36

STLSurface

Creates a STL (stereolithography) CAD information for usage with other Giraffe resources.

Syntax:

STLSurface CID file

• CID: current CAD data identification number

• file: STL file name (the file must be located inside a folder named “CAD” located in the
same directory of Giraffe input file)

Example:

STLSurface 2 body.stl

Additional information:

 The stl file must be input using the ASCII syntax.

(see https://en.wikipedia.org/wiki/STL_(file_format) for details)

https://en.wikipedia.org/wiki/STL_(file_format)

Giraffe User’s Manual version 2.0.64

37

NURBSSurface

Creates a NURBS (non uniform rational basis spline) surface CAD information for usage with

other Giraffe resources.

Syntax:

NURBSSurface CID file

• CID: current CAD data identification number

• file: NURBS file name (the file must be located inside a folder named “CAD” located in
the same directory of Giraffe input file)

Example:

STLSurface 2 body.stl

Additional information:

The input file for a NURBS surface in Giraffe has to follow a specific syntax. It is a text file

with information provided as explained next. More information on the theory of NURBS surfaces

is well-presented in [4], but the basic idea is herein presented next.

First, we have to define a net of control points 𝐏i,j, where 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑗 ≤ 𝑚.

Thus, we consider a total of (𝑛 + 1)(𝑚 + 1) control points. Each one is associated with a weight,

given by 𝑤i,j.

A polynomial basis is constructed to represent points on the surface. Each point is given

by a mapping procedure, starting from a parametric plane with coordinates 𝑢 and 𝑣. The basis

is independent for 𝑢 and 𝑣. The polynomial degrees are also independent and are 𝑝 and 𝑞,

respectively for 𝑢 and 𝑣. The so-called knot-vectors are non-decreasing sequences of real

numbers, organized as 𝐔 and 𝐕 by:

𝐔 = [𝑢0, 𝑢1, … , 𝑢𝑛+𝑝+1] ,

𝐕 = [𝑣0, 𝑣1, … , 𝑣𝑚+𝑞+1] .

(1)

The knot inputs in 𝐔 and 𝐕 are used to establish the polynomial functions 𝑁𝑖,𝑝(𝑢) and

𝑁𝑗,𝑞(𝑣) by de Cox de Boor recursive formula. At the end, the NURBS surface is given by the

parameterization:

𝐬(𝑢, 𝑣) =
∑ ∑ 𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑞(𝑣)𝑤𝑖,𝑗𝐏i,j

𝑚
𝑗=0

𝑛
𝑖=0

∑ ∑ 𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑞(𝑣)𝑤𝑖,𝑗
𝑚
𝑗=0

𝑛
𝑖=0

(2)

The range for 𝑢 and 𝑣 is defined by the coordinates organized in each knot vector. The

control points and weights have direct influence on the surface location in space. NURBS

surfaces are not usually interpolatory on control points.

Giraffe User’s Manual version 2.0.64

38

The Giraffe NURBS input file contains all the information needed to establish the

parameterization (2). Therefore, one needs to input keywords followed by numeric input data.

The keywords are defined as follows:

• UDim: dimension 𝑛 + 1 (for direction 𝑢);

• VDim: dimension 𝑚 + 1 (for direction 𝑚);

• UOrder: polynomial degree for the basis along direction 𝑢;

• VOrder: polynomial degree for the basis along direction 𝑣;

• UKnotVector: 𝐔 knot vector;

• VKnotVector: 𝐕 knot vector;

• Weights: weights;

• ControlPoints: control points.

 Weights 𝑤i,j and control points 𝐏i,j = (𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗) are read assuming that they are in a

sequence associated with (𝑢, 𝑣) as follows:

(𝑣0, 𝑢0), (𝑣0, 𝑢1) … (𝑣0, 𝑢𝑛+1)

(𝑣1, 𝑢0), (𝑣1, 𝑢1) … (𝑣1, 𝑢𝑛+1)

…

(𝑣𝑚+1, 𝑢0), (𝑣𝑚+1, 𝑢1) … (𝑣𝑚+1, 𝑢𝑛+1)

An example of a simple NURBS input file for Giraffe is:

UDim
2
UOrder
1
UKnotVector
0.0000000000000000e+00
0.0000000000000000e+00
1.0000000000000000e+00
1.0000000000000000e+00
VDim
2
VOrder
1
VKnotVector
0.0000000000000000e+00
0.0000000000000000e+00
1.0000000000000000e+00
1.0000000000000000e+00
Weights
1.0000000000000000e+00
1.0000000000000000e+00

Giraffe User’s Manual version 2.0.64

39

1.0000000000000000e+00
1.0000000000000000e+00
ControlPoints
-1.0000000000000000e+00 -1.0000000000000000e+00 0.0000000000000000e+00
1.0000000000000000e+00 -1.0000000000000000e+00 0.0000000000000000e+00
-1.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00
1.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00

Giraffe User’s Manual version 2.0.64

40

Sections
Starts a command block for creation of cross-sections (here referenced as “sections”).

Syntax:

Sections N

Name ID data

• N: number of sections

• Name: current section name

• ID: current section identification number

• data: current section data (depends on section resources and requirements)

Example:

Sections 1
Rectangle 1 B 1.0 H 2.5

Additional information:

Each section is defined by a specific keyword followed by the section identification

number (must be an ascending sequence starting from number one) and additional data. Each

section available and its input data is explained next.

Sections are to be used as parameters for elements Beam_1 and Truss_1. Note that the

local coordinate system used to define the cross section has origin on the cross-section

intersection with the beam axis position, defined by the nodes of the mesh. The plane of the

cross-section is parallel to the plane formed by e1 and e2, defined in the beam element

coordinate system (see Beam_1 input data).

Giraffe User’s Manual version 2.0.64

41

General

Creates a general cross-section for usage with beam and truss elements.

Syntax:

General SID A AV I11 I11V I22 I22V I12 I12V JT JTV

• SID: current section identification number

• AV: cross-section area value

• I11V: moment of inertia around E1 axis

• I22V: moment of inertia around E2 axis

• I12V: product of inertia related to axis E1 and E2

• JTV: cross-section moment of torsion value

Example:

General 1 A 0.1 I11 0.01 I22 0.01 I12 0.0 JT 0.02

Additional information:

It is assumed that the element axis passes through cross-section centroids and shear

centers. Thus, if this is not the case, use UserDefined cross-section, instead.

Giraffe User’s Manual version 2.0.64

42

Rectangle

Creates a rectangular cross-section for usage with beam and truss elements.

Syntax:

Rectangle SID B BV H HV

• SID: current section identification number

• BV: base dimension value of the cross-section lying in direction E1

• HV: height dimension value of the cross-section lying in direction E2

Example:

Rectangle 1 B 1.0 H 2.5

Additional information:

It is assumed that the element axis passes through cross-section centroids and shear

centers. Thus, if this is not the case, use UserDefined cross-section, instead.

Giraffe User’s Manual version 2.0.64

43

SuperEllipse

Creates a super elliptical cross-section for usage with beam and truss elements.

Syntax:

SuperEllipse SID A AV B BV N NV AMeshFDM MV

• SID: current section identification number

• AV: semi-axis value lying in direction E1

• BV: semi-axis value lying in direction E2

• NV: super ellipse exponent value

• MV: number of divisions in a Finite Difference Method mesh discretization in the

direction of radius A (performed to calculate Saint-Venant moment of torsion, prior to

FEM simulation)

Example:

SuperEllipse 1 A 1.0 B 2.0 N 3 AMeshFDM 200

Additional information:

It is assumed that the element axis passes through cross-section centroids and shear

centers. Thus, if this is not the case, use UserDefined cross-section, instead.

Giraffe User’s Manual version 2.0.64

44

Tube

Creates a tubular cross-section for usage with beam and truss elements.

Syntax:

Tube SID De DEV Di DIV

• SID: current section identification number

• DEV: external diameter value

• DIV: internal diameter value

Example:

Tube 1 De 0.2 Di 0.1

Additional information:

It is assumed that the element axis passes through cross-section centroids and shear

centers. Thus, if this is not the case, use UserDefined cross-section, instead.

A null internal diameter can be used, and leads to a solid cylinder.

Giraffe User’s Manual version 2.0.64

45

UserDefined

Creates a user defined cross-section for usage with beam and truss elements.

Syntax:

UserDefined SID

GA GAV

EA EAV

ES1 ES1V

ES2 ES2V

EI11 EI11V

EI22 EI22V

EI12 EI12V

GS1 GS1V

GS2 GS2V

GS1S GS1SV

GS2S GS2SV

GJT GJTV

J11 J11V

J22 J22V

J12 J12V

A AV

SC SC1V SC2V

BC BC1V BC2V

Rho RV

SD SDID

//Optional keywords block below:
AD ADID

AC AC1V AC2V

AeroLength ALV

• SID: current section identification number

• GAV: equivalent shear stiffness product

• EAV: equivalent axial stiffness product

• ES1V: equivalent ES1

• ES2V: equivalent ES2

• EI11V: equivalent bending stiffness EI11

• EI22V: equivalent bending stiffness EI22

• EI12V: equivalent bending stiffness EI12

• GS1V: equivalent GS1

• GS2V: equivalent GS2

• GS1SV: equivalent GS1
s

• GS2SV: equivalent GS2
s

• GJTV: equivalent torsion stiffness with respect to origin O (GJt)

• J11V: mass Moment of inertia per unit reference length J11

• J22V: mass Moment of inertia per unit reference length J22

• J12V: mass Product of inertia per unit reference length J12

• AV: Cross-section area

Giraffe User’s Manual version 2.0.64

46

• SC1V and SC2V: shear center coordinates (s1, s2)

• BC1V and BCV2: barycenter coordinates (g1, g2)

• RV: mass per unit reference length (ρ̅)

• SDID: section details (defines the external contour of the cross section – to be used for

rendering purposes)

Optional keywords block:

• ADID: aerodynamic data identification number (defines aerodynamic curves to be used

to evaluate environment wind forces)

• AC1V and AC2V: aerodynamic center position (c1, c2)

• ALV: aerodynamic reference length value (usually cross-section profile chord is

employed)

Example:

Sections 1
UserDefined 1
GA 656713326.769231
EA 1707454649.6
ES1 144398244.5
ES2 0.0
EI11 20026109.28137880
EI22 1200819.338227490
EI12 0.0
GS1 55537786.35
GS2 0.0
GS1S 27768893.1727725
GS2S 0.0
GJT 1373989.013
J11 0.787026095
J22 0.0471921999923403
J12 0.0
A 0.008537273248
SC 0.0 0.04228465
BC 0.0 0.08456930
Rho 67.10296773
SD 1

Additional information:

For this cross-section, no assumptions are made with respect to the beam axis position.

On 3D space, the beam element is defined by its nodes, normally, which are given in section

Nodes. The properties to define the beam constitutive behavior will vary according to the chosen

position of the axis. Accordingly, the results of internal loads have to be re-interpreted.

Many properties are required to use this cross section, but it permits a myriad of

applications, such as composite beams, thin-walled cross-sections and complex-shape cross-

sections.

Important: when the UserDefined cross section is used, the material data assigned to

the beam element is ignored.

Giraffe User’s Manual version 2.0.64

47

Figure 15 shows an example of UserDefined cross section. The beam axis intersection

with the cross-section occurs at point O, origin of a local coordinate system that has to be used

to define all quantities defined from now on. As in other Giraffe’s cross-sections for beams,

directions 𝐞1 and 𝐞2 define the cross-section plane. A general material point on the cross-section

may be described by coordinates (x1, x2) using the system (O, 𝐞1, 𝐞2). Let ρ be the material

specific mass function ρ = ρ̂(x1, x2). The cross-section area domain is given by A.

Figure 15 – UserDefined cross-section

The cross-section barycenter is located at material point G, such that

𝐛 = (G − O) = g1𝐞1 + g2𝐞2, (1)

with

g1 =
∫ ρx1dA
A

∫ ρdA
A

; g2 =
∫ ρx2dA
A

∫ ρdA
A

. (2)

The shear center is located at material point S, such that

𝐬 = (S − O) = s1𝐞1 + s2𝐞2. (3)

For some applications involving fluid-structure interaction, it is also necessary to define

the aerodynamic center, located at material point C, such that

𝐜 = (C − O) = c1𝐞1 + c2𝐞2. (4)

Next, one finds the convention used for all geometric properties evaluation for Giraffe.

(see more details in [5]).

• Cross-section area:

A = ∫dA
A

(5)

• Moments of inertia with respect to area:

I11 = ∫x2
2dA

A

(6)

I22 = ∫x1
2dA

A

(7)

• Product of inertia with respect to area:

bG
e1

e2

s
S

O

cC

Giraffe User’s Manual version 2.0.64

48

I12 = −∫x1x2dA
A

(8)

• First-order moments (static moments) with respect to area:

S1 = ∫x2dA
A

(9)

S2 = −∫x1dA
A

(10)

Note: if the specific mass function ρ is constant on A, one may write:

S1 = Ag2 (11)

S2 = −Ag1 (12)

• First-order moments (static moments) with respect to the shear center position:

S1
s = S1 − As2 (13)

S2

s = S2 + As1 (14)

Note: if the specific mass function ρ is constant on A, one may write:

S1
s = A(g2 − s2) (15)

S2

s = −A(g1 − s1) (16)

One may also define properties that depend on mass distribution:

• Mass per unit length

ρ̅ = ∫ρdA
A

(17)

• Moments of inertia with respect to mass (per unit reference length of beam, since they

are integrated in the area and not in the volume):

J11 = ∫ρx2
2dA

A

(18)

J22 = ∫ρx1
2dA

A

(19)

• Product of inertia with respect to mass (per unit reference length of beam, since it is

integrated in the area and not in the volume):

J12 = −∫ρx1x2dA
A

(20)

Giraffe User’s Manual version 2.0.64

49

The constitutive equation that Giraffe uses to evaluate the beam generalized stress

(internal loads) 𝛔 relation with generalized strains 𝛜 is given by

𝛔 =

[

GA 0 0 0 0 G(S1
S − S1)

0 GA 0 0 0 G(S2
S − S2)

0 0 EA ES1 ES2 0
0 0 ES1 EI11 EI12 0
0 0 ES2 EI12 EI22 0

G(S1
S − S1) G(S2

S − S2) 0 0 0 GJt]

𝛜. (21)

All equivalent stiffness coefficients in this relation have to be input for using UserDefined

cross-section. These values represent equivalent quantities already integrated on cross-section

area. If handling a single material homogeneous cross-section, such stiffness coefficients may

be evaluated using all geometric quantities previously defined, multiplied by material data

(Young Modulus E and Shear Modulus G). If handling a composite material cross-section,

equivalent stiffness coefficients evaluation may be non-straightforward and may be obtained by

using a third-part software.

A coefficient needs a special attention: the torsion stiffness GJt. When disregarding

cross-section warping, the moment of torsion is given by Jt = I11 + I22. This gives exact results

for circular or tubular cross sections, that do not experience warping under torsion. For all other

shapes of cross section, such approximation gives larger values for Jt than expected, when

considering warping properly.

If one uses Saint-Venant torsion theory, it is possible to enhance evaluation of Jt by

defining a warping function. With that, one may define the shear-center and the moment of

torsion, with respect to the shear-center, named Jt
S. This value usually may be obtained by a CAD

software or other third-part software. However, since the beam axis here considered is general,

the moment of torsion for input in Giraffe is not Jt
S, but may be obtained by considering a proper

transport such that

Jt = Jt
S + A(s1

2 + s2
2).

(22)

Table 6 shows the SI units for all quantities needed for input when using UserDefined

cross-section.

Table 6 – SI units for all quantities needed for input in UserDefined cross-section

Coefficient Unit Coefficient Unit Coefficient Unit

GA N GS1 , GS2 N.m A m²

EA N GS1
s, GS2

s N.m s1, s2 m

ES1, ES2 N.m GJt N.m² g1, g2 m

EI11, EI22, EI12 N.m² J11, J22, J12 Kg.m ρ̅ kg/m

Giraffe User’s Manual version 2.0.64

50

SectionDetails
Starts a command block for creation of section details (cross-section details).

Syntax:

SectionDetails N

Name ID data

• N: number of section details

• Name: current section detail name

• ID: current section detail identification number

• data: current section detail data (depends on section detail resources and requirements)

Example:

SectionDetails 1

SolidSection 1 AxisPosition 0.1 0.12 NPoints 4

Point 1 0.4 0

Point 2 0 0.2

Point 3 -0.4 0

Point 4 0 -0.2

Additional information:

 Each section detail is defined by a specific keyword followed by the section detail

identification number (must be an ascending sequence starting from number one) and

additional data. Each section detail available and its input data is explained next.

Giraffe User’s Manual version 2.0.64

51

SolidSection

Creates a solid section details (for post-processing and visualization purposes).

Syntax:

SolidSection SDID AxisPosition XAV YAV NPoints NP

Point PID XPV YPV

• SDID: current section detail identification number

• XAV and YAV: coordinates of the axis position in element local coordinate system

(according to the properties employed to establish the element cross-section)

• NP: number of points employed to define the cross-section

• PID: identification number of each point employed to define the cross-section external

boundary

• XPV and YPV: coordinates of each point employed to define the cross-section external

boundary

Example:

SolidSection 1 AxisPosition 0.1 0.12 NPoints 4

Point 1 0.4 0

Point 2 0 0.2

Point 3 -0.4 0

Point 4 0 -0.2

Additional information:

 The objective of the section details is to be used only for post-processing purposes. This

data is not used by Giraffe mathematical model. When using beam elements with UserDefined

cross-sections, the section details are then addressed by the PostFiles keyword.

The cross-section points are defined in a local coordinate system, associated with the

beam element, as presented in UserDefined cross-section explanation. The cross-section local

plane is given by directions E1 and E2 assigned to the beam element (see CoordinateSystems

keyword). The coordinates of the beam axis in this local plane are defined after the keyword

AxisPosition (origin for evaluating properties for UserDefined cross sections). Then, the number

of points that will be used to define the cross section external boundary is defined by the

keyword NPoints. Finally, each point is defined in a list by the keyword Point, followed by an

ascending identification number and the coordinates of the point.

Giraffe User’s Manual version 2.0.64

52

MultiCellSection

Creates a multi-cell section details (for post-processing and visualization purposes).

Syntax:

MultiCellSection. SDID AxisPosition XAV YAV NPoints NP NWebs NW

Point PID XPV YPV

Web WID W1 W2

• SDID: current section detail identification number

• XAV and YAV: coordinates of the axis position in element local coordinate system

(according to the properties employed to establish the element cross-section)

• NP: number of points employed to define the cross-section

• NW: number of webs employed to define the cross-section

• PID: identification number of each point employed to define the cross-section external

boundary

• XPV and YPV: coordinates of each point employed to define the cross-section external

boundary

• WID: identification number of each web

• W1 and W2: identification number of the points connecting web connections with the

external cross-section boundary

Example:

MultiCellSection 1 AxisPosition 0.0 0.0 NPoints 6 NWebs 1
Point 1 0.4 +0.2
Point 2 0.4 -0.2
Point 3 0 -0.2
Point 4 -0.4 -0.2
Point 5 -0.4 +0.2
Point 6 0 +0.2
Web 1 3 6

Additional information:

 This type of section detail is similar to the solid section details. The only difference is the

presence of webs in visualization. Rendering also considers the structure as thin-walled and not

solid cross-section.

Giraffe User’s Manual version 2.0.64

53

PipeSections
Starts a command block for creation of pipe sections.

Syntax:

PipeSections N
PS ID EA EAV EI EIV GJ GJV GA GAV Rho RV
 CDt CDTV CDn CDNV CAt CATV CAn CANV De DEV Di
 DIV

• N: number of pipe sections

• ID: current pipe section identification number

• EAV : equivalent axial stiffness product value

• EIV: equivalent bending stiffness product value

• GJV: equivalent torsional stiffness product value

• GAV: equivalent shearing stiffness product value

• RV: equivalent mass per unit reference length value

• CDTV: drag coefficient in tangential direction

• CDNV: drag coefficient in normal direction

• CATV: added mass coefficient in tangential direction

• CANV: added mass coefficient in normal direction

• DEV: external diameter value

• DIV: internal diameter value

Example:

PipeSections 2
PS 1 EA 400000000 EI 15000 GJ 2250000 GA
 200000000 Rho 120 CDt 0.0 CDn 1.0 CAt 0 CAn
 1.0 De 0.25 Di 0.2
PS 2 EA 6080489749 EI 110821607.7 GJ 85247390.5 GA
 2338649904 Rho 237 CDt 0.0 CDn 1.0 CAt 0 CAn
 1.0 De 0.4 Di 0.2

Additional information:

Each pipe cross section centroid must lie at the pipe axis, defined by the nodes of the

mesh. More details about theoretical details of the pipe section attributes can be found in [2],

together with applications for offshore risers simulations.

This cross-section is to be used with Pipe_1 element type. Alternatively, the user may

also use it with Truss_1 element type. In this case, only axial stiffness and hydrodynamic

coefficients are considered in the model.

Giraffe User’s Manual version 2.0.64

54

ShellSections
Starts a command block for creation of shell sections.

Syntax:

ShellSections N

Name ID data

• N: number of shell sections

• Name: current shell section name

• ID: current shell section identification number

• data: current shell section data (depends on shell section resources and requirements)

Example:

ShellSections 1
Homogeneous 1 Thickness 0.25

Additional information:

Each shell section is defined by a specific keyword followed by the shell section

identification number (must be an ascending sequence starting from number one) and

additional data. Each shell section available and its input data is explained next.

Shell sections are to be used as parameters for the element Shell_1.

Giraffe User’s Manual version 2.0.64

55

Homogeneous

Creates a homogeneous shell section.

Syntax:

Homogeneous SID Thickness TV

• SID: current shell section identification number

• TV: shell section thickness value

Example:

Homogeneous 1 Thickness 0.25

Additional information:

It is assumed that the shell surface is located on the middle of the thickness height.

Giraffe User’s Manual version 2.0.64

56

Composite

Creates a composite shell section.

Syntax:

Composite SID Laminas LN
//Material ID Thickness Orientation
table data

• SID: current shell section identification number

• LN: number of laminas that compose the composite shell section

• table data: table containing each lamina information

column 1: material identification number

column 2: lamina thickness

column 3: lamina principal angle in degrees with respect to the local coordinate system

Example:

Composite 1 Laminas 3
1 0.006 0
2 0.012 90
1 0.006 0

Additional information:

It is assumed that the shell surface is located on the middle of the total thickness height.

The principal angle orientation of each lamina with respect to the local coordinate system and

the stacking order are defined as seen in Figure 16.

(a) Principal angle orientation (b) Laminas stacking order
Figure 16 – Composite shell section orientations

Giraffe User’s Manual version 2.0.64

57

RigidBodyData
Starts a command block for creation of rigid body data, to be used together with RigidBody_1

element type.

Syntax:

RigidBodyData N

RBData RBID

Mass MV

J11 J11V J22 J22V J33 J33V J12 J12V J13 J13V J23 J23V

Barycenter XGV YGV ZGV

//Optional keywords block below:

CADData CADN

• N: number of rigid body data

• RBID: current rigid body data identification number

• MV: rigid body mass value

• J11V, J22V, J33V, J12V, J13V and J23V: rigid body inertia tensor components values

• XGV, YGV, and ZGV: coordinates of the barycenter position

• CADN: number of the CAD data ID for post-processing purposes (see CADData
keyword)

Example:

RigidBodyData 1

RBData 1

Mass 3.63e-5

J11 0.00663 J22 0.00480 J33 0.00663 J12 0.0 J13

 0.0 J23 0.0

Barycenter 0.0 0.0 0.0

CADData 1

Additional information:

 Each rigid body data is defined by the keyword RBData followed by an identification

number (must be an ascending sequence starting from number one).

The mass value has to be provided according to the unit system adopted. In the example,

length is defined in millimeters, force in Newton and time in seconds, so that mass has to be

provided in tonnes. Users are allowed to choose any other consistent unit system for the whole

model.

Inertia properties (J11, J22, J33, J12, J13, J23) must be provided with respect to

barycentric axes, parallel to de CAD coordinate system. This is illustrated in Figure 17.

Giraffe User’s Manual version 2.0.64

58

Figure 17 – Inertia properties for Rigid Bodies

In Figure 17 we have the CAD coordinate system (PP xyz) and the body is already

positioned in Giraffe (system OXYZ). Inertia properties should be provided with respect to axes

x*, y* and z* illustrated in the same picture, these axes are parallel to x, y and z, but have their

origin located at the center of mass of the body (G). Inertia values have units of Mass x Length²

and they are easily obtained from any 3D CAD software.

It is important to check how your CAD system computes inertia properties2. Considering

Figure 17, the input necessary to Giraffe could be computed using the following expressions:

J11 = ∫𝜌(κ2
2 + κ3

2)dV
V

(23)

J22 = ∫𝜌(κ3
2 + κ1

2)dV
V

(24)

J33 = ∫𝜌(κ1
2 + κ2

2)dV
V

(25)

J12 = ∫𝜌(κ1κ2)dV
V

(26)

2 Some of the main CAD packages provide the inertia tensor as an output, which means that the products
of inertia are shown as -J12, -J13 and -J23 (with negative signs). This is not the correct input for Giraffe.
Instead of this, Giraffe expects the values directly obtained by the expressions in this page (without
changing signs).

Giraffe User’s Manual version 2.0.64

59

J13 = ∫𝜌(κ1κ3)dV
V

(27)

J23 = ∫𝜌(κ2κ3)dV
V

(28)

With κ1, κ2 and κ3 being the components of vector 𝛋 illustrated in Figure 17 and 𝜌 is

volumetric mass density function of the material considered for the body.

The barycenter position (G in Figure 17) has to be provided in the CAD coordinate system

(O xyz). This information is also easily obtained from the 3D CAD software. The origin of the CAD

must coincide with the RigidBody_1 node position.

 The last parameter (optional) to define the CADData is the graphic file for postprocessing

purposes. It is not used for computing the system physics, which is provided via parameters

(mass and inertia tensor entries).

Giraffe User’s Manual version 2.0.64

60

ElementSets
Starts a command block for creation of element sets.

Syntax:

ElementSets N

//Input method 1:
ElementSet ESID Elements NE List E1 E2 …

//Input method 2:
ElementSet ESID Elements NE Sequence Initial EIN Increment IN

• N: number of element sets

• ESID: current element set identification number

• NE: number of elements defined in the current element set

• E1, E2, …, : list with NE element identification numbers

• EIN: initial element identification number

• IN: increment for the element identification number

Example:

ElementSets 2

//Input method 1:
ElementSet 1 Elements 3 List 12 27 21

//Input method 2:
ElementSet 2 Elements 4 Sequence Initial 3 Increment 2

Additional information:

 Each element set is defined by the keyword ElementSet followed by an identification

number (must be an ascending sequence starting from number one).

There are two input methods to define the element sets. The user must choose one of

the following options:

• List: it indicates to Giraffe that a list of elements will be provided as input. For example,

the ElementSet 1 has three elements which are listed after the keyword List;

• Sequence: it indicates to Giraffe that a sequence of elements will be provided. In the

example, ElementSet 2 has 4 elements. The sequence generated automatically will be

3, 5, 7, 9.

Giraffe User’s Manual version 2.0.64

61

NodeSets
Starts a command block for creation of node sets.

Syntax:

NodeSets N

//Input method 1:
NodeSet NSID Nodes NN List N1 N2 …

//Input method 2:
NodeSet NSID Nodes NN Sequence Initial NIN Increment IN

• N: number of node sets

• NSID: current node set identification number

• NN: number of nodes defined in the current node set

• N1, N2, …: list with NN node identification numbers

• NIN: initial node identification number

• IN: increment for the node identification number

Example:

NodeSets 2

//Input method 1:
NodeSet 1 Nodes 3 List 12 27 21

//Input method 2:
NodeSet 2 Nodes 4 Sequence Initial 3 Increment 2

Additional information:

 Each node set is defined by the keyword NodeSet followed by an identification number

(must be an ascending sequence starting from number one).

There are two input methods to define the node sets. The user must choose one of the

following options:

• List: it indicates to Giraffe that a list of nodes will be provided as input. For example, the

NodeSet 1 has three nodes which are listed after the keyword List;

• Sequence: it indicates to Giraffe that a sequence of nodes will be provided. In the

example, NodeSet 2 has 4 nodes. The sequence generated automatically will be 3, 5, 7,

9.

Giraffe User’s Manual version 2.0.64

62

SurfaceSets
Starts a command block for creation of surface sets.

Syntax:

SurfaceSets N

//Input method 1:
SurfaceSet SSID Surfaces NS List S1 S2 …

//Input method 2:
SurfaceSet SSID Surfaces NS Sequence Initial NIS Increment IS

• N: number of surface sets

• SSID: current surface set identification number

• NS: number of surfaces defined in the current surface set

• S1, S2, …: list with NS surface identification numbers

• NIS: initial surface identification number

• IS: increment for the surface identification number

Example:

SurfaceSets 2

//Input method 1:
SurfaceSet 1 Surfaces 3 List 12 27 21

//Input method 2:
SurfaceSet 2 Surfaces 4 Sequence Initial 3 Increment 2

Additional information:

 Each surface set is defined by the keyword SurfaceSet followed by an identification

number (must be an ascending sequence starting from number one).

There are two input methods to define the surface sets. The user must choose one of

the following options:

• List: it indicates to Giraffe that a list of surfaces will be provided as input. For example,

the SurfaceSet 1 has three surfaces which are listed after the keyword List;

• Sequence: it indicates to Giraffe that a sequence of surfaces will be provided. In the

example, SurfaceSet 2 has 4 surfaces. The sequence generated automatically will be 3,

5, 7, 9.

Giraffe User’s Manual version 2.0.64

63

BoolTable
Creates a Boolean table to rule the behavior of some loads, displacements, contacts and other

resources along solution steps. This keyword is used as parameter for many Giraffe resources.

Syntax:

BoolTable B1 B2 B3 … BN

• B1, B2, B3, …, BN: sequence of 1 or 0 values composing a Boolean table

Example:

BoolTable 1 0 0 1

Additional information:

 Bootable command is used to provide to Giraffe a sequence of numbers 1 or 0. It is used

to define if a given resource is active (1) or inactive (0) in a sequence of solution steps. It can be

used with many Giraffe resources, such as environment data, constraints data, contact and

special constraints.

 As example, in a scenario of 3 sequential solution steps requested by the user, one may

be interested in including environment data to define gravity field and also define some

constraints, as depicted below:

Constraints 1

NodalConstraint 1 NodeSet 1

 UX BoolTable 1 1 1

 UY BoolTable 0 1 1

 UZ BoolTable 1 0 0

Environment

GravityData

G 0 0 -9.81 BoolTable 0 1 1

 Giraffe would interpret nodal constraints as:

• UX constraint would be considered during the first, second and third solution steps;

• UY constraint would be considered during the second and third solution steps, but

would be disregarded during first solution step;

• UZ constraint would be considered only during the first solution step and disregarded

during second and third solution steps.

 Gravity data would be interpreted to be not applied during the first solution step, but to

be applied during the second solution step by a linear ramp function along time evolution.

During the third solution step, gravity data would be kept.

 Note that BoolTable can be defined with less data than the number of solution steps

requested by the user. In this case, Giraffe uses the last provided value as the same for

Giraffe User’s Manual version 2.0.64

64

subsequent undefined data. For example, Giraffe interprets “BoolTable 1 1 1” data as the same

as “BoolTable 1 1” and also “BoolTable 1”. Thus, if the user wants to include some resource using

BoolTable from beginning and just keeping it defined along arbitrary solution sequence, it is

enough to provide simply: “BoolTable 1”. Another example: “BoolTable 1 0 0” data is interpreted

as the same as “BoolTable 1 0”.

 Gravity and ocean data employs BoolTable, as provided in the example. Always the

insertion of such loads within a given solution step is done by a linear ramp function along time

evolution, both increasing or decreasing the load. For example, if one defines “BoolTable 0 1 0”

for GravityData, during the first solution step gravity loads would not be applied, during the

second solution step gravity data would be included in the model (by a linear ramp increasing

function along time) and during the third solution step gravity data would be, again, switched

off (by a linear ramp decreasing function along time).

 When using BoolTable with another resources, such as contact or special constraints,

the interpretation is straightforward, as one may see in following example:

SameDisplacement 1 Nodes 1 2 BoolTable 1 0 1

 The SameDisplacement special constraint would be considered during the first and third

solution steps, but not during the second solution step. Thus, BoolTable permits to switch on/off

constraints, special constraints and contacts along solution, when changing between solution

steps.

Giraffe User’s Manual version 2.0.64

65

Environment
Creates environment data.

Syntax:

Environment

//Optional block to define gravity data:
GravityData

G GXV GYV GZV BoolTable BDG

//Optional block to define ocean data:
OceanData

RhoFluid RV SurfacePosition XSV YSV ZSV

SeaCurrent N NSC BoolTable BDO

Depth DV Speed SP Angle AV

• GXV, GYV and GZV: components of gravity field vector

• BDG: bool table data for gravity loads (see BoolTable)

• RV: specific mass of ocean water

• XSV, YSV and ZSV: coordinates of an arbitrary point located on ocean surface

• NSC: number of points employed to define the sea current velocity field

• BDO: bool table data for sea current velocity field (see BoolTable)

To define each depth data for sea current:

• DV: depth value

• SP: water speed value

• AV: water speed azimuth angle orientation value (in degrees)

Example:

Environment

//Optional block to define gravity data:
GravityData

G 0 0 -9.81 BoolTable 1

//Optional block to define ocean data:
OceanData

RhoFluid 1024 SurfacePosition 0 0 1200

SeaCurrent N 5 BoolTable 0 0 1

Depth 0 Speed 1.3 Angle 30
Depth 100 Speed 1.2 Angle 10
Depth 250 Speed 0.5 Angle -30
Depth 500 Speed 0.3 Angle -20
Depth 1200 Speed 0.1 Angle 45

Additional information:

 The Environment keyword is used to define environment data, which is given in blocks:

GravityData and OceanData. Each block may be defined in arbitrary sequence after Environment

keyword. The presence of all blocks in not mandatory. For example, it is possible to define only

the GravityData block if one wants only the effect of gravity in the model. For OceanData block,

Giraffe User’s Manual version 2.0.64

66

the sea current is defined using a table with N points, which has to be assigned. OceanData

employs buoyancy effect when the element is inside the water (applicable for Beam_1, Pipe_1

and Truss_1 elements)

Both GravityData and OceanData are considered in the simulation according to the

BoolTable data (see BoolTable).

Giraffe User’s Manual version 2.0.64

67

Loads
Starts a command block for creation of loads.

Syntax:

Loads N

Name ID data

• N: number of loads

• Name: current load name

• ID: current load identification number

• data: current load data (depends on load resources and requirements)

Example:

Loads 1
NodalLoad 1 NodeSet 2 CS 1 NTimes 2
//Time FX FY FZ MX MY MZ
0 0 0 0 0 0 0
1 1000 0 0 0 0 0

Additional information:

 Each load is defined by a specific keyword followed by the load identification number

(must be an ascending sequence starting from number one) and additional data. Each load

available and its input data is explained next.

Giraffe User’s Manual version 2.0.64

68

NodalLoad

Creates a nodal load.

Syntax:

NodalLoad ID NodeSet NSID CS CSID NTimes N
//Time FX FY FZ MX MY MZ
table data

• ID: current load identification number

• NSID: node set identification number

• CSID: coordinate system identification number

• N: number of lines to be input in table data

• table data: table of nodal loads data following the rule:

column 1: time

columns 2-4: components of force vector

columns 5-7: components of the moment vector

Example:

NodalLoad 1 NodeSet 1 CS 1 NTimes 2
//Time FX FY FZ MX MY MZ
0 0 0 0 0 0 0
1 1000 0 0 0 0 0

Additional information:

 A nodal load employs a table to define a time-varying force and a time-varying moment.

Both are applied to the nodes of the node set. Force and moment components are to be defined

using any defined coordinate system CSID. The values of forces and moments components are

divided between the nodes of the node set and each node receives the same amount of

force/moment, such that the total magnitude of force and moment fulfills the user input.

Note: Division of forces/moments on nodes of the node set is done checking if the DOFs

are active /inactive in each node. Thus, for Shell_1 element, for example, only mid-side nodes

receive moment loads. Corners have only translational DOFs active. This checking is

automatically done by Giraffe.

Note: Giraffe performs a linear interpolation between data provided as a tabular time-

series. In case of a need of data outside the defined time-range in a table, Giraffe considers: (i)

the initially defined value as constant for time-values prior to it and (ii) the lastly defined value

as constant for time-values after it.

Giraffe User’s Manual version 2.0.64

69

NodalFollowerLoad

Creates a nodal follower load.

Syntax:

NodalFollowerLoad ID NodeSet NSID CS CSID NTimes N
//Time FX FY FZ MX MY MZ
table data

• ID: current load identification number

• NSID: node set identification number

• CSID: coordinate system identification number

• N: number of lines to be input in table data

• table data: table of nodal loads data following the rule:

column 1: time

columns 2-4: components of force vector

columns 5-7: components of the moment vector

Example:

NodalFollowerLoad 1 NodeSet 1 CS 1 NTimes 2
//Time FX FY FZ MX MY MZ
0 0 0 0 0 0 0
1 1000 0 0 0 0 0

Additional information:

A nodal follower load employs a table to define a time-varying force and a time-varying

moment. Both are applied to the nodes of the node set. Force and moment components are to

be defined using any defined coordinate system CSID. The values of forces and moments

components are divided between the nodes of the node set and each node receives the same

amount of force/moment, such that the total magnitude of force and moment fulfills the user

input.

Note: Division of forces/moments on nodes of the node set is done checking if the DOFs

are active /inactive in each node. Thus, for Shell_1 element, for example, only mid-side nodes

receive moment loads. Corners have only translational DOFs active. This checking is

automatically done by Giraffe.

 The components of force/moment are kept in a local coordinate system that follows the

rotations of each node. Then, the follower load updates according to the movement

experienced by the node.

Note: Giraffe performs a linear interpolation between data provided as a tabular time-

series. In case of a need of data outside the defined time-range in a table, Giraffe considers: (i)

the initially defined value as constant for time-values prior to it and (ii) the lastly defined value

as constant for time-values after it.

Giraffe User’s Manual version 2.0.64

70

PipeLoad

Creates a pipe load (to be used together with Pipe_1 elements).

Syntax:

PipeLoad ID ElementSet ESID NTimes N
//Time P0I P0E RhoI RhoE
table data

• ID: current load identification number

• ESID: element set identification number

• N: number of lines to be input in table data

• table data: table of pipe loads data following the rule:

column 1: time

column 2: internal pressure of the pipe

column 3: external pressure of the pipe

column 4: internal fluid specific mass (currently not used by Giraffe)

column 5: external fluid specific mass (currently not used by Giraffe)

Example:

PipeLoad 1 ElementSet 1 NTimes 2
//Time P0I P0E RhoI RhoE
2 0 0 0 0
3 1200000 0 0 0

Additional information:

 A pipe load employs a table to define time-varying internal/external pressures in a pipe.

Both are applied to each element of the element set. All elements of the element set must be

of the type Pipe_1.

Note: Giraffe performs a linear interpolation between data provided as a tabular time-

series. In case of a need of data outside the defined time-range in a table, Giraffe considers: (i)

the initially defined value as constant for time-values prior to it and (ii) the lastly defined value

as constant for time-values after it.

Giraffe User’s Manual version 2.0.64

71

ShellLoad

Creates a shell load (to be used together with Shell_1 elements).

Syntax:

ShellLoad ID ElementSet ESID AreaUpdate AUB NTimes N
//Time P
table data

• ID: current load identification number

• ESID: element set identification number

• AUB: Boolean variable to define if the area is to be updated for recalculation of the

resultant due to pressure integration (1) or not (0)

• N: number of lines to be input in table data

• table data: table of shell loads data following the rule:

column 1: time

column 2: pressure applied on shell element surface

Example:

ShellLoad 1 ElementSet 1 AreaUpdate 1 NTimes 2
//Time P
0 0.0
2 +10.0

Additional information:

 A shell load employs a table to define a time-varying pressure in a shell element. It is

applied to each element of the element set. All elements of the element set must be of the type

Shell_1. A positive value of pressure acts opposite to the external normal direction of the

element surface, which is associated with the sequence of nodes numbering in the element. The

AreaUpdate keyword establishes if the resultant of pressure integrated along the element area

should consider or not the area update, according to element deformations.

Note: Giraffe performs a linear interpolation between data provided as a tabular time-

series. In case of a need of data outside the defined time-range in a table, Giraffe considers: (i)

the initially defined value as constant for time-values prior to it and (ii) the lastly defined value

as constant for time-values after it.

Giraffe User’s Manual version 2.0.64

72

Displacements
Starts a command block for creation of displacements (to be prescribed).

Syntax:

Displacements N

Name ID data

• N: number of displacements

• Name: current displacement name

• ID: current displacement identification number

• data: current displacement data (depends on displacement resources and

requirements)

Example:

Displacements 1
NodalDisplacement 1 NodeSet 1 CS 1 NTimes 3
//Time UX UY UZ ROTX ROTY ROTZ
0 0 0 0 0 0 0
2 0 1.25 0 0 0 0
3 0 0 0 0 0 6.28

Additional information:

 Each displacement is defined by a specific keyword followed by the displacement

identification number (must be an ascending sequence starting from number one) and

additional data. Each displacement available and its input data is explained next.

Note: displacement prescription in Giraffe has to be carefully carried out by the user. In case of

simultaneous prescription of displacements/rotations to a given node, the last-defined value

only will be considered, following the sequence of displacements input data.

Giraffe User’s Manual version 2.0.64

73

NodalDisplacement

Creates a nodal displacement (to be prescribed).

Syntax:

NodalDisplacement ID NodeSet NSID CS CSID NTimes N
//Time UX UY UZ ROTX ROTY ROTZ
table data

• ID: current displacement identification number

• NSID: node set identification number

• CSID: coordinate system identification number

• N: number of lines to be input in table data

• table data: table of nodal displacement data following the rule:

column 1: time

columns 2-4: components of displacement vector

columns 5-7: components of the rotation vector (Euler rotation vector)

Example:

NodalDisplacement 1 NodeSet 1 CS 1 NTimes 3
//Time UX UY UZ ROTX ROTY ROTZ
0 0 0 0 0 0 0
2 0 1.25 0 0 0 0
3 0 0 0 0 0 6.28

Additional information:

 A nodal displacement employs a table to define a time-varying displacement and a time-

varying rotation vector. Both are applied (prescribed) to each node of the node set.

Displacement and rotation vector components have to be defined using the desirable

coordinate system CSID. The rotation input is made in radians by a Euler rotation vector.

 Displacement/rotation imposition is done in an incremental way. Thus, each time-step

of solution will prescribe an increment of displacement/rotation, following the table of Nodal

displacement entry. Giraffe picks in nodal displacement table the difference between the

displacement/rotation value at the beginning/end of the time-step. This increment is prescribed

within the time-step. The procedure continues until the end of the simulation. Note that the

value of prescribed displacement/rotation in the table is not necessarily imposed during the

simulation. It depends on how the user sets constraints on nodes. To prescribe

displacements/rotations the user has to define both displacements and constraints inputs, in

order to choose if each DOF is free or fixed (which may vary along solution sequence). If the DOF

is free (default), the corresponding nodal displacement is ignored.

Note: Giraffe performs a linear interpolation between data provided as a tabular time-

series. In case of a need of data outside the defined time-range in a table, Giraffe considers: (i)

the initially defined value as constant for time-values prior to it and (ii) the lastly defined value

as constant for time-values after it.

Giraffe User’s Manual version 2.0.64

74

DisplacementField

Creates a linear time-varying displacement field at nodes during a given solution step.

Syntax:

DisplacementField ID NNodes NN CS CSID SolutionStep SS
//Node UX UY UZ ROTX ROTY ROTZ
table data

• ID: current displacement identification number

• NN: number of nodes that will have an assigned displacement data

• CSID: coordinate system identification number

• SS: solution step number associated with the displacement field prescription

• table data: table of nodal displacement data following the rule:

column 1: node

columns 2-4: components of displacement vector

columns 5-7: components of the rotation vector (Euler rotation vector)

Example:

DisplacementField 1 NNodes 5 CS 1 SolutionStep 2
//Node UX UY UZ ROTX ROTY ROTZ
1 0 1.0 0 0 0 0
2 0 0.5 0 0 0 0
3 0 0.0 0 0 0 0
6 0 -0.5 0 0 0 0
7 0 -1.0 0 0 0 0

Additional information:

 A nodal displacement field employs a table to define a field of generally distinct linear

time-varying displacement/rotation for a set of nodes. All nodes assigned have independent

displacement/rotation. Displacement and rotation vector components have to be defined using

the desirable coordinate system CSID. The rotation input is made in radians by a Euler rotation

vector.

 Displacement/rotation prescription is done in an incremental way. Thus, at each time-

step of solution an increment of displacement/rotation is prescribed following a linear

increment along time, such that along the solution step chosen the whole amount of

displacement/rotation is prescribed.

Note that the value of prescribed displacement/rotation in the table is not necessarily

imposed during the simulation. It depends on how the user sets constraints on nodes. To

prescribe displacements/rotations the user has to define both displacements and constraints

inputs, in order to choose if each DOF is free or fixed (which may vary along solution sequence).

If the DOF is free (default), the corresponding nodal displacement is ignored.

Giraffe User’s Manual version 2.0.64

75

Constraints
Starts a command block for creation of constraints.

Syntax:

Constraints N

Name ID data

• N: number of constraints

• Name: current constraint name

• ID: current constraint identification number

• data: current constraint data (depends on constraint resources and requirements)

Example:

Constraints 2
NodalConstraint 1 NodeSet 1
 UX BoolTable 1
 UY BoolTable 1
 UZ BoolTable 1
 ROTX BoolTable 1 1
 ROTY BoolTable 1 1 0 1
 ROTZ BoolTable 1
NodalConstraint 2 NodeSet 2
 UX BoolTable 0
 UY BoolTable 0 0
 UZ BoolTable 0 0
 ROTX BoolTable 0 0
 ROTY BoolTable 0 0
 ROTZ BoolTable 0 0

Additional information:

 Each constraint is defined by a specific keyword followed by the constraint identification

number (must be an ascending sequence starting from number one) and additional data. Each

constraint available and its input data is explained next.

Constraints imposition follow the increasing sequence defined in the input file. In case

the user establishes conflicting input data, the last defined will be assumed by Giraffe.

Giraffe User’s Manual version 2.0.64

76

NodalConstraint

Creates a nodal constraint.

Syntax:

NodalConstraint ID NodeSet NSID
constraint data

• ID: current constraint identification number

• NSID: node set identification number

• constraint data: specific keywords UX, UY, UZ, ROTX, ROTY and ROTZ, each followed by

a BoolTable keyword to define nodal constraint solution sequence data

Example:

Constraints 2
NodalConstraint 1 NodeSet 1
 UX BoolTable 1
 UY BoolTable 1
 UZ BoolTable 1
 ROTX BoolTable 1 1
 ROTY BoolTable 1 1 0 1
 ROTZ BoolTable 1
NodalConstraint 2 NodeSet 2
 UX BoolTable 1
 UY BoolTable 0 1
 ROTZ BoolTable 1 0

Additional information:

 A nodal constraint is employed to define fixed DOFs in the model. When establishing a

mesh, all DOFs are free. To establish Dirichlet boundary conditions in model regions, it is

necessary to establish node sets and, on that regions, apply desirable constraints. For that, the

user may separately operate on distinct DOFs of each node, within a chosen node set. These are:

• UX: displacement in global X direction

• UY: displacement in global Y direction

• UZ: displacement in global Z direction

• ROTX: rotation in global X direction

• ROTY: rotation in global Y direction

• ROTZ: rotation in global Z direction

The BoolTable resource is used to establish the behavior of each DOF along solution

evolution (see BoolTable), that is, if the constraint is turned on/off. This permits to establish

scenarios of alternating constraints along solution evolution.

DOFs with constraints turned on are fixed. In case of definition of displacements

associated with such nodes, these will be prescribed along solution evolution, following the

established table of displacement along time, for each DOF (see Displacements). Otherwise,

Giraffe will simply consider a zero-displacement value.

Giraffe User’s Manual version 2.0.64

77

SpecialConstraints
Starts a command block for creation of special constraints.

Syntax:

SpecialConstraints N

Name ID data

• N: number of special constraints

• Name: current special constraint name

• ID: current special constraint identification number

• data: current special constraint data (depends on special constraint resources and

requirements)

Example:

SpecialConstraints 1
SameDisplacement 1 Nodes 1 2 BoolTable 1

Additional information:

 Each special constraint is defined by a specific keyword followed by the special

constraint identification number (must be an ascending sequence starting from number one)

and additional data. Each special constraint available and its input data is explained next. Models

of special constraints are presented in [6] and [7].

Differently from Constraints keyword, SpecialConstraints are established keeping

original system DOFs and including additional unknowns to enforce desired constraints

(Lagrange Multipliers). Thus, inclusion of special constraints in the model will increase the

number of unknows.

Giraffe User’s Manual version 2.0.64

78

SameDisplacement

Creates a “same displacement” special constraint.

Syntax:

SameDisplacement SCID Nodes ID1 ID2 BoolTable BDSC

• SCID: current special constraint identification number

• ID1 and ID2: nodes identification numbers

• BDSC: BoolTable data for current special constraint

Example:

SameDisplacement 1 Nodes 1 2 BoolTable 1

Additional information:

This constraint is used to enforce that the two selected nodes will present the same

displacements (but not necessarily the same rotation). It can be used to represent a spherical

joint in a mechanism, for example. The selected nodes should be initially coincident for that

purpose.

BoolTable keyword is optional. It permits creating a scenario in which the special

constraint is turned on/off along solution steps (see BoolTable). If the user does not include

BoolTable, Giraffe assumes that the special constraint will be considered for all solution steps as

turned on.

Remark: if this special constraint is used in dynamic simulations, velocity initial

conditions are to be set only to the first node. If one sets different velocity initial conditions for

both nodes, the first node velocity initial conditions are considered for both nodes. The second

node velocity initial conditions are ignored.

Giraffe User’s Manual version 2.0.64

79

SameRotation

Creates a “same rotation” special constraint.

Syntax:

SameRotation SCID Nodes ID1 ID2 BoolTable BDSC

• SCID: current special constraint identification number

• ID1 and ID2: nodes identification numbers

• BDSC: BoolTable data for current special constraint

Example:

SameRotation 1 Nodes 1 2 BoolTable 1

Additional information:

This constraint is used to enforce that the two selected nodes will present the same

rotation (but not necessarily the same displacement).

BoolTable keyword is optional. It permits creating a scenario in which the special

constraint is turned on/off along solution steps (see BoolTable). If the user does not include

BoolTable, Giraffe assumes that the special constraint will be considered for all solution steps as

turned on.

Remark: if this special constraint is used in dynamic simulations, angular velocity initial

conditions are to be set only to the first node. If one sets different angular velocity initial

conditions for both nodes, the first node angular velocity initial conditions are considered for

both nodes. The second node angular initial velocity conditions are ignored.

Giraffe User’s Manual version 2.0.64

80

RigidNodeSet

Creates a “rigid node set” special constraint.

Syntax:

RigidNodeSet SCID PilotNode PID NodeSet NSID BoolTable BDSC

• SCID: current special constraint identification number

• PID: pilot node identification number

• NSID: node set identification number

• BDSC: BoolTable data for current special constraint

Example:

RigidNodeSet 1 PilotNode 1 NodeSet 1 BoolTable 1

Additional information:

This constraint is used to establish a rigid region, which is formed by the connection of

all the nodes in the selected node set. The pilot node will always present 6 degrees of freedom,

which will rule the movement of all the nodes in the node set. The pilot node can be a node

inside the node set or an independent node.

BoolTable keyword is optional. It permits creating a scenario in which the special

constraint is turned on/off along solution steps (see BoolTable). If the user does not include

BoolTable, Giraffe assumes that the special constraint will be considered for all solution steps as

turned on.

This special constraint imposes that general rigid body movement may play a role for

the set of nodes assigned. Then, one can handle large displacements and large rotations with no

kinematic limitations.

Remark: if this special constraint is used in dynamic simulations, displacement and

rotation initial conditions are to be set only for the pilot node. Giraffe automatically evaluates,

using rigid body’s equations, the proper initial conditions for each node of the node set. If one

sets arbitrary initial conditions for the nodes, which are not compatible to pilot node’s

conditions, these are ignored.

Giraffe User’s Manual version 2.0.64

81

HingeJoint

Creates a “hinge joint” special constraint.

Syntax:

HingeJoint SCID Nodes ID1 ID2 CS CSID LinearStiffness LSV LinearDamping LDV
QuadraticDamping QDV BoolTable BDSC

• SCID: current special constraint identification number

• ID1 and ID2: nodes identification numbers

• CSID: coordinate system identification number

• LSV: linear stiffness coefficient value

• LDV: linear damping coefficient value

• QDV: quadratic damping coefficient value

• BDSC: BoolTable data for current special constraint

Example:

HingeJoint 1 Nodes 1 2 CS 1 LinearStiffness 0.0
 LinearDamping 0.0 QuadraticDamping 0.0 BoolTable 1

Additional information:

This constraint is used to represent a hinge joint. It enforces that the two selected nodes
will present the same displacements, as in SameDisplacement constraint. Furthermore, the
direction 𝐞𝟑 from the chosen coordinate system CS will represent the direction of free relative

rotation between the chosen nodes (hinge axis). The direction 𝐞𝟑𝐀
 is updated, since it is attached

to the rotation of the node A (first node defined for the hinge joint). The directions of 𝐞𝟏𝐁
 and

𝐞𝟐𝐁
 are also updated, following the node B rotations (second node defined for the hinge joint).

At the beginning, we assume that both nodes coordinate systems lie at the same
directions. During the simulation, the hinge joint ensures that 𝐞𝟑𝐀

≡ 𝐞𝟑𝐁
. For that, two

constraints r1 and r2 for rotations are enforce by:

r1 = 𝐞𝟑𝐀
⋅ 𝐞𝟏𝐁

= 0 (29)

r2 = 𝐞𝟑𝐀

⋅ 𝐞𝟐𝐁
= 0 (30)

 (a) (b)

Figure 18 – (a) Example of a hinge joint between two beams. (b) The coordinate systems of nodes A
and B after nodes rotation.

 Figure 18(a) shows an example of hinge joint, located at nodes A and B (coincident). The

coordinate systems of both nodes is initially the same, and defined by the keyword CS. After

Giraffe User’s Manual version 2.0.64

82

some movement, the rotation at nodes A and B may differ, such that the systems (which follows

nodes rotations) are as in Figure 18(b). Note that the constraints (29) and (30) are obeyed in

such transformation.

 The parameter LinearStiffness permits entering a stiffness coefficient, such that the

hinge presents a torsion stiffness. The moment Mspring generated by the torsion stiffness spring

is given by:

Mspring = Kθθ (31)

where Kθ is the linear stiffness coefficient and θ is the accumulated angle of relative rotation

around the hinge direction. The variable θ may represent finite rotations, involving many turns

around the hinge axis.

Analogously, one can enter linear and quadratic damping coefficients by the keywords

LinearDamping and QuadraticDamping. Then, the moment Mdamper can be evaluated by:

Mdamper = C1θ(𝛚A − 𝛚B) ⋅ 𝐞3A + C2θ‖(𝛚A − 𝛚B)‖(𝛚A − 𝛚B) ⋅ 𝐞3A (32)

where C1θ and C2θ are respectively linear and quadratic damping coefficients and 𝛚A and 𝛚B

are the instantaneous angular velocities of nodes A and B, respectively.

Remark: If one sets different velocity initial conditions for both nodes, the first node

velocity initial conditions are considered for both nodes. The second node velocity initial

conditions are, then, ignored. Furthermore, angular velocity conditions may have independent

value for both nodes. However, their compatibility is done by:

1) Giraffe evaluates the direction of the hinge axis 𝐞3A and projects the angular velocity

initial condition of both nodes on this direction;

2) The components that lie in the direction of the hinge axis 𝐞3A, are independent in both

nodes;

The components that lie in direction orthogonal to the hinge axis are set, taking the first

node values and copying then to the second one’s, which has its values ignored.

BoolTable keyword is optional. It permits creating a scenario in which the special

constraint is turned on/off along solution steps (see BoolTable). If the user does not include

BoolTable, Giraffe assumes that the special constraint will be considered for all solution steps as

turned on.

Giraffe User’s Manual version 2.0.64

83

UniversalJoint

Creates a “universal joint” (Cardan) special constraint.

Syntax:

UniversalJoint SCID Nodes ID1 ID2 CSA CSAID CSB CSBID BoolTable
 BDSC

• SCID: current special constraint identification number

• ID1 and ID2: nodes identification numbers

• CSAID and CSBID: coordinate systems identification numbers

• BDSC: BoolTable data for current special constraint

Example:

UniversalJoint 1 Nodes 1 2 CSA 1 CSB 2 BoolTable 1

Additional information:

This constraint is used to represent a universal (cardan) joint. It enforces that the two
selected nodes will present the same displacements, as in SameDisplacement constraint. The
selected nodes should be coincident for that purpose. Additionally, two coordinate systems are
defined, associated with the movement of the first and the second defined nodes (A and B,
respectively). The directions 𝐞𝟑𝐀

 and 𝐞𝟑𝐁
 should be used to represent the directions of the axles

that are connected using the joint. Both coordinate systems CSA and CSB directions are updated
during simulation, according to the rotations experienced by nodes A and B. The constraint
imposed to the represent the rotation transmission of cardan joint is:

r3 = 𝐞𝟏𝐀

⋅ 𝐞𝟐𝐁
= 0 (33)

(a) (b)

Figure 19 – (a) Example of a universal joint between two beams. (b) The coordinate systems of nodes
A and B.

Figure 19(a) shows an example of cardan joint, located at nodes A and B (coincident).

The coordinate systems of both nodes are different and must obey at the beginning of the

simulation the constraint (33), otherwise an error message will be shown in Giraffe output

window.

Remark: If one sets different velocity initial conditions for both nodes, the first node

velocity initial conditions are considered for both nodes. The second node velocity initial

conditions are ignored. Furthermore, angular velocity conditions may have independent value

for both nodes. However, their compatibility is done by:

Giraffe User’s Manual version 2.0.64

84

1) Giraffe evaluates the directions 𝐞𝟑𝐀
 and 𝐞𝟑𝐁

, and projects the angular velocity initial

condition of both nodes to respective directions;

2) The component of angular velocity of node A that lies in direction 𝐞𝟑𝐀
 is also imposed

to direction 𝐞𝟑𝐁
;

3) The components of angular velocity in other directions are independent.

BoolTable keyword is optional. It permits creating a scenario in which the special

constraint is turned on/off along solution steps (see BoolTable). If the user does not include

BoolTable, Giraffe assumes that the special constraint will be considered for all solution steps as

turned on.

Giraffe User’s Manual version 2.0.64

85

TranslationalJoint

Creates a “translational joint” special constraint.

Syntax:

TranslationalJoint SCID Nodes ID1 ID2 RotationNode ID3 CS CSID
 BoolTable BDSC

• SCID: current special constraint identification number

• ID1 and ID2: nodes identification numbers (to be connected by translational joint)

• ID3: rotation node identification number (to rule translational joint direction update)

• CSID: coordinate system identification number

• BDSC: BoolTable data for current special constraint

Example:

TranslationalJoint 1 Nodes 1 2 RotationNode 3 CS 1
 BoolTable 1

Additional information:

This constraint is used to represent a translational joint between the first and second
chosen nodes (nodes A and B, identified by ID1 and ID2). It enforces that the two selected nodes
will present relative displacements only along a direction 𝐞𝟑 . The direction 𝐞𝟑 is taken from

the chosen coordinate system CS and is updated along simulation according to the rotations
experienced by the rotation node assigned (ID3). The constraints enforced are the following:

r1 = 𝐞𝟏 ⋅ (𝐮𝐀 − 𝐮𝐁) = 0 (34)

r2 = 𝐞𝟐 ⋅ (𝐮𝐀 − 𝐮𝐁) = 0 (35)

This type of joint is very useful for establishing suspension systems, as in the example:

Figure 20 – Example of a suspension system

Giraffe User’s Manual version 2.0.64

86

In this example a spring/dashpot element is defined between nodes A and B. Also, one

has a mass element defined at node B, while node A is embedded in frame structure, as a part

meshed using beam elements. In order to avoid undesirable rotations of the spring/dashpot one

may establish a translational joint constraint between nodes A and B, thus considering gobal

direction Y as the initial direction for 𝐞𝟑 . In this case node A should be used as RotationNode.

With that, only relative displacements along current direction 𝐞𝟑 are permitted and the

suspension system may behave as desirable. Nodes A and B may translate or rotate with the

frame structure, as direction 𝐞𝟑 is updated, accordingly.

BoolTable keyword is optional. It permits creating a scenario in which the special

constraint is turned on/off along solution steps (see BoolTable). If the user does not include

BoolTable, Giraffe assumes that the special constraint will be considered for all solution steps as

turned on.

Giraffe User’s Manual version 2.0.64

87

Contacts
Starts a command block for creation of contact constraints.

Syntax:

Contacts N

Name ID data

• N: number of contacts

• Name: current contact name

• ID: current contact identification number

• data: current contact data (depends on contact resources and requirements)

Example:

Contacts 2
NSSS 1 NodeSet 1 SurfaceSet 1 MU 0.0 EPN 1e8

 CN 0.0 EPT 1e7 CT 0.0 Pinball 1000 Radius 0.0

MaxPointwiseInt 1 BoolTable 1

SSSS 2 SurfaceSet1 1 SurfaceSet2 2 MU 0.0 EPN 1e8

 CN 0.0 EPT 1e7 CT 0.0 Pinball 1000 BoolTable 1

Additional information:

 Each contact is defined by a specific keyword followed by the contact identification

number (must be an ascending sequence starting from number one) and additional data. Each

contact available and its input data is explained next.

Details about Giraffe contact formulations can be found in papers: [8] [9] [10] [11] [12]

[13]. A complete explanation on most methods implemented in Giraffe may be found in [14].

Giraffe User’s Manual version 2.0.64

88

NSSS

Creates a contact constraint for the interaction between a node set and a surface set (NSSS).

Syntax:

NSSS CID NodeSet NSID SurfaceSet SSID MU MUV EPN EPNV
 CN CNV EPT EPTV CT CTV Pinball PV Radius RV
MaxPointwiseInt NP BoolTable BTC

• CID: current contact constraint identification number

• NSID: node set identification number

• SSID: surface set identification number

• MUV: coefficient of friction value

• EPNV: penalty coefficient to enforce normal contact constraint (no penetration)

• CNV: normal damping parameter coefficient

• EPTV: penalty coefficient to enforce tangential contact constraint (sticking condition)

• CTV: tangential damping parameter coefficient

• PV: pinball radius value (contact rough searching)

• RV: sphere radius value surrounding each node in the node set

• NP: maximum number of contact pointwise interactions between each sphere and

surface

• BTC: bool table data for current contact constraint (see BoolTable)

Example:

NSSS 1 NodeSet 1 SurfaceSet 1 MU 0.0 EPN 1e8
 CN 0.0 EPT 1e7 CT 0.0 Pinball 1000 Radius 0.0
MaxPointwiseInt 1 BoolTable 1

Additional information:

This contact formulation uses developments detailed in [12]. It is an enhanced master-

slave, which considers a spherical surface around each node defined in the chosen node set

(sphere). Each sphere interacts with surfaces in the chosen surface set, in case of contact

occurrence.

Constraints enforcements are done by penalty method. Thus, it is necessary for the user

to input penalty parameters data. Usually these may be calibrated based on physical information

related to the desired scenario, basing on equivalent local stiffness, leading to allowable

penetration on each contact zone.

Damping coefficients are useful for dissipation of energy during impact simulations,

avoiding high frequency oscillations on contact forces.

Pinball radius is a rough search geometrical parameter that is used by Giraffe to establish

probable and not probable contact interactions. The larger the penalty parameter, the heavier

will be the model, since Giraffe will spend time for a larger number of possible contact

interactions. However, small pinball radii lead to loosing contact detection. Thus, it is a

Giraffe User’s Manual version 2.0.64

89

compromise between accuracy and solution speed. In case the user is in doubt about this

parameter, it is better to test it with high values and, afterwards, decrease it.

Usually only a single pointwise contact interaction is permitted between each sphere

and each surface. However, some surfaces have the possibility of seeking for more than one

pointwise contact solution (typically on non-convexity scenarios).

BoolTable keyword is optional. It permits creating a scenario in which the contact

constraint is turned on/off along solution steps (see BoolTable). If the user does not include

BoolTable, Giraffe assumes that the contact constraint will be considered for all solution steps

as turned on.

Giraffe User’s Manual version 2.0.64

90

SSSS

Creates a contact constraint for the interaction between two surface sets (SSSS).

Syntax:

//Syntax 1 – a single friction coefficient value
SSSS CID SurfaceSet1 SS1ID SurfaceSet2 SS2ID MU MUV EPN EPNV
 CN CNV EPT EPTV CT CTV Pinball PV BoolTable BTC
//Syntax 2 – static and dynamic friction coefficient values
SSSS CID SurfaceSet1 SS1ID SurfaceSet2 SS2ID MUS MUSV MUD MUDV
EPN EPNV CN CNV EPT EPTV CT CTV Pinball PV BoolTable BTC
//Optional keywords:
WriteReport

• CID: current contact constraint identification number

• SS1ID: surface set 1 identification number

• SS2ID: surface set 2 identification number

• MUV: coefficient of friction value

• MUSV: static coefficient of friction value

• MUDV: dynamic coefficient of friction value

• EPNV: penalty coefficient to enforce normal contact constraint (no penetration)

• CNV: normal damping parameter coefficient

• EPTV: penalty coefficient to enforce tangential contact constraint (sticking condition)

• CTV: tangential damping parameter coefficient

• PV: pinball radius value (contact rough searching)

• BTC: bool table data for current contact constraint (see BoolTable)

• WriteReport: keyword to instruct Giraffe to produce reports for each local contact

problem solved (only use it for debugging purposes because it takes time for writing)

Example:

SSSS 1 SurfaceSet1 1 SurfaceSet2 2 MU 0.0 EPN 1e8
 CN 0.0 EPT 1e7 CT 0.0 Pinball 1000 BoolTable 1

Additional information:

This contact formulation uses developments detailed in [9] and [10]. It is master-master

contact formulation, which considers interaction between surfaces with no election of slave

points.

Constraints enforcements are done by penalty method. Thus, it is necessary for the user

to input penalty parameters data. Usually these may be calibrated based on physical information

related to the desired scenario, basing on equivalent local stiffness, leading to allowable

penetration on each contact zone.

Damping coefficients are useful for dissipation of energy during impact simulations,

avoiding high frequency oscillations on contact forces.

Giraffe User’s Manual version 2.0.64

91

Pinball radius is a rough search geometrical parameter that is used by Giraffe to establish

probable and not probable contact interactions. The larger the penalty parameter, the heavier

will be the model, since Giraffe will spend time for a larger number of possible contact

interactions. However, small pinball radii lead to loosing contact detection. Thus, it is a

compromise between accuracy and solution speed. In case the user is in doubt about this

parameter, it is better to test it with high values and, afterwards, decrease it.

When the user performs a degeneration of surfaces involved in the SSSS contact, Giraffe

automatically considers all degenerated cases for contact. With that the user may construct a

set of curve/surface or point/surface contact pairs automatically within the same contact

creation.

BoolTable keyword is optional. It permits creating a scenario in which the contact

constraint is turned on/off along solution steps (see BoolTable). If the user does not include

BoolTable, Giraffe assumes that the contact constraint will be considered for all solution steps

as turned on.

Giraffe User’s Manual version 2.0.64

92

InitialConditions
Starts a command block for creation of initial conditions to be used in a transient dynamic

analysis.

Syntax:

InitialConditions N
InitialCondition ICID Node NID DU DUX DUY DUZ OMEGA OX
 OY OZ SolutionStep SSID

• N: number of initial conditions

• ICID: current initial condition identification number

• NID: node identification number

• DUX, DUY and DUZ: components of velocity vector (on a global coordinate system)

• OX, OY and OZ: components of angular velocity vector (on a global coordinate system)

• SSID: solution step identification number

Example:

InitialConditions 1
InitialCondition 1 Node 1 DU 0.0 1.0 0.0 OMEGA 0.0
 0.0 0.0 SolutionStep 1

Additional information:

 Each initial condition is defined followed by the initial condition identification number

(must be an ascending sequence starting from number one) and additional data. All data is

interpreted on global coordinate system. The solution step input is necessary to associate the

initial condition to a given solution step (dynamic).

Remark: when inserting initial conditions to nodes involved in a special constraint,

please note that some of them may be ignored, according to the kind of special constraint.

Giraffe User’s Manual version 2.0.64

93

Points
Starts a command block for creation of points to be used to compound geometric entities (e.g.:

surfaces).

Syntax:

Points N
Point ID X Y Z

• N: number of points

• ID: current point identification number

• X: current point X coordinate (on a global coordinate system)

• Y: current point Y coordinate (on a global coordinate system)

• Z: current point Z coordinate (on a global coordinate system)

Example:

Points 3
Point 1 1.0 0.0 3.0
Point 2 0.0 2.5 -5.1
Point 3 0.0 0.0 -10.0

Additional information:

 Each point is defined by the keyword Point followed by the point identification number

(must be an ascending sequence starting from number one), coordinates X, Y and Z.

Giraffe User’s Manual version 2.0.64

94

Arcs
Starts a command block for creation of arcs to be used to compound geometric entities (e.g.:

extruded or revolved surfaces).

Syntax:

Arcs N
Arc ID InitialPoint XIP YIP FinalPoint XFP YFP
 CenterPoint XCP YCP

• N: number of arcs

• ID: current arc identification number

• XIP: X coordinate of the initial point of the arc

• YIP: Y coordinate of the initial point of the arc

• XFP: X coordinate of the final point of the arc

• YFP: Y coordinate of the final point of the arc

• XCP: X coordinate of the center point of the arc

• YCP: Y coordinate of the center point of the arc

Example:

Arcs 2
Arc 1 InitialPoint 0.0 -1.0 FinalPoint 0.0
 1.0 CenterPoint -1.0e5 0.0
Arc 2 InitialPoint 0.024 -0.132 FinalPoint 0.024
0.132 CenterPoint -0.075 0.0

Additional information:

 Each arc is defined by the keyword Arc followed by the arc identification number (must

be an ascending sequence starting from number one), its initial point, final point and center

point.

The arc is supposed to lie on a local XY plane. The coordinate parameters indicating its

initial point, end point and center point are understood on a local coordinate system (to be

defined by the user). Figure 21 illustrates the arc:

Figure 21 – Arc definition on a local coordinate system (figure from [7])

Giraffe User’s Manual version 2.0.64

95

The arc parameterization 𝐚(𝜃) is given by:

𝐚(𝜃) = [
𝑟 cos 𝜃 + XCP
𝑟 sin 𝜃 + YCP

0
]

(36)

where 𝑟 is the arc radius (evaluated by Giraffe automatically). The arc center is given by local

coordinates 𝐜 = (XCP, YCP). In Figure 21 one may observe two particular evaluations of

parameterizations, for the initial point and for the end point of the arc, given by 𝐢 and 𝐟. The

location of these points in the local coordinate system compose the input data, such that 𝐢 =

(XIP, YIP) and 𝐟 = (XFP, YFP).

Giraffe User’s Manual version 2.0.64

96

Surfaces
Starts a command block for creation of surfaces.

Syntax:

Surfaces N

Name ID data optional

• N: number of surfaces

• Name: current surface name

• ID: current surface identification number

• data: current surface data (depends on surface resources and requirements)

• optional: optional keywords for degenerating a surface

Example:

Surfaces 2
RigidTriangularSurface_1 1 Points 1 2 3 PilotNode 1
FlexibleSECylinder_1 2 A 0.1 B 0.1 N 3.0 CS 1
 NormalExterior Nodes 1 2

Additional information:

 Each surface is defined by a specific keyword followed by the surface identification

number (must be an ascending sequence starting from number one) and additional data. Each

surface available and its input data is explained next.

 The user may choose a fixed value for a given convective coordinate or, alternatively,

establish a number of divisions to be performed by Giraffe along the valid range of a given

convective coordinate, thus establishing a set of fixed values for such coordinate. If this is the

choice, Giraffe performs divisions uniformly along that coordinate.

When employing degeneration, the original surface turns into a curve (or a set of curves) or a

point (or a set of points). Examples of degenerations are given next:

Giraffe User’s Manual version 2.0.64

97

//Degeneration into a single point with Coord1 = C1V and Coord2 = C2V
Degeneration Coord1 C1V Coord2 C2V
//Degeneration into a set of points with Coord1 = C1V and ND2 divisions along Coord2 range
Degeneration Coord1 C1V Div2 ND2
//Degeneration into a set of points with ND1 divisions along Coord1 range and Coord2 = C2V
Degeneration Div1 ND1 Coord2 C2V
//Degeneration into a set of points with ND1 divisions along Coord1 range and ND2 divisions
along Coord2 range
Degeneration Div1 ND1 Div2 ND2
//Degeneration into a single curve with Coord1 = C1V
Degeneration Coord1 C1V
//Degeneration into a single curve with Coord2 = C2V
Degeneration Coord2 C2V
//Degeneration into a set of curves with ND1 divisions along Coord1
Degeneration Div1 ND1
//Degeneration into a set of curves with ND2 divisions along Coord2
Degeneration Div2 ND2

Giraffe User’s Manual version 2.0.64

98

RigidTriangularSurface_1

Creates a rigid triangular surface.

Syntax:

RigidTriangularSurface_1 SID Points ID1 ID2 ID3 PilotNode PNID

• SID: current surface identification number

• ID1, ID2 and ID3: points identification numbers

• PNID: pilot node identification number

Example:

RigidTriangularSurface_1 1 Points 1 2 3 PilotNode 1

Additional information:

The vertices of a rigid triangular region are defined by A, B and C, positioned at 𝐱A , 𝐱B and

𝐱C , respectively. The surface is parameterized by:

Γ(ζ, θ) = [NA(ζ, θ) NB(ζ, θ) NC(ζ, θ)] [

𝐱A

𝐱B

𝐱C

], (37)

with NA(ζ, θ) = −
1

2
(ζ + θ), NB(ζ, θ) =

1

2
(1 + ζ) and NC(ζ, θ) =

1

2
(1 + θ). The parameters ζ

and θ map the points inside the triangular region. An example is given in Figure 22.

Figure 22 – Rigid triangular surface example

This surface is rigidly connected to a pilot node, which rules its movement.

Note: this surface is currently available for using together with the contact NSSS.

Giraffe User’s Manual version 2.0.64

99

RigidOscillatorySurface_1

Creates a rigid oscillatory surface.

Syntax:

RigidOscillatorySurface_1 SID A1 A1V A2 A2V A12 A12V

 Lambda1 L1V Lambda2 L2V Phi1 P1V Phi2 P2V Waves1

 W1N Waves2 W2N CS CSID PilotNode PNID

• SID: current surface identification number

• A1V: amplitude to sin in direction ζ of surface parameterization

• A2V: amplitude to sin in direction θ of surface parameterization

• A12V: amplitude to the product of sines in directions ζ and θ of surface

parameterization

• L1V: wave length along direction ζ of surface parameterization

• L2V: wave length along direction θ of surface parameterization

• P1V: phase along direction ζ of surface parameterization

• P2V: phase along direction θ of surface parameterization

• Waves1: number of waves along direction ζ of surface parameterization

• Waves2: number of waves along direction θ of surface parameterization

• CSID: coordinate system identification number

• PNID: pilot node identification number

Example:

RigidOscillatorySurface_1 1 A1 1.0 A2 1.0 A12 0.0
 Lambda1 1.0 Lambda2 2.0 Phi1 0.0 Phi2 0.0 Waves1
 2.5 Waves2 1.5 CS 1 PilotNode 1

Additional information:

A rigid oscillatory surface may be used to define wave patterns on a surface, possibly in

two directions. One may define it as aligned with an arbitrary direction, and rigidly attached to

a pilot node, which will rule its movement along the model evolution. Let one define a function

in a local coordinate system (P, ζ, θ), where P is the pilot node position – origin of the system:

Γ(ζ, θ) = 𝐱P + 𝐐[
ζ
θ

Ψ(ζ, θ)
], (38)

where 𝐱P is the pilot node position, 𝐐 is a rotation matrix that rules the alignment of the surface

in space, and depends on its initial orientation and on the pilot node rotation experienced during

the model evolution. Finally, Ψ(ζ, θ) is a function used to describe the local geometry of the

surface, given by:

Ψ(ζ, θ) = A1 sin (
2πζ

λ1
+ ϕ1) + A2 sin (

2πθ

λ2
+ ϕ2) + A12 sin (

2πζ

λ1
+ ϕ1) sin (

2πθ

λ2
+ ϕ2), (39)

where A1, A2 and A12 are amplitudes, λ1 and λ2 are wave-lengths and ϕ1 and ϕ2 are phases,

all used to define the desired surface.

Giraffe User’s Manual version 2.0.64

100

Figure 23 – Oscillatory surface example

Note: this surface is currently available for using together with the contact NSSS.

Giraffe User’s Manual version 2.0.64

101

FlexibleSECylinder_1

Creates a flexible super elliptical surface.

Syntax:

//Surface with normal pointing outwards super elliptical cylinder
FlexibleSECylinder_1 SID A AV B BV N NV CS CSID
 NormalExterior Nodes ID1 ID2
//Surface with normal pointing inwards super elliptical cylinder
FlexibleSECylinder_1 SID A AV B BV N NV CS CSID
 NormalInterior Nodes ID1 ID2
//Defining surface with two distinct coordinate system alignments
FlexibleSECylinder_1 SID A AV B BV N NV CSA CSAID
 CSB CSBID NormalInterior Nodes ID1 ID2

• SID: current surface identification number

• AV: semi-axis value lying in direction E1

• BV: semi-axis value lying in direction E2

• NV: super ellipse exponent value

• CSID: coordinate system identification number (single alignment option)

• CSAID and CSBID: coordinate systems identification numbers (two distinct alignments

option)

• ID1 and ID2: nodes identification numbers

NormalExterior or NormalInterior keywords are used to assign that the normal direction

of the surface points outwards/inwards of super elliptical cylinder.

Example:

//Surface with normal pointing outwards super elliptical cylinder
FlexibleSECylinder_1 1 A 0.1 B 0.1 N 3.0 CS 1
 NormalExterior Nodes 1 2
//Surface with normal pointing inwards super elliptical cylinder
FlexibleSECylinder_1 2 A 0.1 B 0.1 N 3.0 CS 1
 NormalInterior Nodes 1 2
//Defining surface with two distinct coordinate system alignments
FlexibleSECylinder_1 3 A 0.1 B 0.1 N 3.0 CSA 1
 CSB 2 NormalInterior Nodes 1 2

Additional information:

A flexible surface with super-elliptical cross section can be defined with this command.

A schematic visualization of a deformed surface can be seen in Figure 24. The cross section of

the surface is given by the expression:

|
x

a
|
n

+ |
y

b
|
n

= 1, (40)

where “a” and “b” are super ellipse semi-axis. Parameter “n” is the curve exponent. The surface

extreme positions are guided by the movement of nodes, located at each extreme cross section

centroid. This includes translation and rotation. In Figure 24 one may see an example where one

Giraffe User’s Manual version 2.0.64

102

extreme cross section is twisted with respect to the other extreme cross section. This can be

used to represent the external surface of a beam element in an approximated way.

Figure 24 – Cylinder with super-elliptical cross section

The alignment of the surface extreme cross-sections at reference configuration is

defined by two coordinate systems located at both nodes that define the surface limits. In case

of a single direction is defined for both nodes, use a single coordinate system input using CS

keyword. In case of distinct alignments, use two coordinate system inputs by keywords CSA and

CSB.

Remark: the definition of two distinct coordinate systems (e.g.: CSA 1 CSB 2) is

particularly useful when the reference configuration of two connecting surfaces

FlexibleSECylinder_1 are not aligned. For example, see the extract of input code to Giraffe

defined next, where two pairs of connected surfaces are defined. The pair on the left size uses

two distinct alignments for FlexibleSECylinder_1, such that at the connection of surfaces the

same coordinate system identification number is assigned for both. The pair on the right size

assumes a single coordinate system for each surface, creating a distinct connection with

discontinuities between surfaces.

In cases of creating a surface set to represent a single contact patch composed by many

surfaces, the first option is desirable, since no holes are created between surfaces, which may

lead to contact lose or bad convergence/divergence in models.

...
Node 12 -1 -1 0.7
Node 13 -1 +1 0.7
Node 14 +1 +1 0.7
Node 15 +2 -1 0.7
Node 16 +2 +1 0.7
Node 17 +4 +1 0.7
...
CS 4
CSYS 1 E1 1 0 0 E3 0 0 1
CSYS 2 E1 0 0 1 E3 0 1 0
CSYS 3 E1 0 0 1 E3 1 1 0
CSYS 4 E1 0 0 1 E3 1 0 0
...
FlexibleSECylinder_1 1 A 0.3 B 0.3 N 2.4 CSA 2 CSB 3 NormalExterior Nodes 12 13
FlexibleSECylinder_1 2 A 0.3 B 0.3 N 2.4 CSA 3 CSB 4 NormalExterior Nodes 13 14
FlexibleSECylinder_1 3 A 0.3 B 0.3 N 2.4 CS 2 NormalExterior Nodes 15 16
FlexibleSECylinder_1 4 A 0.3 B 0.3 N 2.4 CS 4 NormalExterior Nodes 16 17

Giraffe User’s Manual version 2.0.64

103

Figure 25 – Example of distinct/single coordinate systems to align two FlexibleSECylinder_1 surfaces

Giraffe User’s Manual version 2.0.64

104

FlexibleTriangularSurface_2

Creates a flexible triangular surface.

Syntax:

FlexibleTriangularSurface_2 SID Nodes ID1 ID2 ID3 ID4 ID5 ID6

• SID: current surface identification number

• ID1, ID2, ID3, ID4, ID5 and ID6: nodes identification numbers

Example:

FlexibleTriangularSurface_2 1 Nodes 1 2 3 4 5 6

Additional information:

The nodes A, B and C are the vertices of a triangular surface and D, E and F are mid-points

of the edges of a reference triangle. They are located on 𝐱K , where K assumes any of such

node’s indexes. A triangular surface Γ may be parameterized by:

Γ(ζ, θ) = [NA
2(ζ, θ) NB

2(ζ, θ) NC
2(ζ, θ) ND

2 (ζ, θ) NE
2(ζ, θ) NF

2(ζ, θ)]

[

 𝐱A

𝐱B

𝐱C

𝐱D

𝐱E

𝐱F]

,

(41)

where NK
2(ζ, θ) are shape functions in plane ζθ. This surface experiences deformation following

the interpolation of nodes, located at points A, B, C, D, E and F. Figure 26 shows an example of

such parameterization, deformed.

Figure 26 – Flexible triangular surface example

This surface can be used to establish a surface candidate to contact covering a shell

element. The node sequence pattern follows exact the same rule of Shell_1 element (see

Shell_1).

Giraffe User’s Manual version 2.0.64

105

FlexibleArcExtrusion_1

Creates a surface generated by the extrusion of an arc along the path defined by nodes.

Syntax:

//Surface with external normal pointing to the center of arc
FlexibleArcExtrusion_1 SID Arc AID CS CSID Nodes ID1 ID2
 Concave
//Surface with external normal pointing opposite to the center of arc
FlexibleArcExtrusion_1 SID Arc AID CS CSID Nodes ID1 ID2 Convex

• SID: current surface identification number

• AID: arc identification number

• CSID: coordinate system identification number

• ID1, ID2: nodes identification numbers

• Concave: indicates that the surface external normal points to the center of arc

• Convex: indicates that the surface external normal points in the direction opposite to

the center of arc

Example:

FlexibleArcExtrusion_1 1 Arc 1 CS 1 Nodes 1 2
 Concave
FlexibleArcExtrusion_1 2 Arc 1 CS 1 Nodes 1 2 Convex

Additional information:

This surface is based on the definition of an arc on a local coordinate system, as shown in

Figure 21 and presented in [7]. The flexible extruded arc surface is designed to be attached to

two nodes, defining the direction and the limits of extrusion.

Γ(𝜁, 𝜃) = h1(𝐐1𝐚(θ) + 𝐱1) + h2(𝐐2𝐚(θ) + 𝐱2). (42)

where 𝐐1 and 𝐐2 are operators, which encompass: (i) transformation between local and global

coordinate systems – from local arc definition to the desired global orientation and (ii) rotation

experienced by nodes 1 and 2, respectively. Vectors 𝐱1 and 𝐱2 are the positions of nodes 1 and

2, respectively (considered as local origins of the local coordinate system employed to define

the arc). Shape functions h1 and h2 are given by:

h1 =
1

2
(1 − 𝜁) and

h2 =
1

2
(1 + 𝜁),

(43)

which define the extrusion parameter 𝜁. The local curve parameterization is given by:

Giraffe User’s Manual version 2.0.64

106

𝐚(𝜃) = [
𝑟 cos 𝜃 + XCP
𝑟 sin 𝜃 + YCP

0
],

(44)

as defined in Arcs section.

The extrusion direction is E3 of the local coordinate system CSID. Figure 27 illustrates

the extruded surface. In this figure the arc center point 𝐜 = (XCP, YCP) = (𝑐1, 𝑐2).

If the user’s choice for the external normal direction is “Convex”, it will be given by:

𝐧ext =
Γ,θ×Γ,ζ

‖Γ,θ×Γ,ζ‖
. (45)

If the choice is “Concave”, it will be given by:

𝐧ext = −
Γ,θ×Γ,ζ

‖Γ,θ×Γ,ζ‖
. (46)

Figure 27 – Flexible extruded arc surface (figure from [7])

Note: this surface is currently available for using together with the contact SSSS.

Giraffe User’s Manual version 2.0.64

107

RigidArcRevolution_1

Creates a surface generated by the revolution of an arc about a local axis.

Syntax:

//Surface with external normal pointing to the center of arc
RigidArcRevolution_1 SID Arc AID CS CSID Node NID Concave
 RevolutionAngle RANG FactorX XF FactorZ ZF
//Surface with external normal pointing opposite to the center of arc
RigidArcRevolution_1 SID Arc AID CS CSID Node NID Convex
 RevolutionAngle RANG FactorX XF FactorZ ZF

• SID: current surface identification number

• AID: arc identification number

• CSID: coordinate system identification number

• NID: node identification number

• Concave: indicates that the surface external normal points to the center of arc

• Convex: indicates that the surface external normal points in the direction opposite to

the center of arc

Optional data:

• RANG: value for the maximum revolution angle coordinate 𝜙 (default 𝜙 ranges from 0

to 2𝜋 – full revolution)

• XF: ovalization coefficient for local x direction (default value is 1.0)

• ZF: ovalization coefficient for local z direction (default value is 1.0)

Example:

RigidArcRevolution_1 1 Arc 1 CS 1 Node 1 Concave

Additional information:

This surface is based on the definition of an arc on a local coordinate system, as shown in

Figure 21 and presented in [7]. The rigid arc revolution surface is designed to be attached to a

single node.

Γ(𝜃, 𝜙) = 𝐐𝐚(𝜃, 𝜙) + 𝐱. (47)

where 𝐐 is an operator that transforms between local and global coordinate systems – from

local arc definition to the desired global orientation. Vector 𝐱 is the position of the node,

considered as the origin of the local coordinate system employed to define the arc.

The local surface parameterization 𝐚(𝜃, 𝜙) is given by:

𝐚(𝜃, 𝜙) = [

(𝑟 cos 𝜃 + 𝑐1)(𝑥factor cos 𝜙)

𝑟 sin 𝜃 + 𝑐2

−((𝑟 cos 𝜃 + 𝑐1)(𝑧factor sin 𝜙))

],

(48)

Giraffe User’s Manual version 2.0.64

108

such that the revolution axis is E2 of the local coordinate system CSID. The definition of the arc

is made following the guidelines presented in in Arcs section. Revolution angular parameter is

given by 𝜙 .Optional data 𝑥factor and 𝑧factor are coefficients to rule an ovalization pattern. If not

input by the user, their values are considered as 𝑥factor = 1 and 𝑧factor = 1. Figure 28 illustrates

the revolved surface. In this figure the arc center point 𝐜 = (XCP, YCP) = (𝑐1, 𝑐2).

Figure 28 – Rigid arc revolution surface (figure from [7])

If the user’s choice for the external normal direction is “Convex”, it will be given by:

𝐧ext =
Γ,ϕ×Γ,θ

‖Γ,ϕ×Γ,θ‖
. (49)

If the choice is “Concave”, it will be given by:

𝐧ext = −
Γ,ϕ×Γ,θ

‖Γ,ϕ×Γ,θ‖
. (50)

Note: this surface is currently available for using together with the contact SSSS.

Giraffe User’s Manual version 2.0.64

109

RigidNURBS_1

Creates a rigid NURBS surface attached to a node and oriented according to a local coordinate

system.

Syntax:

RigidNURBS_1 SID CS CSID PilotNode NID CADData CDID

• SID: current surface identification number

• CSID: coordinate system identification number

• NID: pilot node identification number

• CDID: CADData identification number

Example:

RigidNURBS_1 1 CS 1 PilotNode 1 CADData 1

Additional information:

RigidNURBS_1 follows the rigid body-surface parameterization presented in [15] given

by:

Γ(𝑢, 𝑣) = 𝐐O𝐬(𝑢, 𝑣) + 𝐱O, (3)

where 𝐬(𝑢, 𝑣) is a locally-defined NURBS surface parameterization, as shown in equation (2), 𝐐O

is a rotation tensor to align the NURBS surface with the desired coordinate system defined by

the CS keyword and 𝐱O to translate it to a desired location, which is the pilot node position. The

expression Γ(𝑢, 𝑣) depends on the model degrees of freedom, leading to the possibility of

updating the rigid body surface on a transient dynamics model evolution. The pilot node

translation and rotation will rule the rigid surface position/orientation.

An example of RigidNURBS_1 is shown in Figure 29:

Figure 29 – Rigid NURBS surface (figure from [15])

Note: this surface is currently available for using together with the contact SSSS.

Giraffe User’s Manual version 2.0.64

110

Monitors
Creates monitors for post-processing results of nodes, elements, contacts and node sets.

Syntax:

Monitor Sample SV

//Optional keyword to monitor nodes:
MonitorNodes nodes IDs

//Optional keyword to monitor elements:
MonitorElements elements IDs

//Optional keyword to monitor contacts:
MonitorContacts contacts IDs

//Optional keyword to monitor node sets:
MonitorNodeSets node sets IDs

• SV: sampling for saving data in monitor output files (use 1 to save all converged solutions

and larger integer numbers for decreasing data size)

• nodes IDs: list of node identification numbers (to be monitored)

• elements IDs: list of element identification numbers (to be monitored)

• contacts IDs: list of contact identification numbers (to be monitored)

• node sets IDs: list of node set identification numbers (to be monitored)

Example:

Monitor Sample SV

MonitorNodes 1 2

MonitorElements 1 2

MonitorContacts 1

MonitorNodeSets 1

Additional information:

 Monitors are extremely useful for analyzing time series. Each monitor has specific file

formats, depending on the entity chosen. Giraffe saves monitor files during the simulation

evolution with a sampling frequency ruled by the attribute input after Sample keyword.

NodeSets monitor evaluates along time the following quantities:

• the average position of the nodes in the node set;

• the total force applied on all nodes in the node set;

• the total moment applied on the nodes in the node set (the total moment is composed by

the moments applied at each node and the transport moment of the force in each node to

the average position of the nodes – taken as pole)

Giraffe User’s Manual version 2.0.64

111

PostFiles
Creates post files for post-processing results using ParaviewTM post-processor interface.

Syntax:

PostFiles

MagFactor MFV

WriteMesh MF

WriteRenderMesh RMF

WriteRigidContactSurfaces RCSF

WriteFlexibleContactSurfaces FCSF

WriteForces FF

WriteConstraints CF

WriteSpecialConstraints SCF

WriteContactForces CFF

WriteRenderRigidBodies RBF

WriteRenderParticles PF

• MFV: value of the magnification factor for displacements (for visualization purposes)

• MF: Boolean flag to write (1) or not (0) the mesh file

• RMF: Boolean flag to write (1) or not (0) the render mesh file

• RCSF: Boolean flag to write (1) or not (0) the rigid contact surfaces file

• FCSF: Boolean flag to write (1) or not (0) the flexible contact surfaces file

• FF: Boolean flag to write (1) or not (0) the forces file

• CF: Boolean flag to write (1) or not (0) the constraints file

• SCF: Boolean flag to write (1) or not (0) the special constraints file

• CFF: Boolean flag to write (1) or not (0) the contact forces file

• RBF: Boolean flag to write (1) or not (0) the rigid bodies file

• RBF: Boolean flag to write (1) or not (0) the particles file

Example:

PostFiles

MagFactor 1.0

WriteMesh 1

WriteRenderMesh 1

WriteRigidContactSurfaces 0

WriteFlexibleContactSurfaces 0

WriteForces 0

WriteConstraints 0

WriteSpecialConstraints 0

WriteContactForces 0

WriteRenderRigidBodies 0

WriteRenderParticles 0

Giraffe User’s Manual version 2.0.64

112

Additional information:

PostFiles keyword activates saving of output files containing information for post-

processing the simulation using PARAVIEWTM. The sampling for saving post files is established

on solution steps definition.

The MagFactor keyword is a magnification factor that will be used to multiply all the

displacements experienced in the model, in the visualization of deformed shape frames. If the

user enters “1.0”, the deformed shape will show deformation patterns in real scale. A larger

value than “1.0” can be used in case of simulations involving very small displacements/rotations,

to help on visualization of results.

Some write control flags have to be set by the user. Each one may be turned on/off, by

the values “1” or “0”, respectively. The choice of adequate save outputs permit to visualize more

details of the model and are very useful for generating high-quality animations and good post-

processing interpretations.

Each write control flag is described below:

• WriteMesh: to write the base mesh information. E.g.: beams are represented by lines

passing representing the axis. Particles are represented by points. Shells are

represented my mid-surfaces.

• WriteRenderMesh: to write the rendered mesh, every element as a 3D solid. E.g.: beams

are represented by the chosen cross section extruded along the axis direction. Shells are

represented including the thickness information.

• WriteRigidContactSurfaces: to write the rigid contact surfaces. E.g.:

RigidTriangularSurface_1.

• WriteFlexibleContactSurfaces: to write the flexible contact surfaces. E.g.:

FlexibleTriangularSurface_2.

• WriteForces: to write data containing information of external applied forces on nodes.

It covers NodalLoads and NodalFollowerLoads. It may be used to construct arrow glyphs

in ParaviewTM interface.

• WriteConstraints: to write constraints symbols.

• WriteSpecialConstraints: to write special constraints symbols.

• WriteContactForces: to write data with contact forces locations and associated normal

and friction values. It may be used to construct arrow glyphs in ParaviewTM interface.

• WriteRenderRigidBodies: to write data with rigid bodies rendering points.

• WriteRenderParticles: to write particles data. External surfaces are represented.

Useful data is written by Giraffe when requesting WriteRenderMesh. A vector data

associated with each cell, named ElementProperties contains information about:

• Element type associated number (according to Table 7)

• Associated material number

• Associated section number (for beams, shells and trusses)

• Associated coordinate system number

Giraffe User’s Manual version 2.0.64

113

Table 7 – Element types and associated numbers

Element type number

Beam_1 1

Pipe_1 2

Shell_1 3

Mass_1 4

SpringDashpot_1 5

RigidBody_1 6

Truss_1 7

The objective of this data is to provide the user the possibility of creating selections for

better post-processing in ParaviewTM (e.g.: selecting only cells associated with beam elements,

or with a given material number, etc.). See Appendix for more information.

Note: post files are always created in the model, even if the user does not request then. In such

case, the only output will be the base mesh.

Giraffe User’s Manual version 2.0.64

114

SolverOptions
Sets solver options (for parallel processing).

Syntax:

SolverOptions
Processors NP LinSys ST

• NP: number of processors (cores) to be used for processing the model

• ST: solver type for systems of linear equations (“Direct” or “Iterative”).

Example:

SolverOptions
Processors 4 LinSys Direct

Additional information:

The SolverOptions keyword is used by Giraffe to set the parallel processing solver
options. It rules how Giraffe will use OpenMPTM parallel processing routines, which can be really
useful for speeding up model solution. Linear systems of equations are solved by PARDISOTM
library routines.

Giraffe User’s Manual version 2.0.64

115

SolutionSteps
Establishes a sequence of solution steps to be solved by Giraffe.

Syntax:

SolutionSteps N

Name ID data

• N: number of solution steps

• Name: current solution step name

• ID: current solution step identification number

• data: current solution step data (depends on solution step resources and requirements)

Example:

SolutionSteps 2

Static 1
EndTime 2
TimeStep 0.1
MaxTimeStep 0.2
MinTimeStep 0.01
MaxIt 12
MinIt 3
ConvIncrease 2
IncFactor 1.2
Sample 1

Dynamic 2
EndTime 3
TimeStep 0.1
MaxTimeStep 0.2
MinTimeStep 0.01
MaxIt 12
MinIt 3
ConvIncrease 2
IncFactor 1.2
Sample 2
RayleighDamping Alpha 0 Beta 0 Update 0
NewmarkCoefficients Beta 0.3 Gamma 0.5

Additional information:

 Each solution step is defined by a specific keyword followed by the solution step

identification number (must be an ascending sequence starting from number one) and

additional data. Each solution step available and its input data is explained next.

 Solution steps are used to create a sequence of solutions. There is a global “time”

tracking parameter to rule all solution steps. The default start-time is zero. Then, each solution

step has a definition of end-time. Note that the end-time of a given solution step must be larger

Giraffe User’s Manual version 2.0.64

116

than the end-time of the previous solution step, otherwise Giraffe will prompt an error message

prior to solution start. Exceptions are modal analysis solution steps that have no end-time

parameter as input. In this case, time is considered frozen during modal analysis.

Multiple solution steps may be created to establish starting/ending of constraint actions,

contacts, special constraints, or even to split between statics and dynamics, according to the

nonlinear model convenience.

The final converged model configuration at the end of a solution step is always taken as

the start point for the next solution step. When modal analysis is performed, no changes exist

on the model configuration for a next solution step.

Constraints, special constraints and contacts are considered according to the defined

BoolTable in each particular creation of such resources. Definition of loads or displacements is

made for each solution step following the time variable as a global tracking.

After simulation is finished, the user will find requested result files for each solution step
in separate folders: “/post/solution_i/”, where “i” is the solution identification number.

Giraffe User’s Manual version 2.0.64

117

Static

Creates a solution step to solve a nonlinear static analysis.

Syntax:

Static SID
EndTime EV
TimeStep TS
MaxTimeStep MAX
MinTimeStep MIN
MaxIt MAXIT
MinIt MINIT
ConvIncrease CONV
IncFactor INCF
Sample SA

• SID: current solution step identification number

• EV: end time of current solution step

• TS: time-step of current solution step

• MAX: maximum time-step of current solution step

• MIN: minimum time-step of current solution step

• MAXIT: maximum number of iterations to be performed during Newton-Raphson

routine, for each time-step within the current solution step

• MINIT: minimum number of iterations, to indicate convergence easiness

• CONV: number of sequential converged time-steps to indicate convergence easiness

• INCF: time-step increasing factor

• SA: sampling variable to rule post-processing files generation.

Example:

Static 1
EndTime 2.5
TimeStep 0.10
MaxTimeStep 0.25
MinTimeStep 0.01
MaxIt 15
MinIt 3
ConvIncrease 4
IncFactor 1.5
Sample 1

Additional information:

 A static solution step is defined by a sequence of attributes, with the objective of

creating an auto-adaptive scheme for nonlinear solution, capable of increasing or decreasing the

time-step automatically. In the context of a static analysis, the time variable may be understood

as a scalar tracking parameter that permits evaluation of a sequence of loads, constraints and

boundary conditions. The time-period of a given static solution step goes from the previously

converged time value until the end time of the current solution step, set by the user. Depending

Giraffe User’s Manual version 2.0.64

118

on the easiness or hardness of convergence, time-step may be updated automatically according

to the parameters, explained below:

• EndTime: defines the final instant for the current solution step.

• TimeStep: defines the initial time step to be used for the evolution of the nonlinear

model.

• MaxTimeStep: defines the maximum time step to be used for the evolution of the

nonlinear model.

• MinTimeStep: defines the minimum time step to be used for the evolution of the

nonlinear model. In case of convergence difficulties, Giraffe automatically performs

bisections (i.e., decreases automatically the time-step). In case of many unsuccessful

bisections, when the minimum time step is approached, the simulation stops with an

error message.

• MaxIt: defines the maximum number of iterations, which will be performed prior to

assume that divergence occurred. There are two possibilities of divergence: by achieving

the maximum number of iterations or by achieving a very high residual value, defined

by ConvergenceCriteria keyword.

• MinIt: defines the minimum number of iterations. Once a time step converges with less

or equal to this number of iterations, the next time step will be increased by the

IncFactor coefficient. Thus, it may be seen as an identifier of easy solution.

• ConvIncrease: defines the sequential number of converged time steps that, once

achieved, will also show that there is the possibility of increasing the time step value.

Then, IncFactor coefficient is used to increase the time-step. Once applied, the

converged partial solutions counting process re-starts.

• IncFactor: defines the factor for increasing the time step, in case of easy convergence.

• Sample: defines the sampling for saving post-processing files with partial converged

solutions along time evolution. Entering the number “1” claims Giraffe to save all

converged steps (many files can be generated).

Giraffe User’s Manual version 2.0.64

119

Dynamic

Creates a solution step to solve a nonlinear dynamic analysis (transient dynamics).

Syntax:

Dynamic SID
EndTime EV
TimeStep TS
MaxTimeStep MAX
MinTimeStep MIN
MaxIt MAXIT
MinIt MINIT
ConvIncrease CONV
IncFactor INCF
Sample SA
RayleighDamping Alpha AD Beta BD Update UD
NewmarkCoefficients Beta BN Gamma GN

• SID: current solution step identification number

• EV: end time of current solution step

• TS: time-step of current solution step

• MAX: maximum time-step of current solution step

• MIN: minimum time-step of current solution step

• MAXIT: maximum number of iterations to be performed during Newton-Raphson

routine, for each time-step within the current solution step

• MINIT: minimum number of iterations, to indicate convergence easiness

• CONV: number of sequential converged time-steps to indicate convergence easiness

• INCF: time-step increasing factor

• SA: sampling variable to rule post-processing files generation.

• AD: coefficient that multiplies mass matrix for Rayleigh damping evaluation

• BD: coefficient that multiplies stiffness matrix for Rayleigh damping evaluation

• UD: flag to update (1) or not (0) the Rayleigh damping matrix in each time step beginning

• BN and GN: Newmark time-integrator β and γ parameters

Example:

Dynamic 1
EndTime 2.5
TimeStep 0.10
MaxTimeStep 0.25
MinTimeStep 0.01
MaxIt 15
MinIt 3
ConvIncrease 4
IncFactor 1.5
Sample 1
RayleighDamping Alpha 0.0 Beta 0.0 Update 0
NewmarkCoefficients Beta 0.3 Gamma 0.5

Giraffe User’s Manual version 2.0.64

120

Additional information:

 A dynamic solution step is defined by a sequence of attributes, with the objective of
creating an auto-adaptive scheme for nonlinear solution, capable of increasing or decreasing the
time-step automatically. In the context of a dynamic analysis, the time variable is the physical
time, differently from static solution steps. The time-period of a given dynamic solution step
goes from the previously converged time value until the end time of the current solution step,
set by the user. Depending on the easiness or hardness of convergence, time-step may be
updated automatically according to the same parameters explained for “Static” type of solution
step.

Dynamic simulations also include damping control. Rayleigh damping model is
implemented, through usage of the following instruction example:
RayleighDamping Alpha 0 Beta 0 Update 0
 The attributes are explained next:

• Alpha: coefficient that multiplies mass matrix for compounding damping matrix

• Beta: coefficient that multiplies stiffness matrix for compounding damping matrix

• Update: flag, which can assume “1” or “0”. If updating is turned on then the damping

matrix is updated in each time step beginning, with updated information about stiffness

and mass matrices. If updating is turned off then the initial calculated damping (with

initial stiffness and mass matrices) is kept during the whole solution step.

Newmark method is used to integrate equations along time. Two coefficients are

defined in Newmark method. One can refer to [16] for more details. These coefficients are input

through NewmarkCoefficients Beta 0.3 Gamma 0.5. These are the recommended

values to be used for time-integration. The user can change such values in some particular

simulations to induce numerical damping. For example, increasing Gamma from 0.5 to a value

up to 0.6 and keeping Beta 0.3 usually introduces high-frequency numerical damping.

Giraffe User’s Manual version 2.0.64

121

Modal

Creates a solution step to solve a modal analysis.

Syntax:

Modal SID
ExportMatrices EMF
NumberModes NM
Tolerance TV
ComputeEigenvectors CEF
NumberFrames NF

• SID: current solution step identification number

• EMF: a flag to export (1) or not (0) mass and stiffness matrices as text files (sparse matrix

formats)

• NM: number of modes required

• TV: tolerance for ARPACKTM eigenvalues/eigenvectors extraction

• CEF: a flag to compute (1) or not (0) the model eigenvectors

• NF: number of frames exported to animate each model eigenvector

Example:

Modal 1
ExportMatrices 0
NumberModes 12
Tolerance 1E-6
ComputeEigenvectors 1
NumberFrames 6

Additional information:

Modal analysis has no end-time information. Thus, during modal analysis time is

considered frozen.

When performing modal analysis in a model with special constraints the results will have

no meaning, due to Lagrange multipliers present in the model (still not treated for modal

analysis in current Giraffe version).

Giraffe evaluates always the lowest magnitude eigenvalues of the system (possibly

complex numbers). Depending on the requested results, the available files will be:

• DOF_table_i.txt: a table containing the system connectivity. It contains, for each
node and local DOF, the global DOF number.

• eigenvalues_solution_i.txt: a list with the evaluated eigenvalues (real and imaginary
parts). In case the eigenvalue is a real number, the natural frequency may be
evaluated as the square root of it (rad/s).

• m_mass_i.txt: mass matrix of the system

• m_stiffness_i.txt: stiffness matrix of the system.

 Post-processing of modal analysis is detailed in Appendix: Post-processing modal

analysis using ParaviewTM.

Giraffe User’s Manual version 2.0.64

122

ConcomitantSolution
Establishes a modal concomitant solution to be solved repeated times within a given solution

step (or solution steps).

Syntax:

ConcomitantSolution Sample SV BoolTable BDC

Modal NumberModes NM Tolerance TV

• SV: sampling variable to rule concomitant solution call

• BDC: bool table data for concomitant solution

• NM: number of modes required

• TV: tolerance for ARPACKTM eigenvalues/eigenvectors extraction

Example:

ConcomitantSolution Sample 5 BoolTable 1

Modal NumberModes 10 Tolerance 1E-6

Additional information:

 A concomitant solution may be created to ask Giraffe to solve extra solutions within a
given solution step, or even along more than one solution step. For example, during a static or
dynamic solution steps, the user may be interested in evaluating system modal analysis along
time evolution. In this case a concomitant solution may be created. It does not influence in time-
evolution, neither in solution steps sequence.

According to the sample variable a modal concomitant solution will be called. If SV is
“1”, all converged time-steps will lead to a call of concomitant solution. Otherwise, larger integer
SV will lead to less concomitant solution calls, always at each SV converged time-steps. Currently
only concomitant modal analysis is available in Giraffe.

At the end of the simulation, the user will find as the result of concomitant solution a
text file containing the time-series of evaluated eigenvalues along time. It is located inside the
folder “/post/concomitant_solution/”.

Giraffe User’s Manual version 2.0.64

123

ConvergenceCriteria
Establishes convergence criteria.

Syntax:

ConvergenceCriteria

ForceTolerance FTV

MomentTolerance MTV

ForceMinimumReference FMRV

MomentMinimumReference MMRV

ConstraintMinimumReference CMRV

DisplacementTolerance DTV

RotationTolerance RTV

LagrangeTolerance LTV

DisplacementMinimumReference DMRV

RotationMinimumReference RMRV

LagrangeMinimumReference LMRV

DivergenceReference DRV

• FTV: force tolerance value

• MTV: moment tolerance value

• FMRV: force minimum reference value

• MMRV: moment minimum reference value

• CMRV: constraint minimum referentece value

• DTV: displacement tolerance value

• RTV: rotation tolerance value

• LTV: Lagrange multiplier tolerance value

• DMRV: displacement minimum reference value

• RMRV: rotation minimum reference value

• LMRV: Lagrange multiplier minimum reference value

• DRV: divergence reference value

Giraffe User’s Manual version 2.0.64

124

Example:

ConvergenceCriteria

ForceTolerance 1e-4

MomentTolerance 1e-4

ForceMinimumReference 1e-5

MomentMinimumReference 1e-5

ConstraintMinimumReference 1e-7

DisplacementTolerance 1e-4

RotationTolerance 1e-4

LagrangeTolerance 1e-4

DisplacementMinimumReference 1e-6

RotationMinimumReference 1e-6

LagrangeMinimumReference 1e-6

DivergenceReference 1e+15

Additional information:

Since Giraffe was designed to solve nonlinear finite element models, one has to define

convergence criteria, in order to guide the Newton-Raphson iterative method to stop, according

to some rules. Next, we describe each individual convergence criterion that Giraffe applies. A

solution is considered as “converged” if all the applied criteria are obeyed simultaneously.

Stricter criteria will need more iterations to achieve convergence, but will have more precision.

Default convergence criteria usually works properly for general nonlinear simulations.

In such cases, the user does not need to re-establish then. The usage of the ConvergenceCriteria

command in Giraffe input file should be made with care, and is proper for advanced users.

• ForceTolerance: a factor that multiplies the norm of the external forces vector, used to

establish a criterion of maximum allowable error for the norm of the unbalanced forces

vector. Default value is 0.01%.

• MomentTolerance: a factor that multiplies the norm of the external moments vector,

used to establish a criterion of maximum allowable error for the norm of the unbalanced

moments vector. Default value is 0.01%.

• ForceMinimumReference: a value of force, taken as very small, to avoid the

establishment of a never achievable null convergence criterion. This would occur in

cases for which no external forces are applied. In such situations, the criterion of

maximum allowable error for the norm of the unbalance forces vector is evaluated by:

ForceMinimumReference * ForceTolerance. Default value is 1e-5.

• MomentMinimumReference: a value of moment, taken as very small, to avoid the

establishment of a never achievable null convergence criterion. This would occur in

cases for which no external moments are applied. In such situations, the criterion of

maximum allowable error for the norm of the unbalance moments vector is evaluated

by: MomentMinimumReference * MomentTolerance. Default value is 1e-5.

• ConstraintMinimumReference: a small value, taken as the maximum residual for the

constraints established by SpecialConstraints command. Default value is 1e-7.

• DisplacementTolerance: a factor that multiplies the norm of the displacements vector

(experienced during the current time-step – for dynamics or sub step – for statics). It is

Giraffe User’s Manual version 2.0.64

125

used to establish a criterion of maximum allowable norm for the iterative displacements

increment (Newton Raphson). Default value is 0.01%.

• RotationTolerance: a factor that multiplies the norm of the rotations vector

(experienced during the current time-step – for dynamics or sub step – for statics). It is

used to establish a criterion of maximum allowable norm for the iterative rotations

increment (Newton Raphson). Default value is 0.01%.

• LagrangeTolerance: a factor that multiplies the norm of the Lagrange multipliers vector

(experienced during the current time-step – for dynamics or sub step – for statics). It

applies only when the simulation has SpecialConstraints. It is used to establish a criterion

of maximum allowable norm for the iterative Lagrange multipliers increment (Newton

Raphson). Default value is 0.01%.

• DisplacementMinimumReference: a value of displacement, taken as very small, to avoid

the establishment of a never-achievable null criterion for the maximum allowable norm

of the iterative displacements increment. This would occur for cases in which no

displacements occur in the system. In such situations, the criterion for maximum

allowable norm of the iterative displacements increment is evaluated by:

DisplacementMinimumReference * DisplacementTolerance. Default value is 1e-6.

• RotationMinimumReference: a value of rotation, taken as very small, to avoid the

establishment of a never-achievable null criterion for the maximum allowable norm of

the iterative rotations increment. This would occur for cases in which no rotations occur

in the system. In such situations, the criterion for maximum allowable norm of the

iterative rotations increment is evaluated by: RotationMinimumReference *

RotationTolerance. Default value is 1e-6.

• LagrangeMinimumReference: a value of Lagrange multiplier, taken as very small, to

avoid the establishment of a never-achievable null criterion for the maximum allowable

norm of the iterative Lagrange multipliers increment. This would occur for cases in

which only null Lagrange multipliers occur in the system. In such situations, the criterion

for maximum allowable norm of the iterative Lagrange multipliers increment is

evaluated by: LagrangeMinimumReference * LagrangeTolerance. It applies only when

the simulation has SpecialConstraints. Default value is 1e-6.

• DivergenceReference: defines a very large residual number, which once achieved,

means “divergence”. Then, Giraffe automatically will perform a bisection (dividing the

last load factor by two) in order to try to achieve convergence in next time-step or sub

step. Default value is 1e+15.

Giraffe User’s Manual version 2.0.64

126

Acknowledgements

Giraffe developers and users would like to thank FAPESP and CNPq for funding research

projects and scholarships related to Giraffe developments.

Giraffe User’s Manual version 2.0.64

127

References
1. GAY NETO, A.; MARTINS, C. A.; PIMENTA, P. M. Static analysis of offshore risers with a

geometrically-exact 3D beam model subjected to unilateral contact. Comp. Mechanics , v.

53, p. 125-145, 2014.

2. GAY NETO, A. Dynamics of Offshore Risers using a Geometrically-exact Beam Model with

Hydrodynamic Loads and Contact with the Seabed. Eng. Structures, v. 125, p. 438-454,

2016.

3. CAMPELLO, E. M. B.; PIMENTA, P. M.; WRIGGERS, P. A triangular finite shell element based

on a fully nonlinear shell formulation. Comp. Mechanics, v. 31, p. 505-518, 2003.

4. PIEGL, L.; TILLER, W. The NURBS book. Second. ed. Heidelberg: Springer, 1997.

5. YOJO, T. Análise não-linear geometricamente exata de pórticos espaciais. São Paulo:

Universidade de São Paulo, v. Tese de Doutorado, 1993.

6. GAY NETO, A. Simulation of Mechanisms Modeled by Geometrically-Exact Beams using

Rodrigues Rotation Parameters. Comp. Mechanics, v. 59 (3), p. 459-481, 2017.

7. DE CAMPOS, P. R. R.; GAY NETO, A. Rigid Body formulation in a finite element context with

contact interaction. Comp. Mech., n. First Online: 24 March 2018, 2018.

8. GAY NETO, A.; PIMENTA, P. M.; WRIGGERS, P. Self-contact modeling on beams experiencing

loop formation. Comp. Mechanics , v. 55(1), p. 193-208, 2015.

9. GAY NETO, A.; PIMENTA, P. M.; WRIGGERS, P. A Master-surface to Master-surface

Formulation for Beam to Beam Contact. Part I: Frictionless Interaction. Comput. Methods

Appl. Mech. Engrg. , v. 303, p. 400-429, 2016.

10. GAY NETO, A.; PIMENTA, P. M.; WRIGGERS, P. A Master-surface to Master-surface

Formulation for Beam to Beam Contact. Part II: Frictional Interaction. Comput. Methods

Appl. Mech. Engrg., v. 319, p. 146-174, 2017.

11. GAY NETO, A.; PIMENTA, P. M.; WRIGGERS, P. Contact between rolling beams and flat

surfaces. Int. J. Numer. Meth. Engng, v. 97, p. 683-706, 2014.

12. GAY NETO, A.; PIMENTA, P. M.; WRIGGERS, P. Contact between spheres and general

surfaces. Comput. Methods Appl. Mech. Engrg., v. 328, p. 686-716, 2018.

13. ZAVARISE, G.; WRIGGERS, P. Contact with friction between beams in 3-D space. Int. J.

Numer. Meth. Engng., v. 49, p. 977-1006, 2000.

14. GAY NETO, A. Modelagem computacional do contato pontual entre corpos: uma visão

integrada. São Paulo: University of São Paulo, v. Habilitation Thesis (in Portuguese), 2018.

15. GAY NETO, A.; WRIGGERS, P. Numerical method for solution of pointwise contact between

surfaces. Submitted to CMAME, 2020.

Giraffe User’s Manual version 2.0.64

128

16. WRIGGERS, P. Nonlinear Finite Element Methods. Berlin Heidelberg: Springer-Verlag ,

2008.

Giraffe User’s Manual version 2.0.64

129

Appendix

Selection by element properties in Giraffe data using ParaviewTM

Problem statement:

Imagine that you have data results for a processed simulation in Giraffe, containing

many kinds of elements, material ID’s (numbers), etc.

A hypothetic post-processing scenario is proposed: you would like to create a plot only

containing cells, filtered by element type, material properties ID, or to a more complex extract

based on data information. This is possible by using Paraview’s filters.

Step-by-step procedure:

1. Select in the model pipeline browser the data you would like to operate with. In this

example, we choose a render mesh data.

2. Create an “Extract Component” filter:

Giraffe User’s Manual version 2.0.64

130

3. Choose the input array to guide the filtering operation.

Giraffe writes “ElementProperties” array associated with cells in a render mesh

visualization, which contains numbers following the meaning:

0 – element type number

1 – material ID

2 – section ID

3 – coordinate system ID

In our example, we are interested in element type number, since we want to

select only a given type of element. Choose a name for the output of the filter. In our

example, we chose “ElementType”. Click “Apply” to make the filtering operation have

effect.

Giraffe User’s Manual version 2.0.64

131

Now we need to extract only the “Beam_1” elements from the just-filtered data. Element

types numbering follow

Giraffe User’s Manual version 2.0.64

132

Table 7. This is done by the “Threshold” filter. Create it to operate in data just-filtered

in previous step:

4. In “Threshold” filter properties, choose the scalar to guide the new selection. In this

example, “ElementType”, just created in previous step. Then, choose the

Minimum/Maximum values to control the new selection range, based on the scalar

selected. In our case, we are interested only in number 1 – associated to Beam_1

elements.

5. The new plot will filter only Beam_1 elements:

Alternatively, one may follow another steps by running a Python routine in ParaviewTM:

Giraffe User’s Manual version 2.0.64

133

Step-by-step procedure:

1. Select in the model pipeline browser the data you would like to operate with. In this

example, we choose a render mesh data.

2. Click in Tools->Python Shell.

3. Copy and Paste the following python routine in the Python Shell and press enter.

(script available in Giraffe Releases/Documentation/Giraffe&Paraview/selection_script.py)

#Python script for selection using Giraffe ElementProperties data#

src = GetActiveSource() #obtains the active source of data (selection in pipeline browser)

filt1 = ExtractComponent() #creates a filter in variable 'filt1'

filt1.InputArray = 'ElementProperties' #assigns 'ElementProperties' as the InputArray to 'filt1'

filt1.Component = 0 #assigns the index '0' (ElementType) as the Component to 'filt1'.

filt1.OutputArrayName = 'ElementTypeNumber' #assigns 'ElementType' as the OutputArrayName to 'filt1'

f = Threshold() #creates a filter

filt1.UpdatePipeline()

SetActiveSource(src) #sets the original source of data

filt2 = ExtractComponent() #creates a filter in variable 'filt2'

filt2.InputArray = 'ElementProperties' #assigns 'ElementProperties' as the InputArray to 'filt2'

filt2.Component = 1 #assigns the index '1' (MaterialNumber) as the Component to 'filt2'.

filt2.OutputArrayName = 'MaterialNumber' #assigns 'MaterialNumber' as the OutputArrayName to 'filt2'

f = Threshold() #creates a filter

filt2.UpdatePipeline()

SetActiveSource(src) #sets the original source of data

filt3 = ExtractComponent() #creates a filter in variable 'filt3'

filt3.InputArray = 'ElementProperties' #assigns 'ElementProperties' as the InputArray to 'filt3'

filt3.Component = 2 #assigns the index '2' (SectionNumber) as the Component to 'filt3'.

filt3.OutputArrayName = 'SectionNumber' #assigns 'SectionNumber' as the OutputArrayName to 'filt3'

f = Threshold() #creates a filter

filt3.UpdatePipeline()

SetActiveSource(src) #sets the original source of data

filt4 = ExtractComponent() #creates a filter in variable 'filt4'

filt4.InputArray = 'ElementProperties' #assigns 'ElementProperties' as the InputArray to 'filt4'

filt4.Component = 3 #assigns the index '3' (CSNumber) as the Component to 'filt4'.

filt4.OutputArrayName = 'CSNumber' #assigns 'CSNumber' as the OutputArrayName to 'filt4'

f = Threshold() #creates a filter

filt4.UpdatePipeline()

SetActiveSource(src) #sets the original source of data

Giraffe User’s Manual version 2.0.64

134

Post-processing modal analysis using ParaviewTM

Problem statement:

 When performing a modal analysis as a solution step “i” the user may request the

vibration modes evaluation. In this case, Giraffe saves result files on “/post/solution_i”. These

files are automatically loaded in ParaviewTM by opening the related “solution_i_mesh.pvd” file,

located in “/post” folder. Next, we show how to post-process vibration modes using ParaviewTM.

Step-by-step procedure:

1. Open in ParaviewTM the file “solution_i_mesh.pvd” (for a given “i”). Click Apply button

on the Pipeline browser. With that, all modes will be opened simultaneously. ParaviewTM

will show results like this:

2. We need to instruct ParaviewTM to extract each mode of interest for plotting results.

This is done by employing a filter named: “Extract Block”. It can be activated by selecting

in the model tree the file “solution_i_mesh.pvd”. Then, go to:

Filters->Alphabetical->Extract Block. ParaviewTM will show a menu for the choice of the

desired block, to post-process:

Giraffe User’s Manual version 2.0.64

135

3. Each block encompasses results for a given vibration mode. For example, by selecting

“Part 4” block and clicking “Apply”, we are able to see and animate results for the

vibration mode associated with the fourth eigenvalue found by Giraffe. This follows also

for the other parts, associating the part number with the eigenvalue sequential number.

