Difração

Material de apoio CABENS outubro de 2011 A.C.Neiva DRX – difração de raios X

DRX – difração de raios X

Lei de Bragg $n\lambda = 2 d \operatorname{sen} \theta \implies \operatorname{interferência} \operatorname{construtiva}$

 $r + r = d \sin \theta + d \sin \theta = n \lambda$

$n\lambda = 2d sen(2\theta)$

BD - 6 comprimentos de ondaCD - 7 comprimentos de ondaCF - 1 comprimento de onda

Ângulo θ : entre as duas linhas tracejadas

Se tivermos, por exemplo, um cristal de cobre, que tem um arranjo cúbico de face centrada, haverá diversas distâncias interatômicas — ou, mais precisamente, diversas distâncias interplanares diferentes.

Cada uma delas será responsável pela interferência construtiva (que denominaremos *picos*) em *n* ângulos θ.

Se esquecermos as inteferências com n > 1, teremos um ângulo θ para cada distância interplanar (ou seja, para cada família de planos do arranjo cristalino).

Este conjunto de distâncias interplanares é característico de cada simetria cristalina — cúbica, hexagonal, tetragonal, etc —, de modo que o conjunto de picos permite determinar tanto a simetria como o parâmetro de rede do arranjo cristalino.

Se o arranjo cristalino contiver, por exemplo, dois tipos de átomos, pode-se diferenciar o efeito de cada um deles, uma vez que o espalhamento da radiação <u>depende do tipo de átomo.</u> Pode-se, assim, determinar as posições de cada espécie na célula unitária, a taxa de ocupação, etc.

Além de permitirem a identificação da estrutura cristalina propriamente dita, os difratogramas permitem ainda a determinação de <u>tamanhos de grão</u> (ou seja, tamanho dos cristais em uma microestrutura), de <u>tensões internas</u>, de <u>defeitos cristalinos</u>, etc.

Para uma dada faixa de valores de *d*, existe uma faixa ideal de comprimentos de onda adequados para caracterização por difração.

As distâncias interplanares são valores tipicamente da ordem de <u>alguns angstrons</u>, de modo que os comprimentos de onda devem ter também esta ordem de grandeza.

No espectro eletromagnético, estes comprimentos de onda correspondem aos <u>raios X.</u>

Tabela 3.7 – Comprimento de onda das radiações mais utilizadas em difração de raios X, em nm

elemento	κα*	$K\alpha_2$ (forte)	$K\alpha_1$ (muito forte)	$Kβ_1$ (fraca)
Cr	0,229100	0,2293606	0,228970	0,208487
Со	0,1937355	0,1939980	0,1936042	0,175661
Fe	0,1790260	0,1792850	0,1788965	0,162075
Cu	0,1541838	0,1544390	0,1540562	0,392218
Мо	0,0710730	0,0713590	0,0709300	0,0632288

No caso de elétrons, utilizam-se mais freqüentemente feixes com energias em torno de 100 a 300 keV — energias consideradas altas, encontradas nos microscópios eletrônicos de transmissão.

		Equipamento razoavelmente simples							
×	Vantagens	Operação simples							
		Boa definição							
NIOS	Depende	Alta penetração							
RF		Não pode ser localizada em uma micro-região							
	Desvantagens	Pouco sensível para elementos leves							
		Diferencia pouco entre elementos com números atômicos próximos							
	Vantagens	Pode ser localizada em uma micro-região escolhida (no MET)							
٩S	語語を	Permite estudar relações de orientação entre diferentes cristais							
SON	Depende	Penetração pequena							
_ÉTI		Exige equipamento sofisticado, com alto vácuo							
Ξ	Desvantagens	Exige operador experiente							
		Para transmissão, amostra precisa ser muito fina							
		Sensível para elementos leves, em particular para hidrogênio							
	Vantagens	Diferencia bem entre elementos com números atômicos próximos							
NS		Diferencia difeentes estados magnéticos							
ROI		Permite estudo de células unitárias grandes							
ÊUT	Depende	Alta penetração							
N		Exige reator nuclear ou equipamento congênere							
	Desvantagens	Pode não diferenciar determinados pares de elementos							
		Não pode ser localizada em uma micro-região							

Filme de SmCo₅ sobre Cr

The 7 Crystal systems and 14 Bravais lattices

NO DO DO DE	- E -
	25
7,00cv	0.00

tetragonaly . 6: orterombico semplica rate centrate

7: ortorombico a

C. OPPIPate

8: onterembico e 9: ortorom f. centrale base contrata

System	Axes and angles	Bravais lattice	Lattice symbol
CUBIC	a = b = c $\alpha = \beta = \gamma = 90^{\circ}$	Simple Body-centered Face-centered	P I F
TETRAGONAL	a = b ≠ c α = β = γ = 90°	Simple Body-centered	P I
ORTHORHOMBIC	a≠b≠c α=β=γ=90°	Simple Body-centered Base-centered Face-centered	P I C F
RHOMBOHEDRAL	a = b = c α = β = γ ≠ 90°	Simple	R
HEXAGONAL	a = b ≠ c α = β = 90° γ =120°	Simple	Ρ
MONOCLINIC	a,≠b,≠c α,=γ=90°≠β	Simple Base-centered	P C
TRICLINIC	a≠b≠c α≠β≠γ≠90°	Simple	Р

All crystalline materials recognized until now fit in one of these arrangements.

Cu₂O cobre

CuO cobre

loca	I: TNE-1	TNO-7	TNO-5	IM-7	PDF-6	PJB-6	IM-9	MT-12	PDF-7	RP-3	TNO-4	TNO-6
espectro	1536	1708	1534	1707	1698	2008	2063	2068	1697	2009	1532	1535
со	r: verde	verde	verde	verde	verde	verde	verde	verde	marrom	marrom	marrom	marrom
CuSO ₄											XX	
$\overline{Cu_2SO_4}$												<u>x</u>
Cu ₃ SO ₄ (OH) ₄							<u>xxx</u>	<u>x</u>				
Cu ₄ SO ₄ (OH) ₆ .H ₂ O		<u>x</u>									<u>x</u> x	
Cu ₄ SO ₄ (OH) ₆	4			<u>xx</u>		<u>x</u>		<u>xx</u>				
$\overline{Cu}_{2}\overline{O}$	<u>x</u>	<u>x</u>		<u>x</u> x	<u>x</u> x	<u>x</u> x	· x				<u>x</u> x	<u>x</u> xx
CuO	<u>xx</u> x									<u>x</u>		<u>x</u>
CuCI	4						<u>x</u>					<u>x</u> x
SnO ₂				XX	XXX	XXX			ХХ			
SnSO ₄		<u>x</u>										
Sn_3S_4	<u>x</u> x				<u>x</u> x				<u>xx</u> x		<u>x</u>	
FeO(OH)					Х	Х					Х	ХХ
Fe ₂ O ₃	4			<u>xx</u>	<u>x</u> x							
Fe ₃ O ₄							<u>x</u>		<u>x</u>			
Fe ₂ O _{3·H2O}	4									<u>x</u>		
ZnO	XXX	Х						XXX			XXX	
Zn(OH) ₂	<u>x</u> x									<u>x</u>		
ZnS	4				<u>x</u>							
PbSO ₄							XX					
SiO ₂	4								<u>x</u>	<u>x</u>		
Cu	4	<u>xx</u>										
$\overline{Cu_3Zn_2}$	4		<u>X</u> *									
Fe	1								<u>x</u> x	xxx		

preparação

após 3 dias em 0,5M NaCl

após 11 dias

copper + S1 bronze + S1 copper + S2 bronze + S2 Treated samples exposed to .5M NaCl solution for three days **S1**

SEM, surface, on copper

S3

RESUMO

Sample	XRI)	SEM - EDXA				
	compounds		morphology	composition			
Copper + S1	CuCl	nantokite gerhardite	External layer (prismatic crystals)	High Cu, O and Zn, Iow Fe			
(2 layers)	Cu ₂ (NO ₃)(OH) ₃ Cu ₂ 0	cuprite	Internal layer	High Cu and Cl			
Copper +		nantokite	Triangular prismatic crystals	High CI and Cu			
S2	$Cu_2CI(OH)_3$	atacamite	Needles	High O, Cu and Zn			
Bronze +	Cu ₂ Cl(OH) ₃	atacamite	External layer (prismatic crystals)	High Cu and O, low Fe and Zn			
S1 (2 layers)	CuCl Cu(NO ₃)(OH) ₃	nantokite gerhardite	External layer (needles)	High Cu, O and Zn			
			Internal layer	High Cu and Cl			
Bronze + S2	CuCl Cu ₂ (NO ₃)(OH) ₃ Cu ₂ Cl(OH) ₃	nantokite gerhardite atacamite	Triangular prismatic crystals	High CI and Cu			
Copper + S3	Cu ₂ Cl(OH) ₃ CuCl	atacamite nantokite	Crystals with no definite morphology	High CI and Cu			
Bronze + S3	Cu ₂ Cl(OH) ₃ CuCl	atacamite nantokite	Crystals with no definite morphology	High CI and Cu			
Copper +	Cu₄H ₆ O ₁₀ S	brochantite	External layer (needles)	High Cu, S and O			
(2 layers)	Cu ₂ Cl(OH) ₃	atacamite	Internal layer	High Cu, Cl and O			
Bronze + S4 RT	$Cu_4H_6O_{10}S$	brochantite	External layer (needles)	High Cu, S and O			
(2 layers)		alacannie	Internal layer	High Cu, CI and O			
Copper + S4 50°C	Cu ₄ H ₆ O ₁₀ S	brochantite	External layer (needles)	High Cu, S and O			
(2 layers)			Internal layer	High Cu, Cl and O			
Bronze + S4 50°C	$Cu_4H_6O_{10}S$	brochantite	External layer (needles)	High Cu, S and O			
(2 layers)		alabamile	Internal layer	High Cu, Cl and O			

mesma composição, estruturas diferentes

mesma estrutura, composições diferentes

Aquecimento: cristalização ou aumento do tamanho dos cristais?

nanoparticles for pigments and inks (ink-jet)

Sol-Gel Group of the ICMM is using the experience of the **INCOREDEC** Project (*High Temperature Inks and a Computerised, Reliable Printing System for Marking and Decoration of Products and Semi Finished Products*),

Outras geometrias

Figure 6: Thin section of specimen in Figure 5 for micro-XRD measurements at beam-line ID22, ESRF in Grenoble/France. 160 steps over the thin section (a – left image) yielded 160 diffraction patterns (b – right image), which could be evaluated by using the Powder Diffraction File (PDF 2000).

X-RAYS IN ART AND ARCHAEOLOGY – AN OVERVIEW M. Schreiner, B. Frühmann, D. Jembrih-Simbürger, R. Linke

IDENTIFICATION OF CORROSION PRODUCTS ON METAL

SIMULATION OF CORROSION PRODUCTS ON METAL

CHARACTERIZATION OF ARCHAEOLOGICAL CERAMIC SHARDS

Black-figured and red-figured Attic Ceramic (VI - V cent. B.C.)

MAGNETITE (Fe_3O_4)

Fe⁺² and Fe⁺³ ions

Firing in reducing atmosphere

HEMATITE (Fe2O3)

Fe⁺³ ions

Firing in oxidizing atmosphere

Manifacturing technique

Mixed iron oxides fired

in different conditions

BASICS OF X-RAY

CHARACTERIZATION OF SALT EFFLORESCENCES ON STONE MATERIALS

Mosaics from

the Ancient Theatre,

Taormina (Sicily)

