Microscopia

Material de apoio CABENS outubro de 2011 A.C.Neiva

AUMENTO ÓTIMO La Olho -> distingue 0°1' = ~ 100 pm Aumento stino - 2 a 4 vezes maior Exemplos: (2 = 580 nm, amarela) a) Objetion de 10x, NA=0,15 : Resolução = 1935 nm = 1,935 pm Minimo anmento = 100/1,935 = 52,5 x Aumento ótimo = 100 a 200 x b) Objetion de 95×, NA=1,3 .. Revolução = 223 nm Minimo aumento = 100/0,223 = 460× Avmento ótimo = 1000 a 2000

Neiva e Tirello

Neiva e Tirello

Copyright ©JCPDS - International Centre for Diffraction Data 2004, Advances in X-ray Analysis, Volume 47.

Figure 5: Cross-section of the specimen taken from a mural painting of the Baroque period with a thin layer of gold on the surface (layer 1).

X-RAYS IN ART AND ARCHAEOLOGY – AN OVERVIEW M. Schreiner, B. Frühmann, D. Jembrih-Simbürger, R. Linke

LUZ POLARIZADA

USO DE LUZ POLARIZADA

a) MATERIAIS TRANSPARENTES

- IDENTIFICAR MATERIAIS (promiedados fabulados)

- DISTINGUIR MATERIAIS ISOTRÓPICOS E ANISOTRÓPICOS

- INTRODUZ CONTRASTE ENTRE GRADS

- TENJÕES INTERNAS

5) MATERIAIS OPACOS

- CONTRASTE ENTRE GRADS

- MACLAS , ORIENTASA PREPERENCIAL
- DISTINGUIR MATERIAIS ISOTRÓPICOS E ANISOTRÓPICOS

- ORIENTAÇÃO DE DOMÍNIOS MAGNÉTICOS EM MATERIAIS FERROMAGNÉTICOS

Neiva – Sm-Fe-Ti

Microscopia eletrônica MEV e MET

MEV

elétrons secundários

alto contraste de relevo, boa definição

detector

elétrons retroespalhados

pequeno contraste de relevo, baixa definição, bom contraste de composição

microscópio eletrônico de varredura

Pr-Fe-B

elétrons retroespalhados

Claro – elementos pesados Escuro – elementos leves

> depósito de óxido de Ce sobre Al

AED (raios X):

- 97,2%Pr 2,8%Fe
- fase com alto B
- 86,7%Fe 13,3%Pr (eB)

elétrons secundários

retornar

Sm-Ti-Fe

MEV com EDXA: composição de fases

> marcas de microdureza para localizar a região

microscopia óptica com luz polarizada: domínios magnéticos

MEV – pátinas artificiais

OUTRAS PÁTINAS – mapas de composição (fluorescência de raios X) no MEV

cloro

enxofre

cobre

potássio

Neiva & Robiolla

zinco

oxigênio

estanho

MEV – o sino

1 cm

Neiva – microcamadas de cobalto e cobre sobre cobre

Claro – elementos pesados Escuro – elementos leves

Neiva – Veios de grafita em ferro fundido

C:\Professores\neiva\ipiranga\inclusao disco.spc

Label A: inclusao disco

Fe						Ка				
						N	InKb			
SiKa										
0 Ka										
	FeLI									
	FeLa									
		PKa				M-K-	FeKb			
					Тікь	MINA				
СКа	and the second second		della companya de la	Т	ïKa					
	State of the second	. Abstraction	and the second	a and a part of the part of the second s	hand Healty (Allenand Allenan	And Sector	and the second sec	descended of the second se	and a state of the second s	
	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00

EBSD (Electron Backscatter Diffraction)

Linhas de Kikuchi

Figura de pólo inversa de estrutura martensídica em um aço http://www.lnls.br/lnls/cgi/cgilua.exe/sys/start.htm?sid=507

http://images.google.com.br/imgres?imgurl=http://web.mit.edu/yildi zgroup/research3_pic2.bmp&imgrefurl=http://web.mit.edu/yildizgro up/researchmetal1.htm&usg=__85sIflGsd6ApiT5PQSxW87I_cxk=&h= 850&w=1280&sz=3188&hl=pt-BR&start=56&um=1&tbnid=1qXSVbxoXeDkeM:&tbnh=100&tbnw=15 0&prev=/images%3F

Wirebond – EBSD http://www.jeolusa.com/SERVICESUPPORT/ApplicationsResources/Sampl ePreparation/ImageGallery/tabid/345/AlbumID/744-7/Page/1/Default.aspx

Characterisation and the diagenetic transformation of nonand micro-crystalline silica minerals DAVID R. LEE Department of Earth and Ocean Sciences, University of Liverpool, 4 Brownlow Street, Liverpool L69 3GP, UK (e-mail: d.r.lee@liverpool.ac.uk)

ESEM – Environmental Scanning Electron Microscopy

- ESEM diferencia-se de um SEM convencional pela presença de um gás na câmara da amostra. Portanto, as amostras não são vistas sob vácuo, mas sob um vácuo deteriorado, ou "baixo" vácuo.
- O gás atua como um condutor de cargas elétricas evitando o carregamento da amostra e facilitando a detecção do sinal.
- A possibilidade de se obter imagens com a presença de gás na câmara deve-se a duas modificações:
- 1) A coluna é dividida em diferentes zonas de pressão separadas por aberturas limitadoras de pressão.

Dados baseados em seminário de Patrícia Kaji Yasumura na disciplina "Princípios de Caracterização de Materiais por Espectroscopia, Difração e Imagem"

ESEM

 Vantagem: não é necessária nenhuma preparação da amostra que possa causar alguma destruição da superfície e as amostras podem ser arquivadas mais facilmente.

http://www.shu.ac.uk/research/meri/e-news/issue4/technique.html

http://www.phy.cam.ac.uk/research/emsuite/Pictures/ESEM%20Schematic.jpg

ESEM – Princípio de funcionamento

 Pressure range
 Pressure zone

 10⁻² torr
 Gun chamber

 10⁻² torr
 Upper column

 10⁻² torr
 EC2

 10⁻¹ torr
 EC1

 10¹⁰ torr
 Specimen

http://www.nature.com/nmat/journal/v2/n8/fig_tab/nmat898_f1.html

http://www.cmat.uni-halle.de/~heyroth/esem/esem.jpg

Exemplos de micrografias ESEM

http://www.egr.msu.edu/cmsc/esem/gallery/index.html

Imagem obtida por ESEM de uma gota de água condensada na superfície de uma fibra celulósica de seção transversal cilíndrica. A barra representa 50 μm.

http://www.nature.com/nmat/journal/v2/n8/fig_tab/nmat898_f5.html

Bibliografia de ESEM

- Bogner, A., Jouneau, P-H., Thollet, G., Basset, D., Gauthier, C., A history of scanning electron microscopy developments: Towards "wet-STEM" imaging, Micron 38 (2007) pp. 390-401.
- Danilatos, G.D., Review and outline of environmental SEM at present, Journal of Microscopy, vol. 162, Pt 3, Junho 1991, pp. 391-402.
- Danilatos, G.D., Introduction to the ESEM instrument, Microscopy Reasearch and Technique 25 (1993), pp. 354-361
- Forsberg, P., Lepoutre, P., Environmental Scanning eletron microscope examination of paper in high moisture environment: surface structural changes and electron beam damage, Scanning Microscopy, vol. 8, No.1, 1994, pp. 31-34
- Prack, E.R., An introduction to process visualization capabilities and considerations in the environmental scanning electron microscope (ESEM), Microscopy Reasearch and Technique 25 (1993), pp. 487-492

Microscopia Eletrônica de Transmissão - TEM

Zone axis diffraciton pattern of twinned austenite in steel wiki TEM Micrograph of Dislocations 1 (precipitate and dislocations in austenitic stainless steel) *Photomicrograph by Wikityke*

A three dimensional TEM image of a parapoxavirus: multiple views of the same specimen can be obtained by rotating the angle of the sample along an axis perpendicular to the beam wiki

Bonevich, **NIST**

Sections of a continuous 400-nanometer-thick magnetic film of a nickle-ironcopper-molybdenum alloy (top) and a film of the same alloy layered with silver every 100 nanometers (bottom).

By relieving strain in the film, the silver layers promote the growth of notably larger crystal grains in the layered material as compared to the monolithic film (several are highlighted for emphasis)

HRTEM

Resolution of the HRTEM is limited by <u>spherical</u> and <u>chromatic aberration</u>, but a new generation of aberration correctors has been able to overcome spherical aberration.[[]

Software correction of spherical aberration has allowed the production of images with sufficient resolution to show carbon atoms in diamond separated by only 0.89 <u>Ångströms</u> and atoms in silicon at 0.78 Ångströms (78 pm) at magnifications of 50 million times.

HRTEM

atomic planes within nanoparticles of metal

CfAM

HRTEM

Layer structure on a silicon substrate: The material serves as low-noise receiver of microwave radiation in the universe. The sample originates from the KIT Institute for Micro- and Nanoelectronic Systems. (Photo by: Siegel/Gerthsen).

STEM

New type of scanning transmission electron microscope (STEM) incorporating new aberration-correction technology focuses a beam of electrons on a spot smaller than a single atom -- more sharply and with greater intensity than previously possible.

The STEM shoots an electron beam through a thin-film sample and scans the beam across the sample in subatomic steps.

The microscope can actually identify atoms using electron energy-loss spectrometry as it scans. Atoms in the path of the beam absorb energy from some of its electrons to kick their own electrons into higher orbits. The amount of energy this takes is different for each kind of atom giving a unique fingerprint

preparação

SEM image of a thin TEM sample milled by FIB (focussed ion beam). The thin membrane shown here is suitable for **TEM** examination; however, at ~300-nm thick, it would not be suitable for highresolution TEM without further milling.

wiki