CURSO DE CARACTERIZAÇÃO DE BENS CULTURAIS CABENS 2011

Espectrômetro de fluorescência de raios X semi-portátil

Augusto Camara Neiva

Escola Politécnica da USP, Departamento de Engenharia Química, Laboratório de Caracterização de Bens Culturais

Colaborações: Jérémie Dron, Sílvia Cunha Lima (MAE), Regina Tirello (CPC-USP e Unicampi), Márcia Rizzutto (LAMFI-IFUSP), Bruna Fernandes Lopes (IC) e Lucas Boareto Lopes (IC), Herbert Prince Favero, Márcia Rizzo, Carlos Appoloni (UEL)

analisando uma peça em cima

analisando uma peça em baixo (por exemplo, para calibração) analisando uma peça ao lado

Espectrômetro Fonte de alimentação do tubo Refrigeração Bancada dobrável e móvel

posicionador a laser, câmara web

Por que não comprar um pronto?

Por que não comprar um pronto?

- Possibilidade de mudar geometria (ângulos, distâncias, etc)
- Usar colimadores, barreiras, filtros, etc
- Usar apontadores laser
- Escolher detector, fonte, etc

Nosso início

<u>Peças metálicas Chimu, Huari e Inca</u> (da coleção do MAE)

- Au, Ag, Cu
- Cor: status
- Tratamento químico superficial: dissolução seletiva, gradiente de composição

Fonte de raios X (tubo de tungstênio)

a) tubo vs. material radioativo

- A energia pode ser alta
- Pode-se escolher a energia
- Pode-se desligar

b) tubo: anodo de W vs. de elemento mais leve

 W → alta energia (até 60 keV): bom para elementos pesados, usando linhas K

Por que altas energias podem ser interessantes?

o detector (Ketek)

FWHM: 142 eV

dispensa nitrogênio líquido

Para nossos objetivos, picos espúrios de Zr são menos danosos do que, por exemplo, de Ag

Resultados

Examplo: Pr₁₄Fe_{79,9}B₆Nb_{0,1} (baixo Nb: OK. Zr: problema)

energy / keV

Baixa sensibilidade para elementos leves:

Al em liga Al-Fe-Cr-Cu-Ni rica em Al

Técnica

- Identificar picos
- Medir áreas
- Converter áreas em teores

Análise qualitativa

Análise quantitativa

Métodos quantitativos usando resultados de diversas amostras-padrão

Absorção, fluorescência secundária, fluorescência terciária

Técnica

- Identificar picos
- Medir áreas
- Converter áreas em teores

Técnica

Identificar picos: muitos picos L (elementos pesados)

Colimadores

Colimadores

Amostra de Fe: feixe secundário com menor energia que Pb ou Zr

Amostra de Ag: feixe secundário com energia superior às de Pb ou Zr

Picos de escape e picos-soma

Picos de escape Cu-Kα para diferentes correntes

Picos de escape e picos-soma

Picos-soma Zr-K α and Zr-K β para diferentes correntes

Análise quantitativa por parâmetros fundamentais

Intensidade primária de uma dada linha de um dado elemento depende de:

- absorção do feixe de entrada (ângulo, composição, μ 's, λ_{inc} , profundidade)
- excitação, emissão (probabilidades, μ 's, λ , I_{inc})
- absorção (ângulo, composição, μ 's, λ_{linha} , profundidade)

Integração ao longo da profundidade \Rightarrow fórmula simples

Integração ao longo de $\lambda_{inc} \Rightarrow$ numérica

Fluorescência primária para liga 30%Y (Z=39), 20%Mo (Z=42), 50%Ag (Z=47)

intensidades teóricas (primárias) de picos K = áreas sob as curvas

Fluorescência secundária e terciária

- A absorção na saída de cada linha emitida ocorre principalmente por excitação fotoelétrica de níveis eletrônicos cuja borda de absorção tem menor energia que a linha.
- Por exemplo, as linhas K do Y e do Mo são excitadas pela linha Ag-Kα.
- Assim, as linhas Y-Kα e Mo-Kβ terão intensidade maior que as calculadas no slide anterior (fluorescência secundária).
- Da mesma forma, o Y também é excitado pelo Mo (fluorescência secundária e terciária).

Fluorescência secundária e total de Y para liga 30%Y (Z=39), 20%Mo (Z=42), 50%Ag (Z=47)

intensidade teórica de pico K = área sob a curva

- Modelo de parâmetros fundamentais: Composição ⇒ Intensidades
- Padrões certificados:

K = I teórica / I experimental
K – fator de calibração para cada elemento
(depende das condições experimentais e usualmente também da composição)

Amostras desconhecidas:

I "teórica espererada" = K I experimental

Faz-se "chute" de composição, obtendo-se um conjunto de valores de I_{teórico}. Compara-se com I_{esperado} e corrige-se o chute de composição, com iterações até convergência.

This table compares the certified and the calculated compositions for sample 3CD, which was not used to obtain the above correction factors. One observes that a very good agreement was obtained for Fe, Cr and Mo.

	V	Cr	Fe	Мо	W
certified (%)	0.74	3.26	85.35	4.87	5.79
obtained (%)	0.67	3.22	85.21	4.86	6.05
difference	0.07	0.04	0.14	0.01	-0.26
difference/certified	0.095	0.012	0.002	0.002	-0.045

Exemplo: ornamento nasal

Exemplos de peças contendo apenas Ag, Au e Cu

nioco rogion -	concentrations		
probable origin	high	low and medium	
Nose Ornament	Au	Ag, Cu	
Plate, Central Coast	Cu	Ag	
Ornament, Lima Valley, Inca	Cu, Ag		
Plate, Central Coast	Cu, Ag	Au	
Plate, Central Coast	Cu	Ag	
Plate, Central Coast	Ag, Au, Cu		

nenhuma delas é Chimu ou Huari

Exemplos de peças com elementos adicionais

concentrations		
high	low and medium	
Cu	Au, Ag, Fe, Ca, Cl	
Ag, Cu	Au, Fe, Pb	
Ag, Cu	Au, Fe, Pb	
Ag, Cu	Fe, Pb	
Cu	Pb	
Ag, Cu	Au, Fe, Zn	
Cu	Ag, Fe	
ı, Ag, Cu	Fe	
Cu, Au	Ag, Fe, Ca	
Ag	Fe, Cu, Au, Pb	
g, Cu, Au	Fe, Pb	
Ag, Cu	Ca, As, Bi	
Ag, Cu	As, Au, Ca	
	high Cu Ag, Cu Ag, Cu Ag, Cu Cu Ag, Cu Ag, Cu 1, Ag, Cu Cu, Au Ag g, Cu, Au Ag g, Cu, Au	

Pré-colombianas: conclusões iniciais

- A maioria das peças ornamentais continha prata, ouro e cobre como constituintes principais
- Algumas delas apresentavam apenas estes elementos, enquanto outras apresentavam também elementos adicionais como Pb, Fe, Ca, As, Bi e Zn. Isto foi observado com todas as peças identificadas como Chimu e Huari. As demais peças (Incas ou não-identificadas) poderiam estar em um caso ou no outro,

Pinturas murais:

CHARACTERIZATION BY EDXRF OF WHITE PIGMENTS OF 19TH CENTURY COFFEE CYCLE WALL PAINTINGS IN VALE PARAÍBA, SÃO PAULO, BRAZIL.

camada de imprimação

Most probably, CaCO3 and ZnO, which are usual components of white pigments, are present, as well as iron oxides

energia (keV)

Only Painter 1 presents pure white regions. The cloud was painted as a layer over the blue of the sky: transparency of the white, not by mixing pigments.

Spectrum: Zn, Fe and small amounts of Ca, Ba and Sr. Zn can be most probably ascribed to ZnO (for instance, Zinc White). The other constituents probably belong to the priming layer.

Regions with color pigments were also analyzed. Zn is a main constituent in all of them, with exception of the yellow-A of Painter 2 (point 21). This suggests that almost no white zinc pigment was used for this color. Its spectrum shows high Fe and Cr, and medium Ba, which may suggest the use of Barium Yellow pigment4 (BaCrO4) and Mars Yellow pigment (Fe2O3·H2O + Al2O3).

•

- Although, as mentioned, the analysis of the paint layer is always affected by the composition of the priming layer, the method was able to show differences between the painters.
- Pure white in the figurative central paintings, for instance, was only found with Painter 1, who used Zinc White pigment.
- On the other side, when using pure white (in the ornatos), Painter 2 used some amount of White Lead pigment, together with Zinc White.
- In the colors, also, differences were found: Painter 1 probably used Cinnabar Green, while Painter 2 used green pigments with Cu and As.
- On the other side, almost no difference was found in the priming: spectra from the priming layers of all three painters presented predominantly Zn, Fe and Ca.

Peças de aço da Usina Ipanema

Cr for secundary fluorescence

The relative area of the Fe K- α escape peak decreased 2.3 times, compared to the Ti K- α peak. The relative uncertainty of the Ti K- α area decreased correspondently: from 286 ± 48 counts, to 748 ± 44 counts.

Tela assinada por "JM Villaronga", 1871.

Conjunto de murais da Sala de Jantar da Fazenda Rialto.1996

Quando ainda íntegros

Em um dos 12 painéis , a paisagem e arquitetura local representadas

Murais da Sala de Jantar da Fazenda Rialto

A sala de Jantar da Rialto em 1996

A mesma sala em 1998

Os conjuntos fragmentos estudados

Documentos primordiais de técnicas pictóricas

1.Sala de jantar = Pintor 1

2.Vestíbulo= Pintor 2

Os três conjuntos de fragmentos estudados provém de três ambientes distintos:

Sala de jantar
 Vestíbulo
 Capela

E,apesar das evidências formais, eram todas atribuídas a um único pintor !

Em pesquisas realizadas em 1998, fragmentos destes ambientes foram analisados com fotografias ultravioleta e infravermelha e SEM-EDXA.

Identificaram-se diferenças consideráveis na seqüência estratigráfica e características de emprego dos materiais constituintes entre os três conjuntos de fragmentos.

Para referir essas potenciais diferenças nos resultados das análises de EDXRF os autores das pinturas foram nomeados

Pintor 1, Pintor 2 e Pintor 3

3. Capela = Pintor 3

métodos e técnicas

Definição dos pontos a analisar

-Seleção de 27 fragmentos organizados em 8 grupos de acordo com "pontenciais autores"

Fotografados e analisados no microscopio óptico para seleção dos pontos a analisar com EDXRF

CARACTERIZAÇÃO POR EDXRF DE PIGMENTOS BRANCOS EM FRAGMENTOS DE PINTURAS MURAIS OITOCENTISTAS DO CICLO DO CAFÉ NO VALE DO PARAÍBA

Parâmetros para análise das cores :

- Codificação provisória das cores analisadas referidas a partir do croma (vermelho, azul, amarelo etc) com seus matizes diferenciando com letras

CARACTERIZAÇÃO POR EDXRF DE PIGMENTOS BRANCOS EM FRAGMENTOS DE PINTURAS MURAIS OITOCENTISTAS DO CICLO DO CAFÉ NO VALE DO PARAÍBA

- Identificação metálica primordial das cores puras para posterior avaliação de suas misturas com pigmentos brancos

- Literatura referencial

CARACTERIZAÇÃO POR EDXRF DE PIGMENTOS BRANCOS EM FRAGMENTOS DE PINTURAS MURAIS OITOCENTISTAS DO CICLO DO CAFÉ NO VALE DO PARAÍBA

EPUSP - J.N.Dron & A.C.Neiva

Spectrum P2-1-11 (070330aa)

Tabelas

Analysis	Painter	Fragment	Point	Analyzed	Grupo	Color (ref.	Colour Group	7r	Founded elements															
070404ad	P2	P2-1	20	Layer 5	Amarelo	000.)	Amarelo A		D	S	S	W	S	3	M			INI	S	51	2	73	IND	
070404ae	P2	P2-1	20	5	Amarelo	100 million (194	Amarelo A	D	D	w	S	W	w		M				S		?	1.1		
070316ad	P2	P2-1	4	5	Fundione	in the second	Azul B (claro)	D	D	S	M	S	S		S		?	?				200	10.5	
070316ae	P2	P2-1	5	5	Marrom		Marrom A	D	D	S	S	M	M	w	w		5. C. C.		-				12.0	
070323aa	P2	P2-1	7	5	Marrom		Marrom A	D	D	S	S	M	M	?	w		?		?			100		
070404ab	P2	P2-1	18	5	Marrom		Marrom B	D	D	S	S	W	S		W	1		?	W		w		(
070404ac	P2	P2-1	19	5	Marrom	and the second	Marrom C	D	D	S	S	W	М	?	w	1.24	?	100	W		?	?	20	
070404af	P2	P2-1	22	5	Marrom	and the second of the	Marrom C	D	D	S	S	W	М	W	W	100		- 11*	W		?			1954
070323ab	P2	P2-1	8	5				D	D	S	S	S	S	?	W	1.25	103		?	?			18-2	
070402ac	P2	P2-2	9	5	all to the second	Contraction of the	Azul B (claro)	D	D	S	М	W	S		S		?	?	?		М	E.		
070404aa	P2	P2-2	1	5		State III	Verde A (escuro)	D	D	S	Μ	W	W	16	Μ		?	?	CL		S	S	12	
070330aj	P2	P2-2	3	5		L L L L L L L		D	D	S	S	S	W	-	М	N.		44	?	L	S	S	18.	
070425aa	P1	P1-1	7	5	「「二」	1 Contraction	Amarelo B (claríssimo)	D	D	S	Μ	W	S	S	W	ł			W			100		
070420ae	P1	P1-1	5	5			Azul A (escuro)	D	D	S	S	W	S	S	W		1		W			5.00		1
070420ad	P1	P1-1	4	5			Verde A (escuro)	D	D	S	М	W	W	S	W			ł	W		?			
070420ac	P1	P1-1	3	5			Verde B (claro)	D	D	S	W	W	W	S	W				М					
070420aa	P1	P1-1	1	5		10000	Vermelho	D	D	S	W	W	S	S	W	15	254	1.441			100	100	?	1.4
070420ab	P1	P1-1	2	5	altern RTY 1	P THE P	Vermelho	D	D	S	W	W	S	S	W	1	1.5	(let	SER.		·(01		?	
070523aa	P1	P1-2	1	5	2	The second	Azul B (claro)	D	D	S	М	W			W	3	149	1.1.1	22			W.C.	-30	49
070530aa	P1	P1-3	1	5	ATT THE	I set une	Azul B (claro)	D	D	S	M	W			W						111		12	
070607aa	P3	P3-1	3	5		North Contract	Azul A (claro)	D	D	S	W	W	19.91		W		?	?	F.S.	1.21				
070607ab	P3	P3-1	4	5	an sure of	A DECEMBER OF	Azul B (escuro)	D	D	S	W	W		dire-	W	in re-	?	?	1		-	?		
070607ac	P3	P3-1	5	5	10110		Marrom	D	D	S	S	W		W	W	115-			W	125			157	
070606aa	P1	P1-4	1	5	the state of state	1000	Azul A (claro)	D	D	S	Μ	W			W		1.35	?	1.1			-	-	
070606ab	P1	P1-4	2	5		The second second	Azul A (claro)	D	D	S	Μ	W			W	?	171	The second	-	?			1111	
070606ac	P1	P1-4	3	5			Azul A (claro)	D	D	S	Μ	W			W	?		1 State				124	100	
070606ad	P1	P1-4	4	5		The state of the	Preto	D	D	S	М	W		1000	W	?	111		1	?	and a		- 1-1	?
070606ae	P1	P1-4	5	5			Verde (escuro)	D	D	S	S	W	W	М	110	360	?	144	М		?	TIP-	16.00	

Imprimação: Zn, Fe and Ca
(e um pouco de Ba)
Nenhum S, Cl, Si or P.
Assim, provavelmente: CaCO₃ and ZnO.

Pintor 2

- nenhum branco puro
- todas as cores claras: Hg (pigmentos vermelhos)
- Zn: ZnO

Pintor 1

- Único com branco puro
- ZnO
- ZnO and PbCO₃

CORES: sempre com branco?

- um dos amarelos do Pintor 2 sem Zn
- demais cores sempre com Zn

VERDE

Pintor 2 - Cu e As (além do Zn)

- CuHAsO₃ (Scheele Green)
- Cu(CH₃COO)₂·3Cu(AsO₂)₂ (Schweinfurt Green)
- Cu3(AsO₄)2·H₂O (Veronese Green).

VERDE

• Pintor 1 - Pb e S (e Zn), e tb Fe e Cr

Cinnabar Green: Fe₄[Fe(CN)₆]₃ + PbCrO₄

VERMELHO

Pintor 1 – Hg e S (além de Zn)

HgS: Cinnabar

BRONZES: LIGAS COBRE, ESTANHO, ZINCO, CHUMBO

A fase δ é dura e quebradiça, evitando-se, por este motivo, teores de estanho acima de 12% nas ligas binárias.

É possível obter ligas binárias monofásicas cobre-zinco com teores muito mais elevados do elemento de liga do que no caso do estanho.

: a) Latões alfa – ligas que contêm até 37% em massa de zinco; b)
Latões alfa amarelos – 20 a 36% de zinco; c) Latões vermelhos – 5 a
20% de zinco; e d) Latões alfa + beta – 37 a 54% de zinco.

A presença de Pb contribui para aumentar a dutilidade e a usinabilidade das ligas produzidas, bem como para o preenchimento de vazios interdendríticos A capacidade de preenchimento de moldes está diretamente relacionada à faixa de solidificação, ou seja, à diferença entre a *liquidus e a solidus*.

Ela é muito mais ampla para as ligas cobre-estanho que para as ligas cobre-zinco, o que explica a maior capacidade de preenchimento destas últimas.

Grupo I - ligas com faixa de solidificação estreita, da ordem de até 50°C. Ele inclui o cobre não-ligado, as ligas cobre-cromo, os bronzes de manganês, de alumínio e de níquel, e os latões brancos e amarelos.

Grupo II - faixa entre aproximadamente 50 e 110°C, e inclui as ligas cobre-berílio e cobre-níquel, os latões ao silício e os bronzes ao silício.

Grupo III - faixa acima de aproximadamente 110°C, inclui os latões vermelhos e semivermelhos ao chumbo, e os bronzes de estanho. Ou seja, os outrora chamados "bronzes genuínos" pertencem ao grupo que apresenta maiores dificuldades de fundição, enquanto os latões de alto zinco (latões brancos e amarelos) pertencem ao grupo que apresenta menores dificuldades de fundição, do ponto de vista da faixa de solidificação.

Em contrapartida, as ligas com faixas de solidificação estreita apresentam maior tendência à formação de óxidos, o que exige cuidados específicos no vazamento, para que estes óxidos não passem para o interior das peças, formando inclusões deletérias. Este problema não ocorre com as ligas com faixa de solidificação larga.

Figura 2.9 - Ligas cobre-estanho-chumbo-zinco [10]. Os teores apresentados são valores médios dentro das faixas apresentadas nas normas, ou valores mínimos. Um valor da figura original estava incorreto e foi corrigido.

	nomenclatura			SUL POR	nomenclatura		
código	tradicional	Sn	Pb	Zn	ABNT	critério (ABNT)	item
C90500	tin bronzes	9,0-11,0	máx3	1,0-3,0	bronze	Sn maior que os demais	2.2.7.1-a
C92600	leaded tin bronzes	9,3-10,5	0,8-1,5	1,3-2,5	bronze	Sn maior que os demais	2.2.7.1-a
C90300	tin bronzes	7,5-9,0	máx3	3,0-5,0	bronze	Sn maior que os demais	2.2.7.1-a
C92300	leaded tin bronzes	7,5-9,0	0,3-1,0	2,5-5,0	bronze	Sn maior que os demais	2.2.7.1-a
C92200	leaded tin bronzes	5,5-6,5	1,0-2,0	3,0-5,0	bronze	Sn maior que os demais	2.2.7.1-a
C83600	leaded red brasses	4,0-6,0	4,0-6,0	4,0-6,0	v. Tabela 2.3		
C83800	leaded red brasses	3,3-4,2	5,0-7,0	5,0-8,0	v. Tabela 2.3		100
C84400	leaded semi-red brasses	2,3-3,5	6,0-8,0	7,0-10,0	v. Tabela 2.3		新日本。
C84800	leaded semi-red brasses	2,0-3,0	5,5-7,0	13,0-17,0	v. Tabela 2.3	I The second second	13 I
C93200	high-leaded tin bronzes	6,3-7,5	6,0-8,0	2,0-4,0	v. Tabela 2.3		
C93700	high-leaded tin bronzes	9,0-11,0	8,0-11,0	máx.0,8	v. Tabela 2.3		
C93800	high-leaded tin bronzes	6,3-7,5	13,0-16,0	máx.0,8	cobre-chumbo-estanho	Sn < Pb	2.2.11
C94100	high-leaded tin bronzes	4,5-6,5	15,0-22,0	máx.3,0	cobre-chumbo-estanho	Sn < Pb	2.2.11

código	Sn	Pb	Zn	nomenclatura	critério	item
C83600	6.0	5.0	5.0	bronze	Sn maior que os demais	2.2.7.1-a
C83600	5,5	5.0	6.0	bronze	$\operatorname{Sn} > 3 \operatorname{e} \operatorname{Zn} < 10$	2.2.7.1-ь
C83600	5.0	6.0	5.0	cobre-chumbo-zinco-estanho	Sn <pb (não="" bronze),="" sn="" é="">3 (não é latão)</pb>	2.2.11
C83800	4.0	6.0	7.0	cobre-zinco-chumbo-estanho	Sn <pb (não="" bronze),="" sn="" é="">3 (não é latão)</pb>	2.2.11
C83800	4.0	7.0	6.0	cobre-chumbo-zinco-estanho	Sn <pb (não="" bronze),="" sn="" é="">3 (não é latão)</pb>	2.2.11
C84400	2.3	7.0	9.0	latão	Sn <pb (não="" bronze),="" demais<="" maior="" os="" que="" td="" zn="" é=""><td>2.2.6.1-a</td></pb>	2.2.6.1-a
C84400	3.5	7.0	9.0	cobre-zinco-chumbo-estanho	Sn <pb (não="" bronze),="" sn="" é="">3 (não é latão)</pb>	2.2.11
C84800	2.5	6.0	15.0	latão	Sn < 3 e Zn maior que os demais	2.2.6.1-с
C84800	3.0	6.0	15.0	cobre-zinco-chumbo-estanho	Sn>3 (não é latão), Zn>10 (não é bronze)	2.2.11
C93200	6,5	7,5	3.0	cobre-chumbo-estanho	Sn < Pb	2.2.11
C93200	7,5	6,5	3.0	bronze	Sn maior que os demais	2.2.7.1-a
C93700	9.0	10.0	0.0	cobre-chumbo-estanho	Sn < Pb	2.2.11
C93700	10.0	9.0	0.0	bronze	Sn maior que os demais	2.2.7.1-a

Cobre 1s²2s²2p⁶3s²3p⁶3d¹⁰4s¹

4s1Cu+ (íon cúprico)3d10Cu2+ (íon cuproso)

Figura 2.16 - Esboço do diagrama de Pourbaix para o sistema cobre—cloreto—água a 25 C, com concentrações [Cl⁻] 0,0185M. e [Cu⁺²] 0,46M (figura *a*, à esquerda) e .para a solução 1,13M Cl⁻ e 1,15M Cu⁺² (figura *b*, à direita).

Cor - A origem física da cor destes compostos nem sempre é conhecida, e pode ser alterada pela presença de pequenos teores de contaminantes, por exemplo.

Coeficiente de expansão - O coeficiente de expansão representa o aumento de volume do produto de corrosão em relação ao metal consumido. Certos compostos com o coeficiente de expansão entre 1 e 2 podem ter um efeito protetor. Por outro lado, este coeficiente pode ser um acelerador da corrosão quando tem um valor acima de 2, devido à indução de trações mecânicas.

Solubilidade - A solubilidade é importante para se avaliar a resistência do composto a um dado meio.

Tabela 2.4 - Produtos de corrosão - bronzes antigos [ROBBIOLA]

Company	Farmula	Minund		Meio		Cur	61	Dur.		Sistema
Composie	rermua	Jamera	at. ma. sol.		- CH	OF L	1.00 M	8	cristaline	
Ondo				PATCED.	1000			1000	0.000	20100000000000000000000000000000000000
Óxido de cuproso (l)	CteO	cupinta	+++	+++	+++	venue.	b,#	3,5.4	1,66 ±0,03	cúbico
Óxido de cepsico (II)	Circl	traccits.	E.	1	E.	reeto	P. , R	3.4	1,8±0,1	monoc linico
Óxido minto de coltes	CuO;	paramelaconita.	1.1		E.	preto	2,91		1.8±0.1	monoclinico
Óxido de estanoso (II)	SnO	rossarquita	1.1	1.00	Τ.	Tasto	8,8		1,28 ± 0,02	quadrático
Óxido de estunho hidratado (II)	55aO-2H ₂ O	hidzomarquite	- 40	16	1.	preto a	10,50.			•
And A contract man	0.0		1.1		1.1	gus		14	1 22 40.00	10000000
Oxido de estilutico (1A.)	21174	CLARITETIN				gias a	10,91	0-1	1,30 ± 0,02	quatratico
And a same high the state	5-0-10	antific antipular			1.1	ansate.				
COLIDO DE MITIMODI EXCIPLINDO (111)	SHAMPO	NCARD, SERVICE				201	E.M.	-		306.00
Sulfares	12-02-0	Second and the							1.1.1.1.1.1	10000
utfue de cobre (l)	Cas	Calcocita"	+ -	**	1.	gris .	10,91	2,53	2.41	ortorrómbico
Sulfare de cobre	ClaSs	digenita	- 41	+	r.	arul	in.m	2.5.3	2.05 ±0.05	peradoc úbico
Sublue de cobre	ChilSar	djumhn	+	+	τ.	gris	ib,m	2,5.3	2±0,1	monoclinico
Sulfure de cobre (II)	CLE	covelite"	÷2.	++	. E.	azul	2,50	1,5-2	2,9±0,02	hexagonal
Sulfar de cober	ShG	herzenbergita	+ :	1		perto	1,91	-	1,7 ±0,02	cub, mon
Bulleton.										
Sulfato básico de Cu (II)	Ch/SO,XOH,	antients	++	- e .	12.42	wride	b.m	3.5	4.27 ±0.04	orto mônibico
Sulfato básico de Cu (II)	Cw(SO4XOH)	brocastita			T.	verde	in.m	3.5.4	415 ±0.05	monoc linico
Sulfato básico hidra tado de Cu (II)	CW(SO4XOH), HrO	"stapping	T.		1.4	az ul	8.0	2.3	4,87 ±0,05	monoc linaco
Óxido sulfato de Sa.(II)	StuDisCo		-	1	-	-	1	-		
Constan										
Clorato de cobre (I)	C ₂ C3	nantografa	+	+		branco	ib.e	2.25	3.37	cúbico
Clorato de estanho (II)	ShCl			τ.	+	branco	ib.m	-	2.85±0.05	romboé drico
Clorato básico de cobre (II)	CMCYOHD.	atacamita	++	++	44	vente	h.m.	1.35	4201	cetoraleshico
Clorato bánico de cobre (II)	CarCitOHA	THEY BE ANUTA	**	++	44	write	h.m	1235	4205	becaronal
Clorato bázaco de cobre (II)	C+CL(OH), 3H-O	botallaruta	+		E.	wrde	ib.m	335	4 20.5	monoc linico
Clorato básico de cobre(II) (hal 5	CwOHCh; 2H-O	calumelita	T		1	verde				-
Clorato bánico de estanho	Sh-OC2	+	+	1		0000000	ini in		4 ±0,1	monoclinico

espectro	local	Cu	Sn	Zn	Pb	Mn	Fe	Ni	As	Ag	Sb
080819ab	E-1	61	1	34	2	0.03	0.4	0.9	0.0	0.3	0.1
080819ac	E-2	58	1	33	6	0.02	0.3	0.7	0.2	0.2	0.1
080908ab	E-3	62	1	34	2	0.04	0.5	1.4	0.0	0.3	0.1
080908aa	E-4	50	1	42	5	0.05	0.5	1.0	0.1	0.2	0.0
081115bd	IM-1	91	7	0	1	0.00	0.1	0.4	0.1	0.3	0.1
081115be	IM-2	90	8	0	1	0.00	0.0	0.3	0.1	0.4	0.2
081115aa	IM-3	78	11	5	4	0.00	0.4	0.0	0.2	0.0	1.5
080930ad	IM-4	93	6	0.1	0.3	0.00	0.0	0.1	0.2	0.1	0.1
080930ae	IM-5	93	6	0.0	0.3	0.00	0.0	0.0	0.2	0.3	0.0
081124ae	LSE-1	81	8	7.0	2.3	0.00	0.2	0.5	0.2	0.1	0.3
081104aa	LSO-1	77	13	4	4	0.02	0.4	0.0	0.1	0.0	1.3
081104ab	LSO-2	75	13	3	6	0.01	0.6	0.0	0.2	0.1	1.4
081115at	MT-1	84	6	7	1	0.00	0.3	0.4	0.1	0.2	0.1
081115au	MT-2	79	4	14	2	0.01	0.2	0.5	0.1	0.0	0.2
081115av	MT-3	83	7	8	2	0.01	0.4	0.4	0.1	0.0	0.0
081115ax	MT-4	82	8	8	1	0.01	0.2	0.3	0.1	0.0	0.1
081115az	MT-5	81	6	12	1	0.00	0.2	0.2	0.1	0.0	0.0
081115ba	MT-6	84	7	7	2	0.00	0.3	0.4	0.2	0.0	0.0
081115bb	MT-7	63	2	29	2	0.00	4.5	0.0	0.0	0.0	0.0
081115bc	MT-8	76	4	17	2	0.01	0.3	0.6	0.0	0.0	0.0
080930ab	P-1	70	3	25	1	0.03	0.4	0.1	0.1	0.0	0.1
080930ac	P-2	68	2	28	1	0.02	0.4	0.1	0.2	0.2	0.0
080925aa	PDF-1	86	12	0.2	0	0.00	0.1	0.3	0.2	0.6	0.2
080925ae	PDF-2	89	9	0.2	0	0.00	0.1	0.4	0.2	0.5	0.2
080930aa	PDF-3	82	8	4	6	0.01	0.1	0.1	0.2	0.1	0.6
081124ab	PGL-1	85	12	0	1	0.00	0.2	0.1	0.4	0.7	0.2

	local: espectro:	TNE-1 1536	TNO-7 1708	TNO-5 1534	IM-7 1707	PDF-6 1698	PJB-6 2008	IM-9 2063	MT-12 2068	PDF-7 1697	RP-3 2009	TNO-4 1532	TNO-6 1535
11	cor:	verde	verde	verde	verde	verde	verde	verde	verde	marrom	marrom	marrom	marrom
	CuSO ₄											XX	
_	Cu ₂ SO ₄												X
	Cu ₃ SO ₄ (OH) ₄							XXX	X				
	Cu ₄ SO ₄ (OH) ₆ .H ₂ O		X									XX	
	Cu ₄ SO ₄ (OH) ₆				XXX		X		XXX				
	Cu₂O	X	X		XX	XX	XX	X				XX	XXX
	CuO	XXX									X		X
	CuCl		ng slavni	HETH		SAME THE		Х	Dinetal	STORE IN	CE ALCONT &	het lin	XX
	SnO ₂				XX	XXX	XXX			XX			
	SnSO₄		X										
	Sn ₃ S ₄	XX	A States		11	XX				XXX		X	
	FeO(OH)					X	X					X	XX
	Fe ₂ O ₃				XXX	XX	<u></u>						
	Fe ₃ O ₄		<u></u>		1.1.1.1.1.1.5.5.5			<u> </u>		<u> </u>			
	Fe ₂ O _{3·H20}			-lie pli-elle							Х		用意望
	ZnO	XXX	Х						XXX			XXX	
	Zn(OH)₂	XX									X		
	ZnS			间山西北		Х	STATE:	- 周二 月生		10-14		11/15/15	
	PbSO ₄							XX					
	SiO ₂									Х	XX		
	Cu		XXX										
	Cu ₃ Zn ₂	- (+) in	2014	X	1.0.33			in a set in the					10.000
	Fe					T LEADER	THE HE			XX	XXX		

foto	posição	Si	S	C1	Ca	Fe	Cu Zn	Ag	Sn	Pb
Fig. 5.39	geral	0.5	0.4		Contra la		84.0		15.1	ine share
Fig. 5.39	1	0.6					74.7	0.4	24.4	
Fig. 5.39	2	0.6		11.42			85.9	0.0	13.5	inflater.
Fig. 5.39	3	0.1	18.6		1.		80.0	0.5	0.8	
Fig. 5.39	4	0.8	2.6		经民		35.0		61.6	100
Fig. 5.39	6	0.7	2.6	15.3		1 m Y	73.9		7.6	
Fig. 5.39	7				0.2		90.2		8.9	0.7
Fig. 5.40	8	H.			0.8		45.4		17.4	36.4
Fig. 5.40	9				0.8		73.6		25.1	0.4
Fig. 5.40	10			11.000	0.5		82.2		17.0	0.4

Quadro-padrão com pigmentos e resinas – Márcia Rizzo e Carlos Apploni

45 Titanium White	
45 I Itanium white	
48 Zinc Yellow	
49 Cadmium Yellow mediu	m
50 Indian Yellow	
51 Naples Yellow light	
52 Cobalt-Turquoise Blue	ļ
53 Cerulean Blue	
54 Phthalocyanine Greenish I	Blue
55 Artificial Ultramarine Blu	le
56 Ultramarine Violet	
57 Violet Lac	
58 Magenta Lac	
59 Manganese Violet	
60 Cadmium Red medium	
61 English Red	
62 Iron Red	
63 Vermilion	
64 Red Cinabrian	
65 Cinabrese	
68 Ultramarine green	
74 Raw Umber	
76 Cassal Earth	
76 Cassel Earth	
76 Cassel Earth 77 Black Roman Earth	

		LEC - PXRF		LENA	A - PXRF	LAMFI - PIXE	
pigment	peaks	ratio	deviation	ratio	deviation	ratio	deviation
45	Ti-K / Ca-K	3,61	0,38 %	9,28	0,83%	398,6	5, 9 %
48	Zn-K / Cr-K	4, 19	0,14%	4,38	0,25%	0,31	0,34%
49	Cd-L / In-K	7,39	0,87%	0,87	1,80%	224,2	4,7%
50	Ni-K / Ca-K	6,32	0,38%	8,80	0,20%	4,54	1,7%
51	PB-L/SB-L	84,04	0,65%	253,1	1,9%	0,58	0,44%
	Pb-L / Ti-K	58,82	0,57%	21,33	0,60%	0,13	0,36%
52	Zn-K / Co-K	2, 16	0,29%	1,96	0,47%	0,52	1,1%
	Zn-K / Ti-K	1,29	0,27%	1,37	0,41%	0,04	0,93%
53	Sn-K / Co-K	0,81	0,40%	0,10	0,98%	4,40	0,45%
54	Cu-K / Ca-K	0,79	0,52%	1,10	0,78%	0,07	1,3%
	Cu-K / Cl-K	4,68	0,87%	7,09	1,6%	0,03	1,3%
55	Fe-K / Ca-K	0,24	1,1%	0,19	1,8%	0,15	2,2%
	Fe-K / K-K	13,44	8,2%	8,55	10,0%	0,46	2,7%
56	Fe-K / Ca-K	1, 19	1,7%	0,29	2,2%	0,29	3,2 %
	Fe-K / K-K	6,23	4,9%	4,76	7,4%	0, 17	3,0%
57	Ca-K / Fe-K	107,6	2,7%	56,65	4,7%	866,4	8,2 %
	Fe-K / CI-K	0,21	3,02%	0,44	4,72%	0,00	8, 18 %
58	Cu-K / Ni-K	84,21	2,2%	84,54	4,7%	55,05	7,9%
	Cu-K / Fe-K	5,53	0,50%	5,47	0,77%	1,52	1,2 %
	Cu-K / Ca-K	1,90	0,35%	2,00	0,50%	0,13	0,78%
59	Mn-K / Ca-K	5,91	0, 42 %	4,86	0,64%	15,02	1,1%
	Mn-K / P-K	104,53	2,3%	267,59	6,8%	5,55	0,61%

			THE REAL PROPERTY OF THE PROPERTY OF THE REAL PROPE	1			
60	Cd-L/Se-K	0, 12	0,42%	0,02	1,2%	17,51	1,2%
	Cd-L / S-K	69,28	8,9%	14,14	12,9%	5,85	0,87%
61	Fe-K / Ca-K	3, 19	0,33%	5,16	0,47%	0,57	0,36%
62	Fe-K / Ca-K	23,50	0,42%	19,12	0,58%	5,28	0,43%
63	Hg-L / S-K	71,16	0,78%	746,19	5,0%	1,05	1,9%
64	Cd-L/Hg-L	0,02	0,36%	0,02	6,4%	7,55	1,3%
	Cd-L / Ba-L	0,31	0,44%	0,26	6,4%	0,79	0,86%
	Cd-L / S-K	1, 18	1,6%	1,07	7,4%	1,29	1,2%
65	In-K / Fe-K	13,03	0,36%	14,09	0,58%	0,44	0,67%
68	Ni-K / Co-K	2,61	0,55%	2,34	0,95%	1,47	1,9%
	Ni-K / Cr-K	0,36	0,38%	0,34	0,57%	0,06	1,2%
74	Fe-K / Mn-K	7,07	0,30%	7,22	0,50%	4,41	0,44%
76	Fe-K / Ca-K	0,53	0,41%	0,92	0,50%	0,09	0,38%
77	Fe-K / Ca-K	1,96	0,38%	2,16	0,52%	0,26	0,56%
78	Ca-K / Fe-K	31,66	1,3%	26,52	2,1%	294,89	2,4%

CAMADAS SUBJACENTES

- O PIXE é menos afetado pelas camadas subjacentes
- Camada de cola de ossos e carbonato de cálcio: alto Ca, Sr e Zn
- EDXRF apresentou estes elementos sempre. PIXE não.
- No pigmento 48, PIXE mostrou Sr (mas não Zn e Ca). Assim, Sr é da camada externa.
- Em EDXRF, Zn é mito maisfraco quando a camada externa ontém Pb (p. ex. pigmentos 46 and 47).. Com Sr, isto não é observado (por exemplo, pigmento 47)

ultramarine blue

ultramarine blue