TÓPICOS SOBRE EDXRF – Augusto Camara Neiva - 2014

A – <u>Um Programa para manuseio de espectros e dados de espectroscopia</u> <u>EDXRF</u>

O ajuste de espectros e a interpretação de resultados de EDXRF exige sempre uma série de cuidados por parte do analista, que deve ser ao mesmo tempo padronizar seus procedimentos e estar atento às diferenças.

Como apoio a esta atividade, desenvolveu-se no LABENS um programa de manuseio de espectros e dados de EDXRF. Este programa executa basicamente as seguintes atividades:

- Cria uma ficha de dados de ensaio associada a cada espectro. Esta ficha traz dados informados pelo analista (por exemplo, nome do projeto, descrição da amostra, condições experimentais) e dados retirados do próprio espectro (por exemplo, tempo real, tempo vivo, *peaking time*, ganho).
- Apresenta estes dados em uma tabela dinâmica, que pode ser ordenada segundo qualquer uma das colunas, e que permite a seleção de um conjunto de espectros para processamentos em batelada, traçado de gráficos, etc.
- Organiza os dados de saída do processamento em batelada do programa de ajuste PyMCA em um conjunto de arquivos. Estes arquivos trazem informações como: a) ordenamento dos elementos em ordem decrescente (segundo a área dos picos, ou segundo os teores calculados); oroganização das intensidades (áreas ou teores) de modo padronizado para elaboração de tabelas e gráficos comparativos em excel; c) listagem de elementos e picos adicionados ou retirados entre diferentes configurações do programa de ajuste em batelada; d) arquivo html com os gráficos de todos os espectros tratados na mesma batelada.

O programa é denominado Ara-Lihuen e foi desenvolvido na plaraforma Microsoft Visual Studio¹. As **Figuras A-1 a A-7** apresentam várias telas do programa, nasequência Abertura / Criação de Fichas de Dados / Exibição dos Dados dos Espectros / Gráfico Comparativo de Espectros / Seleção de Arquivos para Processamento em Batelada (pelo PyMCA) / Seleção de arquivo de saída de tratamento em batelada pelo PyMCA, para criação de arquivos-resumo.

Figura A-1 – Tela de abertura do Ara-Lihuen

¹ Uma versão anterior do Ara-Lihuen, desenvolvida em Microsoft VB-6, já continha algumas destas funcionalidades, e também rotinas para cálculos de composições pelo método de Parâmetros Fundamentais, a partir de áreas de picos obtidas no software AXIL. Estas rotinas foram abandonadas devido ao surgimento do programa PyMCA, que reúne as duas funções.

🖳 Criador de F	icha de Come	entários			– 🗆 X
- DADOS DO USU PROJETO AMOSTRA LIVRE_1 LIVRE_2 PADRAO GRUPO OPERADOR	I20802ac JÁRIO Ipanema - Jos gusa G2 lado Corrente 1/2 v Composto Neiva	<pre>c== letras letras ==> se Luiz liso (base: canudo) volta</pre>	ARQUIVOS MCA 120802ac mca 120802ab mca 120802aa mca 120801al mca 120801al mca 120801ai mca 120801ah mca 120801ah mca 120801af mca 120801ae mca 120801ae mca 120801ae mca 120801ae mca	^	PROJETO=lpanema - Jose Luiz AMOSTRA-gusa G2 lado liso (base: canudo) LIVRE_1=corrente 1/2 volta LIVRE_2= PADRA0= GRUPO-composto OPERADOR=Neiva ARRANJ0=Amptek-Cr - det 2 kV-49.6 mA=
ARRANJO	Amptek-Cr - d	et 2	alternar entre MCA e SELEÇÃO		B5-selecionar texto
kV	49.6				
mA			Pegar dados do nome		B I -Salvar
Último LA	BENS salvo		ADENC (120002 I-L)		
Abrir via Windows DADOS DA AMPTEK: OBTIDOS DA FICHA L DADOS DA AMPTEK: OBTIDOS DA FICHA L			ABENS (12000/2ac.labens)		
Limpar dad	os do usuário	ARQUIVO MCA: 120802ac.mca			
Limp	ar tudo	Encontrei 0 arquivo(s) .mca sem corresponde	ente Jabens dentre 3070 arquivo(s) .mca		

Figura A-2 – Tela de criação de fichas de dados para cada espectro

🖷 progressão (Não está respondendo)	_		×
Coletando dados referentes a 3070 arquivos.	INTERR	OMPER	

Figura A-3 – Leitura da lista de espectros e das fichas de dados

elecionados da ca para a amarel :\Users\Aug	a Cop	irar selecion:			_										
C:\Users\Aug		ia da amarel	ados da tela amarela a para Batch-PyMCA	Curvas de todos o Curvas dos seler	s amarelos cionados	só tela branca as duas só tela amarela telas	asc: 2165 mca: 3070								
	usto\Aug	<mark>justo\Dro</mark>	pbox\data\			Diretórios	provis: 9								
uencial	i -	ext	projeto	amostra	livre_1	livre_2	padrão	grupo	operador	arranjo	kV	mA	real	vivo	peak
1330ak	3070	.mca	Templo	Maria Leontina	16	marrom		pigmentos	Herbert	W-Amptek	50	.13	1000.00	774.400	25.6
1330aj	3069	.mca	Templo	Maria Leontina	15	verde claro		pigmentos	Herbert	W-Amptek	50	.13	1000.00	850.500	25.6
1330ai	3068	.mca	Templo	Maria Leontina	14	roxo		pigmentos	Herbert	W-Amptek	50	.13	1000.00	761.700	25.60
1330ah	3067	.mca	Templo	Maria Leontina	13	roxo		pigmentos	Herbert	W-Amptek	50	.13	1000.00	783.700	25.60
1330ag	3066	.mca	Templo	Maria Leontina	12	preto		pigmentos	Herbert	W-Amptek	50	.13	1000.00	760.000	25.60
1330af	3065	.mca	Templo	Maria Leontina	11	preto		pigmentos	Herbert	W-Amptek	50	.13	1000.00	768.900	25.6
1330ae	3064	.mca	Templo	Maria Leontina	10	verde escuro		pigmentos	Herbert	W-Amptek	50	.13	1000.00	815.500	25.6
330ad	3063	.mca	Templo	Maria Leontina	9	creme		pigmentos	Herbert	W-Amptek	50	.13	1000.00	933.400	25.6
330ac	3062	.mca	Templo	Maria Leontina	8	rosa		pigmentos	Herbert	W-Amptek	50	.13	1000.00	933.400	25.6
1330ab	3061	.mca	Templo	Maria Leontina	7	vernelho		pigmentos	Herbert	W-Amptek	50	.13	1000.00	933.400	25.6
330aa	3060	.mca	Templo	Maria Leontina	6	marrom		pigmentos	Herbert	W-Amptek	50	.13	1000.00	933.400	25.6
329as	3059	.mca	Templo	Maria Leontina	5	branco rosado		pigmentos	Herbert	W-Amptek	50	.13	1000.00	717.400	25.6
329ar	3058	.mca	Templo	Maria Leontina	4	azul claro		pigmentos	Herbert	W-Amptek	50	.13	1000.00	730.900	25.6
329aq	3057	.mca	Templo	Maria Leontina	3	azul claro		pigmentos	Herbert	W-Amptek	50	.13	1000.00	711.800	25.6
1329ap	3056	.mca	Templo	Maria Leontina	2	azul		pigmentos	Herbert	W-Amptek	50	.13	1000.00	749.700	25.6
329ao	3055	.mca	Templo	Maria Leontina	1	rosa		pigmentos	Herbert	W-Amptek	50	.13	1000.00	783.900	25.6
329an	3054	.mca	Templo-Ana	Di	20	cinza		pigmentos	Herbert	W-Amptek	50	.13	1000.00	876.700	25.6
329am	3053	.mca	Templo-Ana	Di	19	papel		pigmentos	Herbert	W-Amptek	50	.13	1000.00	840.900	25.6
1329al	3052	.mca	Templo-Ana	Di	18	papel		pigmentos	Herbert	W-Amptek	50	.13	1000.00	822.800	25.6
329ak	3051	.mca	Templo-Ana	Di	17	vinho		pigmentos	Herbert	W-Amptek	50	.13	1000.00	881.400	25.6
uencial	i -	ext	projeto	amostra	livre_1	livre_2	padrão	grupo	operador	arranjo	kV	mA	real	vivo	peak
)330ae	3064	.mca	Templo	Maria Leontina	10	verde escuro		pigmentos	Herbert	W-Amptek	50	.13	1000.00	815.500	25.6
)330af	3065	.mca	Templo	Maria Leontina	11	preto		pigmentos	Herbert	W-Amptek	50	.13	1000.00	768.900	25.6
330ag	3066	.mca	Templo	Maria Leontina	12	preto		pigmentos	Herbert	W-Amptek	50	.13	1000.00	760.000	25.6
)330ah	3067	.mca	Templo	Maria Leontina	13	roxo		pigmentos	Herbert	W-Amptek	50	.13	1000.00	783.700	25.6
)330ai	3068	.mca	Templo	Maria Leontina	14	гохо		pigmentos	Herbert	W-Amptek	50	.13	1000.00	761.700	25.6
)330aj	3069	.mca	Templo	Maria Leontina	15	verde claro		pigmentos	Herbert	W-Amptek	50	.13	1000.00	850.500	25.60
)330ak	3070	.mca	Templo	Maria Leontina	16	marrom		pigmentos	Herbert	W-Amptek	50	.13	1000.00	774.400	25.6

Figura A-4 – Tabela dinâmica dos espectros e das fichas de dados

Figura A-5 – Gráfico comparativo de um conjunto de espectros

WindowsApplication1	×
Digite o nome de uma pasta a ser criada	ОК
	Cancelar
BIODIESEL	

Figura A-6 – Criação de uma pasta com espectros a serem tratados em batelada

🖳 Cria resumo de Bato	:h (em csv)			- 0	×
Escolha o arquivo de	sejado				
data-windows 130848106877500000 130835956490781250 130835933424531250	data 23/08/2015 10:38:07 09/08/2015 09:07:29 09/08/2015 08:29:02	diretório guignard-madeira Flavio_de_Carvalho Flavio_de_Carvalho	arquivo 150803av_to_ax.mca_concentrations.bd 150720al.mca_1.1.1.concentrations.bd 150720a.to.al.wca_concentrations.bd	OK, siga em frente	
130835926035937500 130835925961562500 130835925961562500 130835925871093750 130835925834551250 130835925802968750 130829402231718750 130774064200000000	09/08/2015 08:16:43 09/08/2015 08:16:36 09/08/2015 08:16:36 09/08/2015 08:16:27 09/08/2015 08:16:23 09/08/2015 08:16:20 01/08/2015 19:03:43 29/05/2015 17:33:40 29/05/2015 17:23:340	Volpi Portinari guignard-tela guignard-parte2 guignard-parte1 guignard-neiva-5 adriana	150720am_to_av.mca_concentrations.bt 150706ab_to_ap.mca_concentrations.bt 150706ab_to_ap.mca_concentrations.bt 150518ac_to_150803as.mca_concentrations.bt 150518ac_to_av.mca_concentrations.bt 150518ac_to_ay.mca_concentrations.bt 150518ac_to_ay.mca_concentrations.bt 150518ac_to_av.mca_concentrations.bt	Não, obrigado Eu procuro po meio do Windows.).)F
130248054962968750 130229095987187500 130221376519531250	27/09/2013 22:31:36 05/09/2013 23:53:18 28/08/2013 01:27:31	branco cromo cromo	130311aa·w1-oobre-0_to_130903ao-w-329v4g.mca_concentrations.bd Copy of 111104ca_to_cg.asc_concentrations.bd 111104ca_to_cg.asc_concentrations.bd		
<			>		

Figura A-7 – Tela de seleção de arquivo de saída de tratamento em batelada pelo PyMCA

Os resultados do tratamento dos dados das saídas do programa PyMCA podem ser exemplificados pelas tabelas e gráficos apresentados a seguir, obtidos diretamente a partir dos arquivos gerados pelo Ara-Lihuen.

A **Tabela A-1** traz uma relação das principais linhas detectadas em um dado conjunto dos espectros, em ordem decrescente de teor. Para cada elemento, o programa indica o valor máximo das áreas dentre os diferentes espectros. A tabela apresenta também os valores médios para cada elemento, bem como os desvios-padrão².

	teor máximo		área real média	desvio médio
	(escala	área real máxima	(contagens x	(contagens x
linha	arbitrária)	(contagens x 1000)	1000)	1000)
Ca-K	53971	53971	18256	131
Fe-K	8114	23075	3492	46
Ti-K	4167	6632	1316	32
S-K	2688	221	111	23
Sr-K	2354	11290	7049	95
CI-K	2199	316	93	18
Sn-K	434	555	225	63
Zn-K	183	978	304	19
Pb-L	136	554	347	26
Sc-K	94	135	51	28
Ni-K	73	311	75	11
Rb-K	58	276	63	24
Zr-K	41	189	86	54
Co-K	38	131	20	10
Cu-K	26	121	40	10
Br-K	10	2603	389	20
Cd-K	4	783	284	66

Tabela A-1 – Áreas máximas e médias dos picos principais observados

A **Figura A-8** apresenta um gráfico correspondente às duas primeiras colunas da Tabela A-1³. Por exemplo, a figura deixa claro, neste caso, que os picos máximos de

² O programa também cria uma tabela com a relação desvio/área de linhas que foram desconsideradas em cada espectro.

³ Observe-se que, neste gráfico, estamos denminando o teor como "área modificada". Isto é feito quando estamos lidando com amostras muito heterogêneas, para as quais o cálculo de teores não tem sentido, mas o seus valores relativos podem ser mais representativos do que os dados primários, ou seja, as áreas dos picos.

<u>cálcio</u> são extremamente mais intensos que os demais⁴. A **Figura A-9** apresenta o mesmo gráfico em escala logarítmica, que permite comparar com mais detalhe os picos de menor intensidade.

Figura A-8 – Valores máximos das "áreas modificadas" dos picos dentre os diversos espectros

Figura A-9 – Valores máximos das "áreas modificadas" dos picos dentre os diversos espectros (escala logarítmica)

O programa também facilita a descrição dos resultados com base em alguma característica descrita nos campos "LIVRE-1" ou "LIVRE-2" da ficha de dados. No

⁴ É preciso atentar para o fato de que esta tabela apresenta valores máximos <u>dentro do conjunto de</u> <u>espectros</u>. Em um dado espectro específico, como veremos adiante, os picos de zinco (por exemplo) podem ser muito menos intensos do que outros.

exemplo em questão, a propriedade escolhida é a cor (trata-se de uma pintura sobre papel). Assim, neste exemplo, a descrição dos resultados é feita com base na predominância de cada elemento nos diferentes pontos analisados, que são agrupados de acordo com a cor predominante da área analisada. Podemos utilizar diferentes ferramentas gráficas para apresentar os resultados.

O **Quadro A-1** apresenta a distribuição dos principais elementos nos diferentes pontos de análise. Os elementos estão indicados em ordem decrescente de intensidade, subdivididos em três faixas de valores, com base na comparação de seus valores com as médias aritméticas e geométricas no conjunto. A comparação com as médias aritmética e geométrica destina-se a apresentar de modo conciso: a) quais os picos que se destacam fortemente dos demais (área >= média aritmética), b) quais picos também são importantes, porém muito mais fracos (média aritmética > área >= média geométrica), e c) quais picos, no presente contexto, podem ser desconsiderados (área < média geométrica).

O **Quadro A-2**, por sua vez, utiliza uma outra forma de apresentar a distribuição dos elementos nos diferentes pontos de análise. Com base nos arquivos de saída do ara-Lihuen, e utilizando arquivos excel com estrutura preparada para receber estes dados, atribuímos códigos de fácil visualização correspondentes às faixas de valores das áreas modificadas dos diversos elementos nos diversos espectros. No caso específico, assinalamos para cada cor os elementos que se apresentam em quantidades muito superiores às do papel-base (e que, portanto, podem ser atribuídos aos pigmentos da tinta). Estas comparações, evidentemente, não são automatizadas.

Quadro A-1 – Distribuição dos diversos elementos nos diversos pontos de análise, com base na "área modificada" (escala arbitrária) em relação às médias aritméticas e geométricas no conjunto

	ponto	área modificada > média aritmética	área modificada > média geométrica	área modificada < média geométrica
nanal	1	Ca/S/Sr/	Cl/Sn/Fe/Pb/	Zn/Ni/Rb/Cd/
paper	11	Ca/S/Sr/Cl/	Fe/Sn/Pb/Sc/	Zn/Cu/Ni/Cd/
	12	Ca/S/Sr/	Cl/Sn/Pb/Fe/Ni/	Rb/Zr/Zn/Br/Cd/
	2	Ca/Sr/	S/Ti/Fe/Sn/Pb/	Zn/Rb/Ni/Cu/Cd/
azui	8	Ca/Sr/	Ti/S/Fe/Sn/Pb/	Zn/Ni/Rb/Cu/Cd/Br/
vormalha	3	Ca/Fe/S/Sr/	Sn/Pb/Zn/Ti/	Zr/Ni/Cu/Cd/
vermeino	9	Ca/Fe/Sr/	S/Sn/Ti/Pb/	Zn/Co/Ni/Cu/Cd/
amarala	4	Ca/Ti/	Cl/Sr/S/Fe/Sn/Zn/Pb/	Sc/Ni/Cu/Cd/
amareio	10	Ca/Ti/	Cl/Sr/Fe/Zn/Sn/Pb/	Cu/Ni/Cd/
preto	5	Ca/S/Sr/	Cl/Fe/Pb/Zn/Sc/	Ni/Cu/Cd/
preto-caneta	6	Ca/S/Sr/	Cl/Sn/Fe/Pb/Zn/	Zr/Cu/Ni/Cd/
contaminação?	7	Fe/Ca/S/Sr/	Cl/Sn/Pb/Sc/	Co/Ni/Zn/Rb/Cu/Br/Cd/

Quadro A-2 – Distribuição qualitativa dos diversos elementos nos diversos pontos de análise, com base na "área modificada" (escala arbitrária)

	ponto	Ca	Fe	Ti	S	Sr	CI	Sn	Zn	Pb	Sc	Ni	Rb
papel	1	XXX	*		х	х	****	**		*			
	11	XXX	*		х	х	х	*		*			
	12	XXX	**		х	х	****	****		**		*	*
	2	XXXXXX	***	Х	х	х	**	**	*	*			
azui	8	XXXX	**	Х	х	х	*	**		*			
warmalha	3	XXXX	Х		х	х	**	**		*			
vermeino	9	XXXX	Х	*	х	х	*	*		*			
omorolo	4	XXXXXX	****	х	х	х	х	**	**	*	*		
amareio	10	XXXXXXXX	****	Х	****	х	Х	**	**	*	*		
preto	5	XXX	**		Х	х	***	*	*	*			
preto-caneta	6	XXX	**		х	х	****	**		*			
contaminação?	7	XXX	XXX		х	Х	****	****		*	*		

Escala arbitrária decrescente	e (1 é o mais intenso	. 9 é o menos intenso):
		, 5 6 6 menos meenos,

1	XXXXXXXXXX	
2	XXXXXX	
3	XXX	

4 X 7 ** 5 **** 8 * 6 *** 9 .

Estes gráficos e quadros facilitam muito a discussão dos resultados. Por exemplo, fica claro, no trabalho em questão, que os picos de cálcio são mais intensos

nas regiões coloridas (azul, vermelho e amarelo) do que no papel-base. Entretanto, este resultado, do ponto de vista de análise desta obra, parece ter pouca importância⁵. Por este motivo, as demais informações da tabela se tornam relevantes. Por exemplo, os demais elementos cujas intensidades se diferenciam em relação ao papel-base, como <u>ferro</u> (nos vermelhos e nos amarelos), <u>titânio e zinco</u> (nos azuis e amarelos), e <u>cloro</u> (nos amarelos)⁶.

Finalmente, os arquvos de saída do Ara-Lihuen podem ser utilizados para traçar gráficos que utilizam valores médios correspondentes a uma dada característica listada nos campos "LIVRE-1" e "LIVRE-2". O programa, contudo, não gera automaticamentes tais médias, que são obtidas no arquivo excel com estrutura preparada, já mencionado. Como exemplo, apresentamos na **Figura A-10** as intensidades dos principais elementos presentes em função da cor (ainda para a pintura em questão), em um gráfico tipo radar. Como alguns detalhes ficam obscurecidos na Figura 10, ela é reapresentada na **Figura A-11**, mostrando-se agora apenas as bordas de cada campo.

Figura A-10 – "Áreas modificadas" (escala arbitrária, logarítmica) dos principais elementos presentes em função da cor

⁵ Esta conclusão toma como base o conhecimento sobre pigmentos. Ou seja, fica clara a necessidade de interação entre o analista e os especialistas sobre o tema de estudo. No caso, especialistas em pinturas sobre papel.

⁶ O Quadro A-2 também deixa claro quais são os elementos preponderantes para cada cor. Assim, para o azul, por exemplo, o ferro e o titânio são mais importantes que o zinco e o potássio.

Figura A-11 – "Áreas modificadas" (escala arbitrária, logarítmica) dos principais elementos presentes em função da cor. Dados similares aos da Figura A-10.

Finalmente, os arquvos de saída do Ara-Lihuen trazem também tabelas já estruturadas para mostrar informações como a relação desvio/área das linhas que foram desconsideradas em cada espectro (exemplo na **Tabela A-2**), ou como as linhas desconsideradas na interpretação dos resultados⁷ e linhas retiradas da configuração do software de ajuste (exemplo no **Quadro A-3**)⁸.

⁷ É interessante ter-se o registro das linhas que, embora mantidas nos ajustes, não são consideradas na interpretação dos resultados. Este é o caso de linhas de elementos externos à obra, como o <u>argônio</u> do ar ou a <u>prata</u> pertencente ao equipamento, e também é o caso da detecção de mais de uma família de linhas de um mesmo elemento, fornecendo resultados redundantes (como é o caso das linhas Pb-L e Pb-M, por exemplo, caso no qual usualmente só levamos em conta as linhas L.

⁸ Como os ajustes de todos os espectros de cada projeto são feitos com uma mesma configuração do software PyMCA, é importante que nas primeiras tentativas de configuração sejam incluídos todos os elementos possivelmente presentes, uma vez que a simples observação visual dos espectros pode ser enganosa, devido às superposições e à presença de picos originados pelo sistema (picos originados fisicamente pelos colimadores e barreiras, picos-soma, picos-escape, etc). Por outro lado, é interessante que nas configurações finais, os elementos que claramente não estão presentes sejam retirados da configuração, para que não interfiram indevidamente nos ajustes e nos cálculos. Assim, o processo de ajuste envolve etapas iterativas, com retirada e eventual acréscimo de elementos, bem como com modificação de outros parâmetros.

espectro	S-K	CI-K	Sc-K	Ti-K	Co-K	Cu-K	Br-K	Rb-K	Zr-K	Sn-K
150720aa.mca	ok	ok	1.06	0.56	0.75	0.56	2.91	ok	0.57	ok
150720ab.mca	ok	0.57	ok	ok	0.89	ok	1.65	ok	1.74	ok
150720ac.mca	ok	0.51	ok	ok	16.12	ok	0.77	0.81	ok	ok
150720ad.mca	ok	ok	ok	ok	0.80	ok	7.15	0.81	0.57	ok
150720ae.mca	ok	ok	ok	0.71	1.21	ok	3.06	0.55	0.52	0.53
150720af.mca	ok	ok	ok	1.52	1.61	ok	0.53	9.28	ok	ok
150720ag.mca	ok	ok	ok	1.11	ok	ok	ok	ok	0.79	ok
150720ah.mca	ok	1.06	ok	ok	0.82	ok	ok	ok	0.64	ok
150720ai.mca	ok	0.84	ok	ok	ok	ok	1.31	0.63	0.62	ok
150720aj.mca	0.80	ok	ok	ok	1.27	ok	1.89	0.51	2.00	ok
150720ak.mca	ok	ok	ok	ok	2.09	ok	259	50.56	0.58	ok
150720al.mca	ok	ok	0.67	0.99	1.95	2.44	ok	ok	ok	ok

Tabela A-2 - Relação desvio/área das linhas que foram desconsideradas em cada espectro

Quadro A-3 -	 Exemplo de listagem 	de linhas desc	onsideradas na	a interpretaçã	o dos resultados
	e linhas retiradas da	configuração d	lo software de	ajuste (PyMC	A)

			área no	área no
linha	ação	motivo	ajuste final	ajuste inicial
	-		(contagens)	(contagens)
Pb-M	desconsiderada	redundância	173	64
Sn-L	desconsiderada	redundância	158	153
Ag-K	desconsiderada	origem externa	2693	2694
Ar-K	desconsiderada	origem externa	334	333
Sb-K	retirada	não-detectada (visual)		567
Ва-К	retirada	não-detectada (visual)		547
Ba-L	retirada	não-detectada (visual)		412
Sb-L	retirada	não-detectada (visual)		1258
Bi-L	retirada	não-detectada (visual)		102
Bi-M	retirada	não-detectada (visual)		138
K-K	retirada	não-detectada		97
P-K	retirada	não-detectada		96
V-K	retirada	não-detectada		72
As-K	retirada	não-detectada		79
Mn-K	retirada	não-detectada		64
Cr-K	retirada	não-detectada		60
Bi-L	retirada	não-detectada		20
Se-K	retirada	não-detectada		35
Hg-L	retirada	não-detectada		15
Hg-M	retirada	redundância (não-detectada)		140

O programa cria ainda um arquivo HTML que agrupa todos os espectros gerados pelo PyMCA para um dado tratamento em batelada, legendando-as com algumas informações das fichas de dados e das sequências. Um exemplo de uma página de um destes arquivos é mostrado na Figura A-12. A parte inicial do código

HTML correspondente a esta figura é mostrado no Quadro A-4. Pode-se observar que sua estrutura é muito simples (ele simplesmente referencia os endereços das figuras segundo a estrutura de pastas criada pelo PyMCA). Para maior comodidade no manuseio deste arquivo, e envio aos usuários, usualmente ele é lido em um browser ou no Microsoft Word, e transformadso em arquivo pdf.

Figura A-12 – Exemplo de uma página de um arquivo html criado automaticamente pelo Ara-Lihuen, agrupando todos os espectros gerados pelo PyMCA para um dado tratamento em batelada, bem como algumas informações das fichas de dados e das sequências

Quadro A-3 – Exemplo do código HTML correspondente à Figura A-12

<HTML><TD><center> ARQUIVO CRIADO PELO ARA-LIHUEN (A.C.Neiva-2014)- FIGURAS DOS ESPECTROS <TD><center> Pasta: Flavio_de_Carvalho </H2><center> <TD><center> 150720aa.mca | Flavio_de_Carvalho | 1 | papel | | pigmentos | <TD><center> AREAS: Ca/Sr/ | Pb/Fe/Sn/Cd/Sb/S/Zn/ | Cl/Ni/ | <TD><center> AREAS MODIFICADAS: Ca/S/Sr/ | Cl/Sb/Sn/Fe/Pb/ | Zn/Ni/Cd/ | </H2><center> <TD><center> 150720ab.mca | Flavio_de_Carvalho | 2 | azul | | pigmentos | <TD><center> AREAS: Ca/Sr/ | Ti/Fe/Sb/Zn/Cd/Pb/ | Sn/S/Ba/Ni/Cu/ | <TD><center> AREAS MODIFICADAS: Ca/Sr/ | S/Ti/Sb/Fe/Sn/Ba/Pb/ | Zn/Ni/Cu/Cd/ | </H2><center> <TD><center> 150720ac.mca | Flavio_de_Carvalho | 3 | vermelho | | pigmentos | <TD><center> AREAS: Ca/Sr/Fe/ | Sb/Pb/Zn/Cd/Sn/S/ | Zr/Ti/Ba/Ni/Cu/ | <TD><center> AREAS MODIFICADAS: Ca/Fe/S/Sr/ | Sb/Sn/Pb/Ba/ | Zn/Ti/Zr/Ni/Cu/Cd/ | ...

B – Determinação de elementos leves por EDXRF

Verifica-se, usualmente, uma grande sensibilidade dos teores estimados dos <u>elementos leves</u> à distância amostra-detector inserida nos programas de ajuste de espectros de fluorescência de raios X.

Estes elementos apresentam picos característicos de baixa energia. Mesmo quando presentes em teores razoáveis, seus picos característicos terão baixa intensidade, devido a três fatores: a) o feixe incidente usualmente tem baixa intensidade em baixas energias, e por isso provoca uma excitação muito pequena destes elementos; b) as radiações características geradas serão intensamente absorvidas pelo argônio da atmosfera, que apresenta sua borda de absorção nesta região; c) as radiações características geradas serão intensamente absorvidas pelo berílio da janela do detector, que apresenta sua borda de absorção nesta região. Como os picos característicos tem baixa intensidade mesmo para teores altos, o *software* (por exemplo, o PyMCA), ao levar em conta estes fatores, irá fazer o caminho inverso e estimar altos teores para estes elementos. Os resultados serão corretos em muitos casos, mas pequenas imprecisões poderão, igualmente, causar grandes distorções nos valores estimados. Estas imprecisões poderão, menos precisos) como das variáveis adotadas na configuração do software.

Para que as composições estimadas pelo *software* sejam confiáveis, é necessário que vários dos parâmetros do processo de medição, como, por exemplo, a geometria tubo-amostra-detetor e o perfil energia-intensidade do feixe incidente, sejam inseridos com valores muito realistas. Em alguns casos, contudo, isto não é tão simples. O perfil do feixe incidente, por exemplo, pode ser calculado teoricamente ou pode ser medido. Como os perfis calculados teoricamente (por exemplo, pelo próprio programa PyMCA) por vezes não se mostram satisfatórios, pode ser importante uma medição, ainda que aproximada, do perfil real.⁹

⁹ Uma medição precisa do feixe incidente é difícil, por dois motivos: a) o feixe precisa ser extremamente colimado para que sua intensidade não seja excessiva para o detector, e este processo introduz radiações espúrias (do material do colimador) no feixe; b) para converter os resultados em um perfil correto, é necessário conhecer a curva real de eficiência do detector.

C – <u>Superposição de picos</u>

Quando se faz o ajuste de espectros de EDXRF np PyMCA ou em softwares semelhantes, é necessário informar ao programa quais picos de quais elementos devem ser incluídos na determinação. Uma primeira ideia seria incluir todos os elementos que poderiam estar presentes na amostra (ou, radicalizando, toda a Tabela Periódica). Assim, ficaria a cargo do programa identificar quais deles apresentam picos no espectro, e quais não apresentam (estabelecendo-se um dado valor mínimo correspondente ao limite de detecção do elemento nas circunstâncias do ensaio), e não haveria subjetividade na escolha. Infelizmente, além de consumir muito tempo ou muito recursos computacionais, esta opção frequentemente leva a erros, que decorrem em grande parte da existência de superposições que não se consegue simular com total precisão (uma vez que é muito difícil definir com total correção todos os parãmetros necessários para o cálculo, e também porque as amostras dificilmente apresentam a planicidade e a hmogeneidade previstas pelos modelos teóricos).

Assim, a escolha dos elemento e picos incluídos no processo de ajuste é uma decisão do analista, que deve tomar inúmeros cuidados para que tais escolhas não sejam puramente subjetivas.

Um exemplo do cuidado necessário na identificação de picos pode ser dado pelo espectro de uma amostra contendo zinco, mercúrio, chumbo e talvez arsênio¹⁰, na **Figura C-1.** Neste caso, o ajuste precisa ser feito com muito cuidado, pois existe grande <u>superposição</u> de um dos picos do arsênio (em 10,54keV) com picos de chumbo, e do outro pico do arsênio (em 11,73 keV) com picos de mercúrio. Ao observarmos esta figura, podemos nos colocar a questão: será que o espectro realmente tem arsênio? As Figuras 4.8, 4.9 e 4.10 buscam esclarecer esta questão. A **Figura C-2** mostra em detalhe a faixa de 10 a 12 keV da Figura C-1. A Figura C-3 mostra esta mesma região para o ajuste do mesmo espectro, mas sem incluir o arsênio na listagem de elementos a serem ajustados. Observa-se que o ajuste perdeu um pouco de qualidade, ou seja, que a curva total de ajuste (curva "*fit*") passa um pouco menos próximo dos pontos experimentais (pontos "*counts*") do que na Figura C-2. Para que esta diferença

¹⁰ Esta amostra não pertence ao escopo do presente trabalho.

de qualidade fique mais clara, mostramos na **Figura C-4** as diferenças entre os valores experimentais e as curvas de ajuste, para os dois casos. Vemos que as diferenças são sensivelmente menores para o ajuste que supõe a presença de arsênio.

Figura C-1 – Detalhe de espectro ("counts"), de curvas de ajuste total ("fit") e de curvas de ajuste de As-K, Zn-K, Hg-L e Pb-L. Espectro com alto arsênio.

Figura C-2 – Detalhe mais estreito do espectro da Figura C-1. Espectro ("counts"), curvas de ajuste total ("fit") e curvas de ajuste de As-K, Hg-L e Pb-L. Espectro com alto arsênio.

Figura C-3 – Detalhe do espectro da Figura 4.7, com ajuste sem incluir arsênio. Espectro ("counts"), curvas de ajuste total ("fit") e curvas de ajuste de Hg-L e Pb-L.

Figura C-4 – Valores das diferenças "contagens – ajustes" para os ajustes das Figuras C-2 e C-3.