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Abstract. Ship control in port channels is a challenging problem that has re-
sisted automated solutions. In this paper we focus on reinforcement learning of
control signals so as to steer ships in their maneuvers. The learning process uses
fitted Q iteration together with a Ship Maneuvering Simulator. Domain knowl-
edge is used to develop a compact state-space model; we show how this model
and the learning process lead to ship maneuvering under difficult conditions.

1. Introduction

Machine learning is now getting significant attention in the context of marine systems
research: indeed, several projects are working on autonomous ships to be delivered in the
next decade or so [Laurinen 2016, MUNIN 2016]. While automated marine navigation
systems are well established for open sea navigation, the process of ship berthing has
resisted automation (that is, the process of taking a ship to its final position in a port).
The sea bottom and the margins interfere with vessel dynamics in complex ways that
are still under research [Berg and Ringen 2011]. Furthermore, the maneuver of a vessel
in restricted waters relies on the knowledge of maritime pilots regarding port and local
weather conditions. Another important restriction is the loss of rudder efficiency as ship
velocity slows down, so a ship cannot simply be steered in low speed along a channel.

All in all, autonomous ship berthing remains an open topic that is not effectively
approached by ongoing autonomous, even large, ship projects. One difficulty in devel-
oping such autonomous navigation systems is that there are no full-scale prototypes de-
ployed; given the high costs of real marine operation, testing is difficult. Hence simula-
tors with accelerated time steps are often employed for engineering analysis and design
[Tannuri et al. 2014]. The development of autonomous navigation systems based on sim-
ulators is a promising strategy to avoid the costs of real operation testing.

The goal of this application-oriented paper is to describe the development of an
automated port navigation system that relies on batch reinforcement learning; the learning
process is based on data collected from a high precision marine simulator, together with
domain knowledge provided by dynamic modeling. We present a system that benefits
from simulated fast-time trajectories using reinforcement learning, by exploring compact
representation of ship dynamics. We contribute in two directions, the first related to ship
control, and the second related to machine learning techniques as applied to this setting:

• We deal with discrete inputs (rudder and propeller) that are similar to real-world
scenarios, and we use a detailed model of the relation between rudder efficiency
and vessel velocity.



• We exploit efficient learning from random trajectories sampled from a simulator
through a batch algorithm; moreover, we apply heuristics based on the domain
in order to improve significance of samples, state-space compactness and reward
design, allowing the problem to be efficiently tackled by conventional batch RL.

Before critical conditions are selected and tested in real-time simulations with local pi-
lots control, engineers execute a large number of fast-time simulations using a trajectory
computer control algorithm. The fast-time simulation process, however, is very time-
consuming, as it requires a trial and error procedure for the definition of the way-points
and the correct gains for the control algorithm. The trajectory output of the fast-time sim-
ulations does not necessarily take profit of the environmental forces (as the pilot does)
and does not reflect the constraints imposed by real-world piloting, such as discrete lever
commands in discrete intervals. As a first application, our techniques can replace the tra-
jectory control algorithm used in the fast-time simulations. It can speed up the feasibility
analyses since does not require the engineer to test a large number of way-points and
controller gains to obtain an acceptable trajectory.

The paper is organized as follows. Sections 2 and 3 summarize key concepts
respectively in reinforcement learning and in dynamic modeling and simulation. Section 4
gives a short overview of previous work applying machine learning to vessel berthing and
port channel navigation. In Section 5 we describe our reinforcement learning solution,
and in Section 6 we describe experiments that validate our solution. Finally, section 7
shows our conclusions and indicates future work.

2. Background: Reinforcement Learning and Fitted Q-Iteration
Reinforcement Learning (RL) uses sequential decisions of an agent to learn how to behave
[Sutton et al. 2018]. At each time step, the agent observes a state, takes an action that
results in a transition to another state and receives a reward signal. RL is based on the
framework of Markov Decision Processes (MDPs); an MDP is described by a set of states
S, a set of possible actions A, transition probabilities p(s, a, s′), a reward function S ×
A× S → R and a discount factor 0 ≤ γ ≤ 1. The latter factor attenuates future rewards
and is applied in infinite horizon tasks to guarantee convergence of accumulated rewards.
The lower the discount factor, the more short-sighted the agent. A Markov property is
assumed by MDPs: every transition depends only on s and a.

RL algorithms look for optimal policies maximizing cummulative reward (a pol-
icy is a function from states to actions). The Q value is the expected accumulated re-
ward if action a is taken at state s as specified by a policy π; we have that Qπ(s, a) =
Eπ
[∑∞

k=0 γ
krt+k+1|st = s, at = a

]
.

The Q-Learning algorithm is widely used for RL. The main idea of the algorithm
is to update the Q-value of a given state-action pair during an exploration (online) by
incrementing the Q value from the subsequent state s′ with a factor α:

Qt(s, a)← (1− α) ·Qt−1(s, a) + α · (r + γ ·max
a′

Qt(s
′, a′)).

Updated this way, Q values converge to the optimal policy if all states are sufficiently
explored. Q-learning can be extended to continuous state-spaces, using for example su-
pervised learning techniques to produce an estimate for the Q function.



Data: Set S of four-tuples (slt, a
l
t, s

l
t+1, rt+1)

Initialization: Q̂0(s, a)← 0 and i← 1;
while i < N do

foreach tuple l in S do
Train approximation Q̂i(s, a) using supervised learning with
input : slt, a

l
t

target : rt+1 +maxaQ̂i−1(s
l
t+1, a)

end
i← i+ 1;

end
Algorithm 1: Fitted Q Iteration.

While online RL focuses on algorithms that learn and adapt the policy during
exploration, Batch Reinforcement Learning processes previously acquired transitions in
order to obtain a policy. A Batch RL algorithm with excellent performance is Fitted
Q Iteration (FQI) [Ernst et al. 2005, Riedmiller 2005], as it tends to be less susceptible
to instabilities than other algorithms because the Q updates are not performed online
for a given transition [Berlink et al. 2015]. In its most popular version, Neural Fitted Q
Iteration [Riedmiller 2005], the regression technique used to store the Q function is a
Multilayer Perceptron. Algorithm 1 describes the pseudo-code for the FQI algorithm.

Because it is not always possible to obtain transition samples that cover the whole
state-space, the practical use of FQI resorts to a technique known as “Growing Batch”
Learning [Lange et al. 2012] This technique alternates between learning iterations and
episodes using the last policy learned; transitions of episodes are then added to the batch,
thus incorporating representative transitions into the learning process.

3. Dynamic Modeling and Simulation
We start this section by summarizing the mathematical model that encodes the motion
of a floating vessel at low speed in 6 DOFs (degrees of freedom), subjected to the ex-
ternal forces due to the environment and tugboats, and to the control forces provided by
thrusters, propeller and rudder. We give here the main ideas behind the model; more de-
tailed discussion can be found elsewhere [Queiroz Filho et al. 2014, Tannuri et al. 2014].
For the sake of simplicity, this section will only present the equations of motion for the
horizontal plane. We adopt two different coordinate systems to derive the ship equations
of motions, as shown in Figure 1. The system OXY Z is Earth-fixed (inertial system)
and the system oxyz is ship-fixed, with the origin at the central point of the keel midship
section. The center of gravity G is at distance xG ahead from the point o, ox is the lon-
gitudinal axis of the vessel directed to the bow, and oy is the transversal axis, pointing to
port. The heading of the vessel ψ defines the angle between the ox and OX axes.

The horizontal 3 DOF equations of motion referred to the body-fixed oxyz coor-
dinate system, considering symmetry with respect to the axis ox, are [Fossen 2011]:

(M +M11)u̇− (M +M22)vr − (MxG +M26)r
2 = Xext,

(M +M22)v̇ + (MxG +M26)ṙ + (M +M11)ur = Yext,



Figure 1. Ship coordinate system.

Figure 2. Forces on the rudder.

(Iz +M66)ṙ + (MxG +M26)(v̇ + ur) + (M22 +M11)uv = Next,

where M is the vessel mass, Iz is the yaw moment of inertia of the ship, u and v are the
longitudinal and transversal velocities respectively and r is the yaw angular velocity. The
terms M11 and M22 are the ship added masses in the ox and oy directions, M66 is the ship
added moment of inertia and M26 is the coupled added inertia. The last term on the right
side of the yaw equation is the Munks moment. The subscript ext represents the external
loads that may be expressed in terms of different factors:

Xext = Xh +Xw +Xwv +Xp +Xtug +XM ,

where Xh represents the hydrodynamic non-potential forces, including the current and
maneuvering forces, Xw, Xwv represent the wind and wave forces, respectively Xp repre-
sents the thrusters, propeller and rudder forces, Xtug represents the external action of the
tug boats, either in contact with the hull or connected by a cable and XM represents the
forces due to mooring lines, fenders or anchor lines. In the present paper, the vessel nav-
igates along a channel without any external action (wind, waves and current), controlled
only by its own propeller and rudder (no tugs and mooring lines).

The rudder lift forces FL are given by [Molland and Turnock 2007]:

FL(βr) = 0.5ρArCL(βr)V
2
r ,

where ρ is the water density, Ar is the area of the rudder, CL is an dimensionless coeffi-
cient, βr the effective rudder angle and Vr the relative velocity of the fluid onto the rudder
(Figure 2). Rudder forces are dependent on the speed of the water on the rudder. This
water jet is mainly generated by the propeller rotation; thus the vessel is more controllable
(maneuverable) when the propeller is operating. With the engine stopped, the water flow
on the rudder and the rudder forces are reduced, thus making the vessel less controllable.



We now describe the simulator we used in our experiments. As noted in Section 1,
high precision simulation is routine in the feasibility analysis of ports. We have relied on
the TPN-USP Maneuvering Simulation Center, shown in Figure 3, the largest Brazilian
Ship Maneuvering Center. This center consists of six simulators, three of them classified
as full-mission (immersive system with more than 270◦ of projection). The simulation
can be executed in real-time mode in one or several cabins simultaneously (single or
multiplayer simulation) as depicted in Figure 3. The simulator is used for evaluation of
new ports and operations, risk analysis, pilot and captain training. The same simulation
software can also be executed in fast-time mode, used in the early stages of port design,
using control algorithms to maneuver the vessel.

Figure 3. TPN-USP Full maneuvering simulator.

The 6 DOF vessel dynamics differential equations presented before are solved by
the simulator using explicit 4rd order Runge-Kutta integration, assuming interaction with
the fluid and external forces acting on the hull of the vessel.

4. Previous Work
As indicated previously, there have been very few attempts to automate vessel berthing;
we start by reviewing the relevant literature on this topic. A neural controller was used by
[Ahmed and Hasegawa 2013]; in that work previously validated berthing trajectories were
assumed available. In a different direction, [Goh and Lim 2000] used genetic algorithms
and tabu-search to automate the generation of way-points used in berthing. A negative
aspect of both approaches is that they require a great deal of validated data and/or area
expertise.

Even though RL is clearly a possible approach to vessel berthing without previ-
ous trajectory samples, little has been done in this direction. Exceptions can be found
in the work of [Stamenkovich 1992], where a simple neuron-like actor-critic agent nav-
igated a ship through a channel through two sensors signal; more recently, [Lacki 2008]
and [Rak and Gierusz 2012] employed online RL for ship handling in restricted waters
assuming constant speed in a broad area with small obstacles (tabular algorithms with dis-
cretized state and function approximation for continuous states space were respectively
used). Finally, [Tuyen et al. 2017] combined actor critic methods with neural networks to



control rudder with continuous levels also using constant speed. One common aspect of
those efforts is that actions taken by the agent are considered continuous in time, meaning
it operates more like a controller and not much in a human style with the already described
limitations.

5. An RL Solution for Automated Port Channel Navigation
The task of the agent is to keep the ship at the center of the channel, aligned with the
guidance line. The main control that affects a mission is the rudder steering to avoid a
collision with the limits of the channel. Our learning strategy consists of:

• Collecting data from fast-time simulations for a given port channel using a sam-
pling strategy;
• Learning from data using FQI with growing batch using a compact state represen-

tation.

The novelty here is the use of RL in batch mode with velocity fluctuations that
represent the critical conditions of a real navigation in a port channel by a human pilot;
this makes the policy learned more adequate for port engineering analysis. The overall
goal of the agent is to maneuver the ship along the channel reaching the other end and
with propulsion fixed at a certain level that suffices to prevent the ship from stopping or
completely losing its steering capacity. Although simulation steps are constrained propor-
tionally to the length of the channel, the mission can be modeled a control task infinite in
time if the ship does not collide.

Sample tuples were obtained by running the numerical simulator in fast-time
mode, with numerical integration time step t = 0.5s and interval between rudder com-
mands tcontrol = 10s. As the channel is usually narrow and does not have high curvature, a
guidance line was set considering the longest straight line formed by the boundary buoys
at the channel. Such line splits the channel almost symmetrically for generating reflected
tuples, as discussed in Section 5.1

5.1. Tuples Sampling
Once the guidance line is set, a trajectory following this line is generated. As sampling
strategy, at every 50 steps of this first state trajectory the ship state is taken and stored as a
starting point. For each starting point added, noise is added to the variables creating three
additional starting points. At the end, trajectories are generated using all points stored.
The actions taken in these trajectories are chosen randomly considering the discretization
adopted in action space.

An additional technique used for attenuating the bias of samples was to mirror the
transitions using the guidance line as symmetry line. This is only possible since the ship
is not subjected to environmental conditions. If the reflected ship positions in the tuple
fall inside the channel, velocity vectors are also reflected and the new resulting tuple is
added to the batch (see Figure 4). Given the straight topology of the channel, almost all
tuples are reflected.

5.2. State space Representation
Even though a ship is a complex system, and the propeller has its own internal states, prior
experiments show that a simplification can be used. The time step adopted is large enough



Figure 4. Layout of port channel. Small triangles represent the tuples sampled
and reflected by symmetry.

to ensure that internal states are very close to equilibrium and ship position in relation to
the channel length can also be disregarded since it does not affect the task. A simple
three-dimensional state was then adopted with the following variables (see Figure 5):

• vlongitudinal: Speed over ground in the longitudinal direction of ship.
• misalignment: Ship heading angle subtracted from the guidance line heading

angle.
• bank balance: Difference between ship and the banks (port side and starboard

side) divided by the sum of both distances. Ship should ideally follow through the
centerline of the channel, where the variable is null. The signal of the variable will
reveal which bank the ship is getting closer to.
• ψ̇: Variation rate of ship orientation. Also known as rate-of-turn.

The variable vlongitudinal was included in order to take into account the agent based
on the known loss of rudder steering capacity with lower velocity, mentioned in Section 3.
And ψ̇ was included following conventions of marine control systems, which usually
require a derivative term for stabilizing ship orientation.

Figure 5. Distances for state and reward representations.

5.3. Actions

The action values represent rudder levels between -35 and +35 degrees, discretized as
multiples of 5 (resulting in 13 possible action values). This discretization represents the
commands usually given by human pilots in similar situations. The actual value sent by
the agent, however, is normalized between -1 and 1.



5.4. Reward

Reward design is a heuristic task given knowledge about the domain of interest [Ng et al. 1999,
Randløv and Alstrøm 1998]. We adopted a reward structure composed of two terms:

R(s, a, s′) = Rstate +Raction.

The term Rstate reflects the desire of keeping the agent stable at the center of the channel,
aligned with the guidance line:

Rstate = −Kbalancebank balance
2 −Kmisalignmisalignment

2 −Krotψ̇
2.

where bank balance, misalignment and ψ̇ are the state variables already introduced in
5.2 and Kbalance, Kmisalign and Krot are positive factors to be tuned empirically. An addi-
tional constant−Ccollision can be addedRstate when ship collides in order to propagate the
danger of collision. The termRaction represents a form of policy shaping. As it is desirable
to control the ship smoothly, using rudder levels as small as possible, the term penalizes
the normalized action taken by the agent as Raction = −Kruddera

2,, where Krudder is a
positive tunable parameter and a is the normalized rudder level given as command.

Using this reward structure, terms are never larger than 0 as negative rewards
prevent problems in policy such as agent loops described by [Randløv and Alstrøm 1998].

5.5. Q function Approximation

A neural network with 2 hidden layers with 20 perceptrons each was employed to ap-
proximate the Q function. The ReLu (Rectifier Linear Unit) [Maas et al. 2013] acti-
vation function was used for hidden layers and a linear function was used in the out-
put layer. ADAM [Kingma and Ba 2014] was chosen as the optimizer algorithm with
learning rate η = 0.001. The choice of topology was based on other RL applications
to control problems with non-linear dynamics and equivalent number of state variables
[Hafner and Riedmiller 2011].

6. Experiments
The port channel for Suape Port, located in northeastern Brazilian coast, was taken as a
testing scenario. The vessel model used in the experiments represents a real vessel and
the propeller was set at 60% of its maximum rotation. The speed at the entrance point
was set to 3.0 m/s, assuring the ship enough velocity to steer through the channel.

The agent was trained with discount factor γ = 0.8 and at every 10 iterations
of FQI the agent run 12 episodes using the policy learned. For every FQI iteration 300
training iterations (”epochs”) were run in the MLP and the loss function was verified
along the iterations. Some error spikes occur at the beginning of new FQI iterations and
when more batches are added as expected, but the process soon stabilizes, as in Figure 6.
These trajectories, along with the reflected pairs generated through symmetry, were added
to the batch.

To assess performance, 6 cases were considered with the ship starting at the region
near the entrance of the channel. In three of them, the ship was placed at the guidance
line (bank balance = 0) and misalignment = {0, 1.0, 2.0}. In other three cases, the



Figure 6. Loss function over each MLP training iteration.

Table 1. Results with ship starting at the guidance line, where K1 = Kmisalign,
K2 = Krot, K3 = Krudder, C = Ccollision.

Initial state
Bank balance:0;
Misalignment:0

Bank balance:0;
Misalignment:1

Bank balance:0;
Misalignment:2

Reward
Parameters σ̄ ¯|bal| S|bal| σ̄ ¯|bal| S|bal| σ̄ ¯|bal| S|bal|

K1 = 100;
K2 = 1000;
K3 = 100;
C = 100000

0.85 73.85 3009.73 0.85 72.13 3158.82 0.85 65.85 3017.30

K1 = 1;
K2 = 10;
K3 = 10;
C = 1000

0.86 50.71 3574.6 0.86 52.77 3512.93 0.86 55.31 3567.55

K1 = 1;
K2 = 1;

K3 = 1000;
C = 10000

0.20 50.17 3095.43 0.29 43.23 2837.36 0.31 42.05 2676.55

ship was placed closer to the port side bank (bank balance = 30) and misalignment =
{0,−1.0,−2.0}. The policy learned was evaluated based on smoothness of trajectory and
commands; the parameters found to be appropriate in assessing a given trajectory were:
the average magnitude of the rudder command σ̄ (value normalized between {0, 1}), the
average bank balance magnitude ¯|bal| and the variance for the bank balance magnitude
S|bal|. The simulations were performed for policies learned with different reward function
configurations and the results are displayed in Tables 1 and 2. Figure 7 illustrates the
trajectories obtained using Kbalance = 1, Kmisalign = 100, Krot = 1000, Krudder =
10000, Ccollision = 100000.

For a better evaluation of relative impact of the terms, the factorKbalance was fixed
at 1. Kmisalignment not only affects how the policy will attempt to realign the ship, but
also counterbalance the urge for the ship to return to the middle of the channel totally un-
aligned. This prevents unstable situations. Factors such Krudder and Krot impact on how
the agent is punished for attempting more abrupt orientation changes. This is reflected for
the third reward configuration, where Krudder is significantly higher than the other factors



Table 2. Results with ship starting with displacement from guidance line, where
K1 = Kmisalign, K2 = Krot, K3 = Krudder, C = Ccollision.

Initial state
Bank balance:20;
Misalignment:0

Bank balance:20;
Misalignment:-1

Bank balance:20;
Misalignment:-2

Reward
Parameters σ̄ ¯|bal| S|bal| σ̄ ¯|bal| S|bal| σ̄ ¯|bal| S|bal|

K1 = 100;
K2 = 1000;
K3 = 100;
C = 100000

0.85 66.79 2850 0.85 67.92 2730 0.85 69.15 2637.63

K1 = 1;
K2 = 10;
K3 = 10;
C = 1000

0.85 55.18 2683.32 0.85 53.98 2203.60 0.85 56.60 2092.05

K1 = 1;
K2 = 1;

K3 = 1000;
C = 10000

0.15 38.38 1458.86 0.11 50.15 1611.13 0.12 52.46 1694.66

Figure 7. Trajectories for Kbalance = 1, Kmisalign = 100, Krot = 1000, Krudder =
10000, Ccollision = 100000.

from Rstate. A high rudder magnitude punishment, however, makes it impossible for the
agent to escape from extreme misalignment and displacement situations.

One interesting behavior observed in these experiments was the unexpected ac-
tions taken by the agent in cases where the ship dangerously approached the margins
with a large misalignment or with very low velocity. Instead of setting the rudder to the
maximum angle in an attempt of dodging from collision, it simply took the action that
anticipates it. Two possible explanations for that are: the lack of samples with low pun-
ishment or a reward function which causes the discounted accumulated reward to be as
negative as the collision punishment. Since the horizon appears to have a highly nega-
tive accumulated reward, the agent goes for the the ”unavoidable” collision state faster in
order to minimize the accumulated punishment.



7. Conclusion and Future Work
In this paper we have presented a batch reinforcement learning solution for ship maneuver
control. Channel navigation for berthing was modeled using a compact state-space, and
no way-points were required; ship behavior was simulated so as to reflect the limitations
of human steering and ship maneuverability. Experiments show that human-style controls
can be generated this way, using discrete command levels with continuous propulsion.

As future work, propulsion level changes should be considered as actions to achieve
higher controllability. Also, more complex port topologies and robustness against condi-
tions such as wind and current, should be investigated. In both cases, additional state
variables may be necessary. As a long term goal, it is desirable to include commands to
tugs that tow the ship until the berth point to attain full emulation of autonomous ship
berthing. In the scope of channel navigation, there are further directions for research: im-
provement of controllability through more action levels, robustness against environmental
forces, and use of varied port topologies.
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