
Proceedings of ASME 2019 38th International
Conference on Ocean, Offshore and Arctic Engineering

OMAE2019
June 9-14, 2019, Glasgow, Scotland

OMAE2019-96120

PORT CHANNEL NAVIGATION SUBJECTED TO ENVIRONMENTAL CONDITIONS
USING REINFORCEMENT LEARNING

José Amendola
University of Sao Paulo

Sao Paulo, Brazil
Email: jose.amendola@usp.br

Eduardo A.Tannuri
University of Sao Paulo

Sao Paulo, Brazil

Fabio G. Cozman
University of Sao Paulo

Sao Paulo, Brazil

Anna H. Reali Costa
University of Sao Paulo

Sao Paulo, Brazil

ABSTRACT

This paper proposes a machine learning agent for automatically
navigating a vessel in a confined channel subject to environmen-
tal conditions. The agent is trained and tested using a Ship Ma-
neuvering Simulator and is responsible for commanding the rud-
der, so as to keep the vessel inside the channel with minimum
distance from the center line, and to reach the final part of the
channel with a prescribed thruster rotation level. The algorithm
is based on deep reinforcement learning method and uses an ef-
ficient state-space representation. The advantage of using rein-
forcement learning is that it does not require any expert to di-
rectly teach the agent how to behave under particular conditions.
The novelty of this work is that: it does not require previous
knowledge on the vessel dynamic model and the maneuvering
scenario; it is robust against fluctuations of environmental forces
such as wind and current; it considers discrete actions of rud-
der commands emulating the pilot actions in a real maneuver.
The developed method is convenient for simulations in scenarios
or areas that were never navigated before, in which no previous
navigation data can be used to train a conventional supervised
learning agent. One direct application for this work is the inte-
gration with a realistic fast-time maneuvering simulator for new
ports or operations. Both training and validation experiments fo-
cused on the unsheltered approach channel of the Suape Port, in
Brazil; these experiments were run in a SMH-USP maneuvering
simulator (real environmental conditions measured on-site were
employed in simulations).

1 INTRODUCTION

Navigation in restricted waters is a very complex topic and, even
with autonomous ships about to be launched in a very near future,
it still resists automation. Maneuvering in ports, bays and rivers
depend on pilot experience regarding environmental conditions
and navigational area particularities.

A very important application for ship maneuvering simulators
are fast-time simulations for engineering purposes, where new
navigation scenarios are tried out. One difficulty of fast-time
simulations is the absence of previous recorded trajectories com-
bining the same scenario and vessel configurations. Such simu-
lations are usually performed by non-pilots and the trajectories
are obtained by manually setting way-points and applying con-
trol algorithms used in automatic pilot systems. That might not
represent real-world pilotage constraints properly and might not
reveal the criticality of operations.

This paper employs a stable Deep Reinforcement Learning algo-
rithm to solve the specific task of navigating through a straight
and narrow channel. Reinforcement Learning (RL) is a field of
machine learning based on the concept of reward. It does not
require previous information of what the learning agent should
exactly do at a given moment; it is thus highly recommended for
problems where there are no information available, but there is a
reasonable notion of how better certain actions or states are over
others. RL can solve fast-time simulation issues by not requiring
previous navigation samples and by naturally allowing discrete
time and action constraints which are typical from human pilot-
ing.

Our learning agent acts on rudder level of an under actuated ves-
sel initially positioned at the channel entrance and its goal it to
reach the end of the channel without colliding with the lateral

1 Copyright c© 2019 by ASME

buoys. It extends the scenario used in a previous paper [1] by
considering environmental conditions (wind, waves and current)
and using the state-of-art algorithm Deep Q Network.

The problem representation incorporates discrete levels of rud-
der angle actuation and discrete time steps between actions that
closely match the action of a human pilot during a maneuver-
ing. A compact and reusable representation of states was used
to improve learning efficiency. It is later shown that the agent
trained in a given scenario can perform the task with variations
in environment parameters and the knowledge obtained can be
transferred for accelerating learning for agents in other scenario
settings.

Reinforcement Learning was applied to ship maneuvering in
[2] for navigating until a goal in a squared geographic do-
main.

More recent applications using state-of-art deep architectures can
be found in [3], where the task was to reach a channel entrance
from random starting positions, and in [4], for path following
task using Line-of-Sight strategy. In [1], as mentioned in Section
1, the channel topology and the task were the same as here in
this paper, but no environment conditions were considered, the
state space adopted was simpler and a batch RL algorithm called
Fitted Q Iteration was used.

This paper is structured as follows: Section 2 introduces key con-
cepts of Deep RL and the simulator used; Section 3 specifies the
problem representation and scenarios and conditions used for the
experiments; Section 4 describes the experiments run and analy-
sis of results obtained; Finally, Section 5 shows our conclusions
and future directions for the work developed.

2 PRELIMINARIES

In this section we introduce the simulator employed in the exper-
iments and shortly review basic concepts about Reinforcement
Learning and about the algorithm we adopted.

2.1 SMH Simulator

The TPN-USP Maneuvering Simulation Center is the largest
Brazilian Ship Maneuvering Center, being composed by 6 simu-
lators, being 3 classified as full-mission (immersive system with
more than 270◦ of projection). The simulation can be executed
in the real-time mode in one or several cabins simultaneously
(single or multiplayer simulation) as indicated in Figure 1. The
simulator is used for evaluation of new ports and operations, risk
analysis, pilots and captains training. The same simulation soft-
ware can also be executed in fast-time mode, in which an algo-
rithm that represents the behavior of the pilot controls the ship

and tugs. In this case, the maneuvers run in accelerated mode
and the execution of a large number of runs is possible. This
kind of maneuvering simulation is useful in the early stages of
ports design, since the statistical analysis of the ship tracks can
define the optimal layout of the maneuvering area or the limiting
conditions.

FIGURE 1. TPN-USP Full maneuvering simulator

[5] and [6] present a more detailed description of the mathemat-
ical formulation and physical fundamentals of the SMH mod-
els.

The mathematical models represent the motion of a floating ves-
sel at low speed in 6 DOF (degrees of freedom), subjected to
the external forces due to the environmental and tugboats and
to the control forces provided by the thrusters, propeller and rud-
der. The 6 DOF vessel dynamics differential equations are solved
using explicit 4rd order Runge-Kutta integration method, consid-
ering the interaction with the fluid and the external forces acting
on the hull. However, as a matter of simplicity, this section will
only present the equations of motion for the horizontal plane. We
adopt two different coordinate systems to derive the ship equa-
tions of motions, as shown in Figure 2. The system OXY Z is
earth-fixed (inertial system) and the system Oxyz ship-fixed, with
the origin on central point of the keel midship section. The cen-
ter of gravity G is at the distance xG ahead from the point o, ox is
the longitudinal axis of the vessel directed to the bow, and oy is
the transversal axis, pointing to port. The heading of the vessel
ψ defines the angle between the ox and OX axes.

Following [7], the horizontal 3 DOF equations of motion referred
to the body-fixed Oxyz coordinate system, considering symmetry
with respect to the axis ox, are given by:

(M+M11)u̇− (M+M22)vr− (MxG +M26)r2 = Xext , (1)

2 Copyright c© 2019 by ASME

FIGURE 2. Ship coordinate system

(M+M22)v̇+(MxG +M26)ṙ+(M+M11)ur = Yext , (2)

(Iz+M66)ṙ+(MxG+M26)(v̇+ur)+(M22+M11)uv=Next , (3)

where M is the vessel mass, Iz is the yaw moment of inertia of
the ship, u and v are the surge and sway velocities respectively
and r is the yaw angular velocity. The terms M11 and M22 are
the ship added masses in the surge and sway directions, M66 is
the ship added moment of inertia and M26 is coupled sway-yaw
added inertia. The last term on the right side of the yaw equation
is the Munk’s moment. The subscript ext represents the external
loads, that may be expressed in terms of different factors:

Xext = Xh +Xw +Xwv +Xp +Xtug +XM, (4)

where Xh represents the hydrodynamic non-potential forces, in-
cluding the current and maneuvering forces, Xw and Xwv repre-
sent the wind and wave forces, respectively, Xp represents the
thrusters, propeller and rudder forces, Xtug represents the exter-
nal action of the tug boats, either in contact with the hull or con-
nected by a cable and XM represents the forces due to mooring
lines, fenders or anchor lines. In the present paper, the vessel
will navigate along a channel without the help of any tugboats or
attached to any lines, being only controlled by its own propeller
and rudder under environmental forces. Therefore, the terms Xtug
and XM are null in the equation 4.

A physical-based model is used for the calculation of the rudder
forces [8]. The rudder lift forces FL are given by:

FL(βr) = 0.5ρArCL(βr)V 2
r , (5)

FIGURE 3. Forces on the rudder

where CL is an dimensionless coefficient, βr the effective rud-
der angle and Vr the relative velocity of the fluid onto the rud-
der.

Therefore, one must note that the rudder forces are dependent on
the speed of the water on the rudder. This water jet is mainly gen-
erated by the propeller rotation, indicating that the vessel will be
more controllable (maneuverable) if the propeller is operating.
With engine stopped, the water flow on the rudder and the rud-
der forces will be reduced, making the vessel very difficult to be
controlled.

2.2 Reinforcement Learning and Deep Q Net-
work

Reinforcement Learning uses sequential decisions of an agent to
learn how to behave [9]. At each time step, the agent observes a
state, takes an action that results in a transition to another state
and receives a reward signal. RL is based on the framework of
Markov Decision Processes (MDPs); an MDP is described by a
set of states S, a set of possible actions A, transition probabilities
p(s,a,s′), s,s′ ∈ S,a ∈ A, a reward function S×A× S→ R and
a discount factor 0 ≤ γ ≤ 1. The latter factor attenuates future
rewards and is applied in infinite horizon tasks to guarantee con-
vergence of accumulated rewards. The lower the discount factor,
the more short-sighted the agent. A Markov property is assumed
by MDPs: every transition depends only on s and a.

RL algorithms look for optimal policies maximizing expected
cumulative reward (a policy is a function from states to actions).
The Q value is the expected accumulated reward if action a is
taken at state s as specified by a policy π; we have that Qπ(s,a) =
Eπ

[
∑

∞
k=0 γkrt+k+1|st = s,at = a

]
.

The Q-Learning algorithm is widely used in RL. The main
idea of the algorithm is to update the Q-value of a given state-
action pair during an exploration (online) by incrementing the Q
value:

Qt(s,a)← (1−α)·Qt−1(s,a)+α ·(r+γ ·max
a′

Qt−1(s′,a′)). (6)

In the equation, α is the learning rate (0 < α ≤ 1). Updated this
way, Q-learning can identify an optimal action-selection policy,

3 Copyright c© 2019 by ASME

π∗(s)= a, for any given MDP, given infinite exploration time and
a partly-random exploratory policy. Q-learning can be extended
to continuous state-spaces, using for example supervised learn-
ing techniques to produce an estimate for the Q function.

Although the reward signal conceptually derives from interac-
tions with the environment, from the point of view of engineer-
ing, it requires a human designer in order to define a reward func-
tion that is compatible with the problem representation.

Deep RL deals with algorithms combining RL with complex
neural network architectures for approximating the action-value
function. DQN, a special case of Deep RL, gained notoriety
when it was used to solve ATARI games [10].

In DQN, two neural networks with same topology are used: at
every iteration, the so-called primary network receives the state
variables as input and outputs the respective action-values for
each of the possible actions. The action with greater value is then
selected. During the learning step, the secondary network, also
called target network estimates the maximum target Q value for
the subsequent transition. This value is then used to compute the
error of the primary network. The weights of the target network
are smoothly adjusted towards the values of the primary network
weights. Using this secondary network, which slowly changes
its weights, helps to reduce instability caused by the feedback of
values used to compute the estimation.

Another source of instability are the correlations in the sequence
of observations and changes in data distribution due to policy
change. DQN tackles this problem with a technique called Ex-
perience Replay. It stores transition data in the replay buffer and
selects a batch of transitions for fitting the network every learn-
ing step. The selection criteria can vary according to the prob-
lem an can even benefit experiences which do not occur very
often.

Figure 4 illustrates the basic algorithm work flow: The actions
generated by the policy are transmitted to the simulator and com-
pose experiences along with reward, prior state and subsequent
state. Such experience sets { s,a,s’,r} are stored in replay mem-
ory for further mini-batch selection. The DQN block represents
both neural networks: In the forward pass, the primary network
outputs an action for state observed (policy); After the action is
taken, occurs the backward pass, where the primary network is
trained for the mini-batch and weight updating occurs for target
network smoothly or with longer intervals using a gradient based
algorithm.

There are several techniques for improving performance of RL
based on Knowledge Transfer [11] that can also be applied to
Deep RL [12].

FIGURE 4. DQN ALGORITHM WORK FLOW.

3 METHODOLOGY

In this section we first present the scenarios considered in this
work. We then show how the problem was formulated with
RL, as well as which premises and simplifications were as-
sumed.

3.1 Scenarios

An actual port channel located in the Suape Port, in the North-
eastern Brazilian coast, was taken as geographic scenario for the
experiments. The port channel is straight and is 210 m wide as
shown in the nautical chart from Figure 5.

FIGURE 5. SUAPE PORT CHANNEL WITH BUOY DELIMITA-
TIONS.

The model employed in the experiments is a tanker of class Afra-
max in loaded condition, whose main properties are listed in Ta-
ble 1.

The typical environmental scenarios for that region sum up to 8
different conditions combining wind, current and wave. The con-
ditions were grouped mainly according to direction of the wind

4 Copyright c© 2019 by ASME

TABLE 1. MAIN PROPERTIES OF THE SHUTTLE TANKER.

Properties Loaded Condition

Length Overall 244 m

Beam 42 m

Draft 15.3 m

Displacement 115.00 ton

Windage lateral area 2562 m2

Main Engine Power 14280 kW

and current and the training process was applied to one condi-
tion of each group, but tested for all conditions inside the group,
resulting in 3 agents. The grouping and the conditions consid-
ered are listed in Table 2 and illustrated in Figure 6. Agents were
trained for conditions 1, 3a and 5.

TABLE 2. ENVIRONMENTAL SCENARIOS

Group
Wind
Speed
(knots)

Current
Speed
(knots)

Wave
Amplitude
(m)

Wave
Period
(s)

A Wind SE; Current N; Wave SE

1 10.0 0.5 1.0 8.0

2 15.0 0.6 1.0 8.0

B Wind NE; Current N; Wave SE

3 20.0 0.4 1.0 8.0

4 25.0 0.8 1.0 8.0

3a 22.0 0.6 1.0 8.0

4a 23.0 0.7 1.0 8.0

C Wind SE/S; Current N; Wave SE

5 20.0 (SE) 0.8 1.7 10.0

6 20.0 (S) 0.8 1.7 10.0

3.2 Problem Modeling as MDP

3.2.1 State representation

The complete vessel dynamics involves many state variables.
However, most of these can be ignored without hampering task
performance.

FIGURE 6. SCHEME OF ENVIRONMENTAL CONDITIONS
ACTING ON THE CHANNEL AREA.

Although the goal is to reach the end of the channel, using in-
formation such as proximity to the goal or geographic position
makes state space more complex and the agent would need to
go exhaustively through episodes to experience transitions closer
to the end. The problem was instead represented as an infinite
horizon control problem. In this case, the agent has the goal of
continuously keeping the vessel close to the channel center and
to avoid collision. By accomplishing it, the vessel will eventually

5 Copyright c© 2019 by ASME

reach the end of the channel.

The variables used are listed in Table 3. The variable normalized
lateral deviation expresses how far from the center line of the
channel and how close the vessel is from channel margins defined
by buoys:

norm lat deviation =
distanceStarboard−distancePortside

channelwidth
. (7)

As represented by Equation (7), it is normalized by the channel
width at the vessel position so that the agent trained stays robust
against width changes along the channel: Figure 7 illustrates how
variables are defined.

FIGURE 7. SCHEME ILLUSTRATING HOW VARIABLES ARE
DEFINED.

TABLE 3. STATE VARIABLES.

State variable Unit Range

norm lateral dev adimensional -1.0 to 1.0

cog degrees 243 to 270

rate-of-turn degrees/s −1.0 to 1.0

last rudder level adimensional {−0.5,−0.2,0,0.2,0.5}

Course over ground is the direction of the actual speed of the
vessel (measured at the mid-ship center point), even if the ves-
sel moves misaligned with such line. The cog was considered,
rather than orientation since the vessel navigates with drift angle

to compensate environmental forces. Rate-of-turn represents the
angular velocity which is positive for clockwise rotation and is
essential due to the high rotational inertia.

The last commanded rudder level represents the last command
given. Although its choice as relevant variable might not be in-
tuitive, it works as a proxy indicator for vessel angular accel-
eration. When combined with rate-of-turn, it also reveals the
effectiveness of the last command given, which might be cru-
cial when dealing with external momentum due to environmental
forces.

The range covered by the variables represents the limits estab-
lished by the domain, with the exception of cog, which was de-
limited based on preliminary experiments. It was noticed that,
although the vessel can present cog values beyond the range, it
can hardly avoid collisions in cases where its course is highly dis-
placed from the channel orientation. The range was then heuris-
tically established with equal margins considering the channel
orientation at the middle in order to accelerate the learning pro-
cess and the policy convergence.

3.2.2 Actions

The action values represent the rudder command and are nor-
malized by the maximum rudder angle (35o). For the experi-
ments, the rudder levels used were: −50%, −20%, 0%, 20%,
50%. The time interval chosen for transitions is Ttransition = 10s,
which means the vessel remains with same commanded rudder
level for that amount of time.

3.2.3 Reward function

Simple reward functions can lead to a very slow learning conver-
gence. Hence, it is recommended to project reward functions that
encode a sense of proximity from the agent to its goal. In order to
make learning process more efficient, an elaborated reward func-
tion which encodes information on how acceptable a transition
is, must be employed. The agent must be encouraged to fol-
low through the channel avoiding collision. Although most do-
mains use slightly negative values for non-terminal regular states
to avoid unexpected behavior such as in [13], the lack of good
experiences that lead the agent to the goal can cause anticipated
collisions to minimize overall negative punishment, as observed
in [1]. In our problem, most transitions toward the goal are posi-
tive and partial knowledge on the domain is used to define higher
values for states which are more acceptable and tend to lead to
more successful missions. The reward function used is:

R(s,a,s′) =
1− rot(cog−θchannel)

(1+ |norm lat deviation|)(1+ |cog−θchannel |)
.

(8)
The decay of the reward value should be proportional to the mis-
alignment of the ship, for example. However, the same misalign-
ment value, combined with rate-of-turn value which denotes the

6 Copyright c© 2019 by ASME

tendency to further realignment, should result in a higher reward
than a ship tending to follow straight in that direction or even
diverge more from channel orientation. Such premises are com-
pounded as multiplication or division operations. The numerator
term will be higher than 1 if the ship tends to realign with the
channel and lower than 1 otherwise. The left denominator term
makes sure the reward is larger the closer the vessel is to the
center; The right one causes the highest reward value to occur
when the vessel navigates totally aligned with the channel. In
the equation, the channel orientation is θchannel = 256o.

Additionally, if the vessel collides at a given transition, the
episode is reset and a punishment of −10 is added to the re-
ward.

3.3 Exploration

The exploration policy used during trained was a variant of the
epsilon greedy policy [9]. In this traditional policy, at a given
training iteration, the agent has probability defined by the pa-
rameter ε of taking a random action rather than the action with
maximum Q value. In the Annealed version of the policy used,
the ε parameter is randomly chosen and can be as high as another
parameter defined as εmax. The parameter εmax linearly decreases
until it reaches a minimum value defined. For the experiments,
εmax was set to 0.8 initially and stabilizes at 0.2 after 3.105 itera-
tions.

3.4 Neural Network

The neural network adopted is a regular Multilayer Perceptron
[14] with input of dimension 4 (number of state variables) and
output of dimension 5 (number of actions). The number of
hidden layers used was 2 and the choice was based on another
work [15] whose control task solved by RL had a similar com-
plexity. The number of perceptrons for hidden layers was chosen
as 64 and 32 respectively. The adopted activation function was
ReLu (Rectifier Linear Unit) [16] and ADAM optimization al-
gorithm [17] was chosen given its popularity in recent works.
In such algorithm the weights of the perceptrons are updated,
among other factors, by the gradient of error weighted by a learn-
ing rate.

4 EXPERIMENTS

In this section we present the values for parameters adopted in
the experiments and we show the results obtained.

4.1 Parameters Setting

In every episode the vessel started aligned with the channel mid-
point and velocity 3 m/s and training iterations were executed
with simulator numerical integration step T = 2s. Although the
simulator can have integration precision up to T = 0.1s, the com-
putational time required to accomplish a reasonable number of
iterations might be prohibitive since each iteration time length is
inversely proportional to integration time step.

The learning rate for neural network was set to η = 0.001 and
weights of perceptrons were randomly initialized with uniform
distribution limited by a range inversely proportional to the num-
ber of inputs and outputs of the perceptron; The discount fac-
tor used was set to γ = 0.99; The weights from primary to tar-
get network in DQN algorithm was updated in ”soft” mode,
which means that at every iteration the weights from target
were adjusted towards the primary network values by a factor
θ = 0.002.

The number of training iterations for all agents were defined af-
ter prior experiment in condition 1. The trajectory could be per-
formed until the end of channel with reasonable stability after
3.106 iterations. Figure 8 shows that the accumulated reward per
episode oscillates and increases significantly with this amount of
iterations.

FIGURE 8. REWARD ACCUMULATED IN AN EPISODE FOR
THE NUMBER OF TRAINING ITERATIONS.

4.2 Results

In order to evaluate the trajectories, the average normalized de-
viation was considered as well as its variance. Lower variances

7 Copyright c© 2019 by ASME

indicate that the trajectory tends to be more straight and might
contain less abrupt curvatures. The average vessel drift reveals
the misalignment tendency between the vessel and the channel
direction required to compensate environmental forces.

Tables 4, 5 and 6 show the values obtained for trajectories in
groups A, B and C respectively. Figures 9, 10 and 11 illustrate
such trajectories plotted over the channel.

TABLE 4. PERFORMANCE OF AGENT FROM GROUP A
(TRAINED UNDER CONDITION 1).

Condition
Average
Norm.
Lateral
Deviation

Norm.
Lateral
Deviation
Variance

Average
Drift
(degrees)

1 −0.05 0.11 −2.4

2 −0.05 0.11 −3.2

TABLE 5. PERFORMANCE OF AGENT FROM GROUP B
(TRAINED UNDER CONDITION 3A).

Condition
Average
Norm.
Lateral
Deviation

Norm.
Lateral
Deviation
Variance

Average
Drift
(degrees)

3a 0.26 0.19 −4.3

3 0.29 0.18 −3.7

4 0.35 0.09 −8.4 (failure)

4a 0.30 0.16 −5.2 (failure)

TABLE 6. PERFORMANCE OF AGENT FROM GROUP C
(TRAINED UNDER CONDITION 5).

Condition
Average
Norm.
Lateral
Deviation

Norm.
Lateral
Deviation
Variance

Average
Drift
(degrees)

5 −0.34 0.06 −4.9

6 −0.34 0.06 −5.2

The training demonstrated that the agents trained under a certain
condition can perform with very close behavior when magnitude
of environment factors change within a certain range. The repre-
sentation was also robust enough to keep commanding the vessel
even at the end of the channel, where width gets larger. As in
human pilotage, the RL agent successfully learned to compen-
sate the environment forces by constantly navigating with a small
drift angle.

FIGURE 9. TRAJECTORY OF AGENT FOR GROUP A UNDER
CONDITION SETTING 1 (BLUE) AND 2 (RED).

FIGURE 10. TRAJECTORY OF AGENT FOR GROUP B UNDER
CONDITION SETTING 3A (BLUE), 3 (RED), 4 (GREEN) AND 4A
(MAGENTA).

As expected, trajectories from group A presented lower average
drift than C since the intensity of all environmental factors are
stronger in C, making the navigation conditions more difficult. A
vessel port side drift is also verified in the successful trajectories
from group B (3 and 3a) since the vessel is in full draft and the
current causes the largest forces on the vessel. The agent from
group B was not able to navigate in every condition and collided
when tested under conditions 4 and 4a. That happened because
those conditions affected rudder efficiency and vessel drift in a
way that the experiences during training could not extrapolate.
Even the two successful trajectories from group B have shown
that vessel navigated closer to the port side margin. That can be
explained by the fact that wind and wave directions opposed cur-
rent in this condition group and it induced the agent to have more
positive experiences tending to port side during training.

Figure 12 shows the commanded rudder angle and the actual an-
gle over time for navigation under Condition 1. The rudder ori-
entation switches very frequently since the rate-of-turn must be
maintained at low levels in order to stabilize the vessel. Although

8 Copyright c© 2019 by ASME

FIGURE 11. TRAJECTORY OF AGENT FOR GROUP C UNDER
CONDITION SETTING 5 (BLUE) AND 6 (RED).

this behavior is acceptable and even occur in real-world pilot-
ing, the high variations in rudder level could be attenuated by
inserting a small penalty for level variations in the reward func-
tion.

FIGURE 12. DEMANDED AND ACTUAL RUDDER ANGLES
OVER TIME FOR CONDITION 1.

Since the agent trained under condition 3a was not successful in
every other condition of group B, we extended the experiments
by applying one of the possible techniques used for Knowledge
Transfer. In this case, the weights of neural network trained in
condition 3a were used to initialize the weights of the network
of an agent to be trained under condition 4. After 9.105 (approx-
imately 1/3 of the iterations used in the original training) itera-
tions, the agent was able to successfully navigate until the end of
the channel as shown in Figure 13.

Table 7 shows the results obtained for trajectory in condition 4
after Knowledge transfer. As expected, the average drift is larger
than the trajectory obtained by the original agent from group B
in conditions 3 and 3a since this condition has higher current
intensity.

FIGURE 13. TRAJECTORY OF AGENT TRAINED FOR CONDI-
TION 4 WITH WEIGHTS INITIALIZED FROM GROUP B AGENT.

TABLE 7. PERFORMANCE OF AGENT TRAINED FOR CONDI-
TION 4 AFTER KNOWLEDGE TRANSFER.

Average
Norm.
Lateral
Deviation

Norm.
Lateral
Deviation
Variance

Average
Drift
(degrees)

0.14 0.12 −4.7

5 CONCLUSION AND FUTURE WORK

In this paper we have presented a Reinforcement Learning based
solution for navigation in a port channel under realistic environ-
ment conditions. The algorithm enabled human-style maneuver-
ing through discrete rudder levels and discrete interval between
actions. The problem representation allowed the trained agent
to navigate with variations on environment conditions and can
be even extended to channels with different length and smooth
width variations. It was also shown that knowledge transfer en-
abled an agent to be trained for a given scenario with reduced
number of iterations.

Possible continuation of this work includes evaluating other state
representations for handling more complex port geography such
as curves and isles and also the extension of RL to the final
phase of ship berthing, which includes commands to tugboats.
Although this work focuses on the scope of fast-time simula-
tions for project analysis, where obstacles are static, future works
could also regard two-way channels with passing vessels under-
way.

ACKNOWLEDGMENT

Thanks to Petrobras for supporting the development of the
maneuvering simulation center. The second author is par-
tially supported by CNPq grant 304784/2017-6. The third
author, by CNPq grant 308433/2014-9, and FAPESP grant
2016/18841-0. The fourth author, by CNPq grants 425860/2016-

9 Copyright c© 2019 by ASME

7, 307027/2017-1 and FAPESP grant 2016/21047-3.

REFERENCES

[1] Amendola, J., Tannuri, E. A., Cozman, F. G., and Costa,
A. H. R., 2018. “Batch reinforcement learning of feasible
trajectories in a ship maneuvering simulator”. Anais do En-
contro Nacional de Inteligłncia Artificial e Computacional
(ENIAC), pp. 263–274.

[2] Lacki, M., 2008. “Reinforcement Learning in Ship Han-
dling”. TransNav, the International Journal on Ma-
rine Navigation and Safety of Sea Transportation, 2(2),
pp. 157–160.

[3] Tuyen, L. P., Layek, A., Vien, N. A., and Chung, T., 2017.
“Deep reinforcement learning algorithms for steering an
underactuated ship”. In 2017 IEEE International Confer-
ence on Multisensor Fusion and Integration for Intelligent
Systems (MFI), pp. 602–607.

[4] Martinsen, A. B., and Lekkas, A. M., 2018. “Straight-
path following for underactuated marine vessels using deep
reinforcement learning”. IFAC-PapersOnLine, 51(29),
pp. 329–334.

[5] Queiroz Filho, A. N., Zimbres, M., and Tannuri, E. A.,
2014. “Development and Validation of a Customizable DP
System for a Full Bridge Real Time Simulator”. In Inter-
national Conference on Ocean, Offshore and Arctic Engi-
neering - OMAE 2014, Vol. 1A, p. V01AT01A047.

[6] Tannuri, E. A., Rateiro, F., Fucatu, C. H., Ferreira, M. D.,
Masetti, I. Q., and Nishimoto, K., 2014. “Modular Math-
ematical Model for a Low-Speed Maneuvering Simula-
tor”. In Proceedings of the 33th International Conference
on Ocean, Offshore andArctic Engineering (OMAE2014),
pp. 1–10.

[7] Fossen, T. I., 2011. Handbook of Marine Craft Hydrody-
namics and Motion Control.

[8] Molland, A., and Turnock, S., 2007. Marine Rudders and
Control Surfaces.

[9] Sutton, R. S., and Barto, A. G., 2018. Reinforcement Learn-
ing: An Introduction. Adaptive Computation and Machine
Learning. MIT Press.

[10] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland,
A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,
Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg,
S., and Hassabis, D., 2015. “Human-level control through
deep reinforcement learning”. , 518, Feb., pp. 529–533.

[11] Lazaric, A., 2012. “Transfer in reinforcement learning: A
framework and a survey”. In Adaptation, Learning, and
Optimization. Springer Berlin Heidelberg, pp. 143–173.

[12] Glatt, R., and Costa, A. H. R., 2017. “Improving deep rein-
forcement learning with knowledge transfer”. In Proceed-
ings of the Thirty-First AAAI Conference on Artificial In-
telligence, February 4-9, 2017, San Francisco, California,
USA., pp. 5036–5037.

[13] Randløv, J., and Alstrøm, P., 1998. “Learning to Drive
a Bicycle using Reinforcement Learning and Shaping”.
Proceedings of the International Conference on Machine
Learning (ICML), pp. 463–471.

[14] Haykin, S., 1999. Neural Networks: A Comprehensive
Foundation. International edition. Prentice Hall.

[15] Hafner, R., and Riedmiller, M., 2011. “Reinforcement
learning in feedback control”. Machine Learning, 84(1),
Jul, pp. 137–169.

[16] Maas, A. L., Hannun, A. Y., and Ng, A. Y., 2013. “Rectifier
Nonlinearities Improve Neural Network Acoustic Models”.
In International conference on machine learning.

[17] Kingma, D. P., and Ba, J., 2014. “Adam: A Method for
Stochastic Optimization”. CoRR, abs/1412.6980.

10 Copyright c© 2019 by ASME

