
Natural Language Explanations of Classifier
Behavior

Rodrigo Monteiro de Aquino
Escola Politécnica - Universidade de São Paulo

São Paulo, Brazil

rodrigo-monteiro.aquino@usp.br

Fabio Gagliardi Cozman
Escola Politécnica - Universidade de São Paulo

São Paulo, Brazil

fgcozman@usp.br

Abstract—Tools that enhance interpretability of classifiers tend
to focus on the knowledgeable data scientist. Here we propose
techniques that generate textual explanations of the internal
behavior of a given classifier, aiming at less technically proficient
users of machine learning resources. Our approach has been
positively evaluated by a group of users who received its textual
output.

Index Terms—machine learning, interpretability, transparency

I. INTRODUCTION AND MOTIVATION

The machine learning community has dedicated significant

effort to develop techniques that interpret black-box classifiers

such as deep neural networks [1], [2]. As complex classifiers

meet widespread application, it is important to make them

understandable to a broader array of people. On top of that,

recent legal issues have emerged that reinforce the need to

explain decisions taken autonomously by complex classifiers.

For instance, the General Data Protection Regulation [3],

currently in force in the European Union (EU), and the law

for personal data protection, recently implemented in Brazil,

require automatic decisions to be explained if so requested.

Several research results have appeared on interpreting and

explaining classifiers. Typically one builds an “interpreter” that

examines the available data and the classifier, and outputs

explanations geared to the user. Of course, the best way to

explain a classifier depends on the end user: a data scientist

may be very happy with a linear equation and a few graphs

relating weights to outputs, while a less proficient user, say

a member of a legal team or a final customer, may be very

uncomfortable with a mathematical explanation. In particular,

auditing bodies that oversee whether automatic classifiers can

be properly interpreted may benefit from explanations at a

lesser mathematical level of detail.

We present here a set of techniques that emphasize textual

explanations; the goal is to generate a readable explanation

for the behavior of a given (complex) classifier. Natural

language explanations can be easily processed by a variety of

users; in particular we aim at users with some mathematical

sophistication but no serious knowledge of data science — the

kind of user we anticipate to see in auditing and regulating

bodies.

The work has been supported by Itaú Unibanco S.A. through Itaú Schol-
arship Program. The second author is partially supported by CNPq.

The paper is organized as follows. Section II discusses re-

lated work, and Section III presents our proposed approach to

textual explanations. In section IV we evaluated the proposed

technique on a fitted model, and an experimental validation

study is described in Section V.

II. RELATED WORK

Even though an accepted formal definition of interpretability

is still to be found, there is wide interest in making automatic

classification results more interpretable to the human end

user [4].

A few popular models employed in machine learning are

taken to be intrinsically interpretable: for instance, simple

logistic regressions and shallow decision trees [5]. A simple

analysis of weights or a simple visual inspection are enough

to reveal the behavior of these models.

Non-interpretable models, often referred to as black box

models, can be explained using a set of tools in the literature.

Explanations may focus a “local” prediction (that is, they

can explain why a particular output was generated by a

particular input) or they may offer a global view of the model

behavior [5].

Some interpretability techniques are only applicable to

specific models, such as neural networks; they are said to be

model-specific. Other techniques can in principle be applied

to any model; they are said to be model-agnostic. Techniques

such as Layer-wise Relevance Propagation (LRP) and deep

Taylor decomposition [6] are examples of model-specific tech-

niques. On the other hand, LIME [2] and Partial Dependence

Plots (PDP) [7] are examples of model-agnostic techniques.

The approach followed by LIME is to create a surrogate

(and easily interpretable) model that locally approximates a

given complex model. As the interpretable model can be used

to approximate any black box, the resulting method is agnostic.

A freely distributed implementation of LIME can take data

in tabular or textual form, or even imagens. Fig. 1 shows

an example of explanation given by LIME for a particular

prediction.

An important point about these previous techniques, and

indeed many others in the literature [5], [8], [9], is that they

aim their explanations at a data scientist. That is, they assume

a rather sophisticated user.

239

2019 IEEE Second International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)

978-1-7281-1488-0/19/$31.00 ©2019 IEEE
DOI 10.1109/AIKE.2019.00048

Fig. 1. Example of a LIME explanation.

On the contrary, Biran, Join and Mckeown [10] focus

on “human-centered” explanations that are based on natural

language generation (NLG) using narrative roles. Even though

their approach produces explanations that are similar to the

ones we generate, their work focused on the selection of

core messages to be presented; we instead focus on thorough

explanations of model’s behavior. That is, we wish to provide

readable, even if long, explanations to a layperson, say a

banking client or a lawyer busy with patent selection. To do

so we use ideas behind the tools described in this section, but

we use natural language to present analyses and conclusions.

III. NATURAL LANGUAGE EXPLANATIONS

In short, we wish to create an agnostic framework that

generates textual explanations. To this end, the output of a

given model must be analyzed as its inputs vary, and the

relationship between input and output must be summarized

in a text report. There are techniques in the literature that aim

at capturing input-output relationships; in particular we resort

here to Partial Dependence Plots (PDPs) [7]. Note however

that we do not need to actually draw PDPs; we only use

the main ideas and calculations behind them to generated

explanations through Natural Language Generation (NLG).

A. Partial Dependence

A Partial Dependence (PD) function [7] shows the marginal

effect on the model’s predicted outcome when we vary the val-

ues of a subset of the input features. A PDP offers a graphical

representation of such a function, exposing the causal relation

of the variation of such features in the classifier’s predictions;

as a PDP is limited to three dimensions for presentation

purposes, it is restricted to two input features at a time.

For a classifier model that produces probabilities of classes,

the PD functions return the probability of a class to have a

true value when the features of interest have certain values.

Equation (1) defines a partial dependence function:

f̄S(XS) =
1

N

N∑

i=1

f(XS , xiC), (1)

where f̄S stands for the marginal average of the function

defined by the model, XS is a subset of interest of the input

features, N is the total number of training samples, xiC

assumes values of the complement of XS in the the training

data.

If we want to analyze the marginal influence of two features

in the prediction of a model, for each combination of values of

the features of interest we must calculate the mean result of the

predictions obtained from the variation of the other features

within a certain range. The result of this calculation is a global

view of the model’s behavior; the plots help understanding

how the model behaves when the selected features varies

within a certain range of values. Such range is usually defined

by looking at the training data used to fit the model.

It is also possible to apply the PDP in categorical features

by estimating its results setting all data points to the value

of the interested category and getting the average result

from the model. For example, with a feature named “MARI-

TAL STATUS” there could be 3 possible values: “SINGLE”,

“MARRIED” and “DIVORCED”. An estimate of the PDP for

this feature with another one would be achieved assigning each

possible value in this categorical feature to all data instances

and averaging its results.

As our goal is to generate textual explanations instead

of graphs, there is no limitation on the number of features

analyzed simultaneously in our approach. The description of

a model’s behavior can be as complex as requested by the

user. Thus one important aspect of our proposal is to allow

the user to control the granularity of reports. Such granularity

is tuned by a parameter, selected by the user, that indicates

the maximum number of features that can vary in a particular

analysis. Following the idea behind PDPs, the focus is on

the surfaces of probability as features vary. These surfaces

capture tendencies of a particular class label to be selected

under various circumstances.

B. Gradient Analysis

Our approach is to compute the partial dependence for each

possible label; from there, to generate descriptive texts about

the model’s behavior by describing the gradient throughout the

probability surfaces. The complete process is illustrated in Fig.

2, which takes any fitted classifier and using the data from an

analysis generates a report of its behavior. We resort to stan-

dard methods of gradient computation [11] as implemented in

the Numpy library (in the Python programming language).

For each class, the gradient is calculated in each point of

the defined surface. As it is unfeasible to describe a high-

dimensional surface by detailing its behavior at every possible

point, surfaces are divided in sectors that are then represented

by the mean gradient of its internal points.

Black box model

Model analysis:

Partial

Dependence

Sensitivity analysis:

Gradient

NLG:

Templates

Report

Fig. 2. Steps in report generation.

240

Fig. 3. Representation of sectors of a PDP.

As an example, the visualization of sectors in a three

dimensional space (PDP with two input features) is depicted

in Figure 3. In it, two features of interest have their values

fixed and the PD function is calculated to generate the value

on the vertical axis (that is, the average of the probability of

the label of interest over all possible values of the non-fixed

features).

Algorithm 1 details how the sectors in the PD function

surface are determined, and how the mean gradient is calcu-

lated in each one of them. Steps in this algorithm are repeated

for each label, limited only by a sensitivity value that limits

the effect of less relevant labels, and controls the size of the

sectors. The computed gradient is averaged in each sector to

determine a trend; this information feeds the natural language

generation step.

Algorithm 1 Gradient Analysis
Input: pd data (PD data for one particular class)
Output: list of (bound index,mean gradient)

slices perc sizes ← percentual size for each feature in PD
dim stride ← empty list
num features← length(pd data.shape)
for i = 0 to num features− 1 do

shape size ← pd data.shape[i]
perc size ← slices perc sizes[i]
dim stride.append(�shape size ∗ perc size�)

end for
do loop ← True
slices ← empty list
indexes ← list with size num features, filled with zeroes
while do loop = True do

bound index ← empty tuple
for i = 0 to num features− 1 do

last index← indexes[i] + dim stride[i]
if last index ≥ pd data.shape[i] then

last index← pd data.shape[i]− 1
end if
bound ind← bound ind + (indexes[i], last index)

end for
mean grad = mean(grad(pdp data[bound ind]))
slices.append((bound ind,mean grad))
indexes[0] = indexes[0] + dim stride[0]
for i = 1 to num features− 1 do

if indexes[i− 1] ≥ pdp data.shape[i− 1] then
indexes[i] = indexes[i] + dim stride[i]
indexes[i− 1] = 0

end if
end for
if indexes[−1] ≥ pdp data.shape[−1] then

do loop = False
end if

end while
return slices

C. Natural Language Generation
Usually, the description of a chart focuses on increasing

and decreasing steps of the function of interest. In words,

one might say, “There is an increase in the probability of

label y when feature X varies from a1 to an and feature Z
varies from b1 to bn”. As we have gradients over sectors of

probability surfaces, we can generate datapoints by dividing

sectors of increase/decrease (as measured by mean gradient)

of probabilities.
Dynamic templates [12], [13] are the best fit to the format

of the resulting data, and can be used to generate text snippets

with respect to each sector. Depending on the data from

the analysis there is a corresponding snippet of text to be

filled with it, also the selected sensitivity value influence how

the information may grouped within similar clusters of near

sectors.

IV. EXPERIMENTS

The evaluation of our approach was based on the generation

of a behavior explanation for a Random Forest model with

300 estimators and a maximum depth of 50. We focused on

random forests as wanted to emphasize that our approach is not

solely geared towards “complicated” deep neural networks (for

which model-specific methods exist); other common classifiers

can be quite complex and difficult to understand. The data we

used was the Wine Quality Data Set [14], a data set containing

physicochemical properties related to red and white variants

of a Portuguese wine, with a label determining the class of

each sample, from 0 (very bad) to 10 (excellent).
Figure 4 shows a part of the resulting output, which de-

scribes how the probability of class 3 wines (the most relevant

one) changes when features alcohol and volatile acidity vary

within the range of the training data set. The text comments

on the probability of each class of wine given the training data

set.
Note that this approach is not focused on showing whether

the training is balanced, nor whether the model is properly

encoding the data. The output represents the model’s behavior

in the space of possible values of the features.
Even though the sensitivity variable was set to 0.4 on

average (meaning that the first sector will have 60% of the total

size of the feature space) the generated text is quite extensive

if we consider all labels. The larger the sensitivity the smaller

the sectors, causing the text to be more detailed.

Overall, class 3 has a considerable decrease in chance to occur when
features alcohol and volatile acidity increases. For this same class, it is
detailed above 4 ranges of values where the input features vary, showing
how the output may change: There is a considerable decrease of chance
for this class to occur when:

- feature alcohol varies from value 0.14 to 0.46 and
- feature volatile acidity varies from value 0.05 to 0.17.

There is a major decrease of chance for this class to occur when:
- feature alcohol varies from value 0.46 to 0.68 and
- feature volatile acidity varies from value 0.05 to 0.39.

There is a major increase of chance for this class to occur when:
- feature alcohol varies from value 0.14 to 0.46 and

- feature volatile acidity varies from value 0.17 to 0.39.

Fig. 4. Text result for the Wine Quality Data Set.

241

TABLE I
EVALUATION RESULTS

Technique
Quick understanding of information Seemingly reliable result Chance of usage
Negative Neutral Positive Negative Neutral Positive Negative Neutral Positive

PDP 1 36 11 12 28 8 1 30 17
LIME 2 29 17 2 22 24 2 22 24
Proposed Technique 3 16 29 5 30 13 4 26 18

It is to be expected that with a more complex problem

(with more features and labels) the textual explanation for

the model’s behavior will be significantly longer. A longer

report is not a problem: the granularity of the report can be

controlled, so the end user can choose anything from a few

paragraphs to a book-length description.

V. VALIDATION

To evaluate the effective application of our approach, an

experiment was conducted on a machine learning class of 48

students from a Master Engineering degree. These students

heard first a 30 minute explanation about interpretability and

several tools related to the field, focusing on LIME, PDP and

the proposed framework, then they were asked to participate

on the validation experiment.

This experiment consisted of showing the results obtained

by two state of the art interpretability model-agnostic tech-

niques: PDP and LIME, an then showing the results obtained

by our approach, with the objective of compare techniques.

For each technique presented, students were asked to score

with respect to three criteria:

1) Quick understanding of information: How much

effort the student spent to understand the underlying

information represented by the technique.

2) Seemingly reliable result: Whether the result given by

the technique appeared correct and reliable.

3) Chance of usage: Whether the student would use the

technique in a real project.

These criteria were related to “satisfaction”, with possi-

ble values: Positive, Neutral and Negative. For instance, a

positive satisfaction for the first criterion means that little

effort was spent to understand the information provided by

the method.

The evaluation results presented on Table I indicate that

our approach outperformed other approaches with respect to

the first criterion in positive gradings, while it was equally as

satisfactory with respect to the other criteria (assuming non

negative responses) — suggesting that textual explanations

led to more satisfactory understanding. This is particularly

interesting in our setting as students were knowledgeable about

mathematical expressions and graphs; even then text was the

preferred medium.

VI. CONCLUSION AND FUTURE WORK

This work presented a framework that generates a textual

explanation of a classifier behavior with respect to the variation

of some of its input features. We employed state of the art

model-agnostic interpretability techniques and developed new

algorithms to analyze a classifier model, generating a text

representing the model behavior with a series of dynamically

generated template-based sentences.

This framework can be improved with additional inter-

pretability techniques such as Individual Conditional Expecta-

tion [15] and Accumulated Local Effects [16]. The first enables

a more local explanation and the second is an alternative to

the PDP. The dynamic generation of text should also be im-

proved by implementing more sophisticated NLG techniques,

enabling a text more fluid and less “machine-like”.

REFERENCES

[1] DARPA-BAA-16-53, “Explainable Artificial Intelligence (XAI),” De-
fense Advanced Research Projects Agency, p. 1.

[2] M. T. Ribeiro, S. Singh, and C. Guestrin, “”Why Should I Trust You?”:
Explaining the Predictions of Any Classifier,” in Proceedings of the
22Nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ser. KDD ’16, 2016, pp. 1135–1144.

[3] European Union, “Regulation 2016/679 of the European Parliament and
the Council of the European Union,” Official Journal of the European
Communities, pp. 1–88, 2016.

[4] F. Doshi-Velez and B. Kim, “Towards A Rigorous Science
of Interpretable Machine Learning,” 2017. [Online]. Available:
http://arxiv.org/abs/1702.08608

[5] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and
D. Pedreschi, “A survey of methods for explaining black box models,”
ACM Comput. Surv., vol. 51, no. 5, pp. 93:1–93:42, Aug. 2018.

[6] G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and K.-R. Müller,
“Explaining nonlinear classification decisions with deep Taylor decom-
position,” Pattern Recognition, pp. 211–222, may.

[7] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, ser. Springer Series in Statistics. New York, NY, USA:
Springer New York Inc., 2001.

[8] Y. Hechtlinger, “Interpretation of Prediction Models Using the Input
Gradient,” 2016. [Online]. Available: http://arxiv.org/abs/1611.07634

[9] N. Puri, P. Gupta, P. Agarwal, S. Verma, and B. Krishnamurthy,
“MAGIX: Model Agnostic Globally Interpretable Explanations.”

[10] O. Biran and K. Mckeown, “Human-centric justification of machine
learning predictions,” in Proceedings of the 26th International Joint
Conference on Artificial Intelligence, ser. IJCAI’17, 2017, pp. 1461–
1467.

[11] B. Fornberg, “Generation of finite difference formulas on arbitrarily
spaced grids,” Mathematics of Computation, 1988.

[12] A. Gatt and E. Krahmer, “Survey of the state of the art in natural
language generation: Core tasks, applications and evaluation,” Journal
of Artificial Intelligence Research, 2018.

[13] E. Reiter and R. Dale, Building Natural Language Generation Systems.
Cambridge University Press, 2000.

[14] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, “Modeling
wine preferences by data mining from physicochemical properties,”
Decision Support Systems, no. 4, pp. 547–553, nov.

[15] A. Goldstein, A. Kapelner, J. Bleich, and E. Pitkin, “Peeking Inside the
Black Box: Visualizing Statistical Learning With Plots of Individual
Conditional Expectation,” Journal of Computational and Graphical
Statistics, no. 1, pp. 44–65, sep.

[16] D. W. Apley, “Visualizing the Effects of Predictor Variables in Black
Box Supervised Learning Models,” dec 2016. [Online]. Available:
http://arxiv.org/abs/1612.08468

242

