
Encoding the Consistency of Relational Bayesian Networks
Glauber De Bona1∗, Fabio G. Cozman1

1Escola Politécnica – Universidade de São Paulo (EP-USP)

Abstract. Given an input structure, a relational Bayesian network returns a
Bayesian network over ground atoms. In this paper, we analyze the problem
of checking the consistency of a relational Bayesian network for a given class
of input structures. This consistency is defined as the acyclicity of the output
Bayesian network. We employ first-order logic to encode both the input structure
and the structure of the corresponding output Bayesian network. Then we use
a transitive closure operator to express the acyclicity of the resulting Bayesian
network, translating the consistency of a relational Bayesian network for a given
input class into the validity of a logical formula.

1. Introduction
Computational systems targeting real-world problems usually need to reason both un-
der uncertainty and about complex relational structures. On the one hand, probability
theory is the standard mathematical tool to model uncertainty, and probabilistic graphi-
cal models, as Bayesian networks, efficiently encode probability distributions, allowing
practicable inference and learning tasks. On the other hand, first-order logic is the for-
mal framework to reason about objects and their relation, enabling one to represent gen-
eral knowledge (or beliefs) over a domain. Consequently, several formalisms endowing
probabilistic graphical models with first-order logic elements have been proposed in the
Artificial Intelligence community in the past decades, under the field named as statisti-
cal relational learning [Getoor and Taskar 2007]. Instances of such approaches include
Markov logic networks [Richardson and Domingos 2006], probabilistic-logic program-
ming [Poole 1993, Sato 1995], probabilistic relational models [Koller 1999] and rela-
tional Bayesian networks [Jaeger 1997, Jaeger 2002]. The latter is the focus of the present
work, as it can be regarded as at least as expressive as Markov logics [Jaeger 2008] and
have probabilistic relational models as a particular case.

Relational Bayesian networks were proposed by Jaeger [Jaeger 1997,
Jaeger 2002] in order to model probability distributions over predicates (or rela-
tions) whose domain is a priori unknown and not bounded. To grasp the expressive
power of this framework, consider the following example.

Example 1 (Scenario 1) Consider 3 neighbours, x1, x2, x3, who live close enough to
hear each other’s house alarm. As they live in a quite dangerous zone, each day there
is a probability of 0.1% for each house to be robbed. When a house is robbed, there is
probability of 90% that its alarm will go off. As sometimes happens, alarms can also
ring without an apparent cause, so even without any burglary, an alarm rings at a given
day with probability 1%. If an alarm goes off, all three neighbours immediately call the
police to report the incident, and they do not call otherwise. Figure 1 depicts the Bayesian
network modelling this situation, when we consider the dashed arcs.
∗The first author is supported by Fapesp (grant 2016/25928-4). The second author was partially sup-

ported by CNPq (grant 308433/2014-9) and the project has been funded by FAPESP (grant 2016/18841-0).

burglary(x1)

alarm(x1)

calls(x1)

burglary(x2)

alarm(x2)

calls(x2)

burglary(x3)
alarm(x3)

calls(x3)

P (burglary(xi)) = 0.001

P (alarm(xi)|burglary(xi)) = 0.9

P (alarm(xi)|¬burglary(xi)) = 0.01

calls(xi) =
∨
Pa(calls(xi))

Figure 1. Bayesian network modelling the burglary-alarm-call situation with 3
people. Pa(X) denotes the parents in the graph of the node X.

(Scenario 2) Now consider there are n neighbours x1, x2, . . . , xn in the same sit-
uation. It is straightforward to expand the Bayesian network in Figure 1 to accommodate
these n people. But if the number of neighbours is unknown, there is no fixed Bayesian
networks that can allow for modelling the situation. Nevertheless, some kind of template
for Bayesian networks can still capture this situation, as there is a fixed underlying pattern
for the dependency arcs.

(Scenario 3) Suppose a slightly different situation with 3 people now: x1 and x2

are neighbours, so are x2 and x3, but x1 and x3 are not neighbours. We assume that only
neighbours can hear the alarm of each other. This means that x1 calls the police if his
own alarm or x2’s goes off; the same happens with x3. But x2, the common neighbour,
calls the police if any of the three alarms rings. This new situation is codified into the
Bayesian network given in Figure 1 when we ignore the dashed arcs.

(Scenario 4) Imagine we want to generalize this new scenario for n people. With-
out knowing which pairs can be considered neighbours, there is no way we can predict in
advance how the Bayesian network structure will be.

Relational Bayesian networks can capture exactly the type of situations like (Sce-
nario 4) above, where the resulting Bayesian network depends not only on the domain
size, but also on some relations within this domain. These relations are given in the form
of a first-order structure as an input to a relational Bayesian network, whose output can be
seen as a typical Bayesian network. Nevertheless, as the output Bayesian network depends
on the relations that hold in the input structure, it may not be obvious in principle to check
if it is a consistent – i.e., an acyclic – Bayesian network. More generally, one is interested
in ensuring that input structures in a given class will always yield acyclic Bayesian net-
works, when the Bayesian network is defined as consistent for the given class. In this
work, we encode the problem of checking consistency of a relational Bayesian network
for a given class into a formula of a first-order logic with transitive closure operator.

After formally introducing relational Bayesian networks in Section 2, the consis-
tency problem is formally defined in Section 3. In Section 4, we show how the output
Bayesian network can be encoded into a first-order structure. We proceed to show how
to encode the acyclicity of direct graphs by employing a transitive closure operator in
Section 5. In Section 6, the consistency problem is translated into a logical formula.

2. Relational Bayesian Networks
In this section, we briefly introduce the formalism of relational Bayesian networks, in the
version presented in [Jaeger 2002], which brings a thorough exposition on the topic.

Let S and R be disjoint sets of relation symbols, called the predefined relations
and probabilistic relations, respectively. We assume that S contain the equality symbol
=, to be interpreted in the usual way. Each predicate symbol is associated with a positive
integer k, which is its arity. Given a finite domain D = {d1, . . . , dn}, if V is a set of
relation symbols (as R or S), a V -structure D is an interpretation of the symbols in V
into sets of tuples in D. Formally, a V -structure D maps each relation symbol v ∈ V
with arity k into a mathematical relation on Dk. We denote by ModD(V) the set of all
V -structures over a given finite domain D. Given a domain D, a v ∈ V with arity k
and a tuple t ∈ Dk, v(t) is said to be a ground V -atom. A V -structure D defines truth
values for ground atoms: if v is mapped to a relation containing t, we say that v(t) is
satisfied byD, which is denoted byD |= v(t). According to the syntax of first-order logic,
we can construct formulas using a vocabulary of relations V , together with variables,
quantifiers and Boolean connectives. We call these V -formulas, and their meaning is
given by the first-order logic semantics, as usual, through the V -structures. We denote by
ϕ(x1, . . . , xm) a V -formula where x1, . . . , xk are free variables, in the usual sense. If ϕ is
a V -formula and D is a V -structure, D |= ϕ denotes that ϕ is satisfied by D.

A random relational structure model for S and R is a partial function that takes
an S-structure D, over some finite domain D, and returns a probability distribution
P (D) : ModD(R) → [0, 1] over the R-structures. An example of random relational
structure model would be the function in (Scenario 4) of Example 1 that receives an S-
structure of neighbours and returns a joint probability distribution over ground atoms for
burglary(·), alarm(·), calls(·). Each single probability distribution P (D) is called an
instance of the random relational structure model.

Relational Bayesian networks provide a way to compactly represent random re-
lational structure models. This is achieved by mapping each S-structure into a ground
Bayesian network that encodes a probability distribution over R-structures. This ground
Bayesian network has nodes representing r(t) (ground atoms), for each r ∈ R and t ∈ Dk,
where k is the arity of r. Thus, given the domain D of the input S-structure, the nodes
in the corresponding Bayesian network are already determined. To define the arcs and
parameters of the Bayesian network associated with an arbitrary S-structure, relational
Bayesian networks employ their central notion of probability formula.

Probability formulas are syntactical constructions intended to link the probability
of a ground atom r(t) to the probabilities of other ground atoms r′(t′), according to the
S-structure. Fixed an R-structure and an S-structure, for elements t1, . . . , tk in the do-
main D, a probability formula F (t1, . . . , tk) should evaluate to a number in [0, 1]. The
definition of probability formulas makes use of combination functions, which are func-
tions from finite multi-sets over the interval [0, 1] to numbers in the same interval. We use
{|·|} to denote multi-sets. For instance, noisy − or is a combination function such that, if

c1, . . . , cn ∈ [0, 1], noisy − or{|c1, . . . , cn|} =
n∏

i=1

1− (1− ci).

Definition 1 Given disjoint sets S and R of relation symbols and a tuple x of k variables,
F (x) is a (S,R)-probability formula if

• (constants) F (x) = c for a c ∈ [0, 1] ;
• (indicator functions) F (x) = r(x), for an r ∈ R with arity k;
• (convex combinations) F (x) = F1(x)F2(x) + (1 − F1(x))F3(x), where

F1(x), F2(x), F3(x) are probability formulas, or;
• (combination functions) F (x) = comb{|F1(x, y), . . . , Fm(x, y)|y;ϕ(x, y)|},

where comb is a combination function, F1(x, y), . . . , Fm(x, y) are probability for-
mulas, y is a tuple of variables and ϕ(x, y) is an S-formula.

Relational Bayesian networks associate a probability formula Fr?(x) to each prob-
abilistic relation r? ∈ R, where x is a tuple of k variables, the arity of r1:

Definition 2 Given disjoint sets of relation symbols S and R, the predefined and proba-
bilistic relations, a Relational Bayesian Network is a set Φ = {Fr(x) | r ∈ R}, where
each Fr(x) is a (S,R)-probability formula.

To have an idea of how probability formulas work, consider a fixed S-structure DS over
a domain D. Then, an R-structure DR over D entails a numeric value for each ground
probability formula Fr?(t), denoted by Fr?(t)[DR], where t is tuple of elements inD. This
is done inductively, by initially defining r(t)[DR] = 1 if DR |= r(t), and r(t)[DR] = 0
otherwise, for each r(t), for all r ∈ R. If Fr?(x) = c, then Fr?(t)[DR] = c, for any tuple t.
The numeric value of Fr?(t)DR for probability formulas that are convex combinations or
combination function will require the evaluation of its subformulas Fi, which recursively
end at the evaluation of ground atoms r(t) or constants c. As the set of ground atoms
whose evaluation is needed to compute Fr?(t)[DR] depends only on the S-structure DS ,
and not on DR, it is denoted by α(Fr?(x), t,DS) and can be defined recursively:

• α(c, t,DS) = ∅;
• α(r(x), t,DS) = {r(t)};

• α(F1(x)F2(x) + (1− F1(x))F3(x), t,DS) =
3⋃

i=1

α(Fi(x), t,DS);

• α(comb{|F1(x, y), . . . , Fm(x, y)|y;ϕ(x, y)|}, t,DS) is given by⋃
t′ s.t. DS |=ϕ(t,t′)

m⋃
i=1

α(Fi(x, y), (t, t′),DS).

Above (t, t′) denotes the concatenation of the tuples t and t′.

For a given S-structure DS , we can define a dependency relation between the
nodes r(t) and r′(t′) in the Bayesian network via the corresponding probability formulas
Fr and Fr′ by employing the corresponding α(·, ·, ·). Intuitively, α(Fr(x), t,DS) contains
the ground atoms r′(t′) whose truth value in a structureDR determines the value of Fr(t),
which is meant to be the probability of r(t). That is, α(Fr(x), t,DS) contains the parents
of r(t). Formally, we define the relation �, over ground R-atoms, such that r(t) �
r′(t′) iff r′(t′) ∈ α(Fr(x), t,DS). When this relation is acyclic, a relational Bayesian
network Φ = {Fr | r ∈ R} defines, for a given S-structure DS over a finite domain D, a
probability distribution over the R-structures DR over D via:

PΦ
DS

(DR) =
∏
r∈R

∏
t,DR|=r(t)

Fr(t)[DR]
∏

t,DR 6|=r(t)

(1− Fr(t)[DR])

Example 2 Recall the situation in the (Scenario 4) of Example 1. We can de-
fine a relational Bayesian network that returns a Bayesian network for each num-
ber and configuration of neighbours. Let S = {neighbour(·, ·)} and R =

1Note that Fr?(x) cannot mention another Fr′(x
′), but has to be inductively built from constants and

indicator functions with convex combinations and combination functions; otherwise the depedency relation
� (to be defined) would be cyclic, yielding inconsistency.

{burglary(·), alarm(·), calls(·)}. We assume that the relation neighbour is reflexive
symmetrical. For each relation in R, we associate a probability formula, forming the
relational Bayesian network Φ:

• Fburglary(x) = 0.001; a constant;
• Falarm(x) = burglary(x)0.9 + 0.1(1− burglary(x))0.1; (nested) convex combi-

nations;
• Fcall(x) = noisy − or{|alarm(y) | y;neighbour(x, y)|}; a combination function.

Note that 1 − F1 and F1F2 are convex combinations and, thus, probability formulas. As
the inputs of the noisy − or above are in {0, 1}, it actually works like a Boolean or.

Given an S-structure DS over a domain D, Φ determines a joint probability dis-
tribution over the ground R-atoms, via a Bayesian network. If we take an S-structure DS

over a domain D = {x1, x2, x3} such that DS |= neighbour(x1, x2)∧neighbour(x2, x3)
but DS 6|= neighbour(x1, x3), the resulting PΦ

DS
is the model of (Scenario 3) in Example

1, whose Bayesian network is given in Figure 1 when we ignore the dashed arcs.

3. Defining the Consistency Problem
For a relational Bayesian network Φ, not all S-structures yield an acyclic dependency
relation �. When the relation � is cyclic, the resulting Bayesian network is cyclic, and
no probability distribution is defined over the R-structures. In such cases, we say Φ is
inconsistent for that S-structure. This notion can be generalized to a class of S-structures
S, so that we say that Φ is consistent for S iff the resulting relation � is acyclic for each
S-structure in S . To know if a relational Bayesian network is consistent for given class of
S-structures is precisely the problem we are interested in this work.

In order to reason about the relation between a class of S-structures and the con-
sistency of a relational Bayesian network Φ for it, we need to formally represent these
concepts. To define a class of S-structures, we can remind that they can be seen as first-
order structures over which S-formulas are interpreted. That is, an S-formula defines the
set of S-structures satisfying it. If ϕ is a closed S-formula (without free variables), we say
that [[ϕ]]S is the set of S-structures DS such that DS |= ϕ. We denote by θS an S-formula
satisfied exactly by the S-structures in a given class S; that is such that [[θS]] = S .

To encode the consistency of Φ, we need to encode the acyclicity of the depen-
dency relation � resulting from an S-structure. Ideally, we would like to have a (first-
order) S-formula, say ψΦ, that is true only for S-structures yielding acyclic dependency
relations �. If that were the case, to decide the consistency of Φ for the class S would be
reduced to decide the validity of the first-order formula θS → ψΦ. If this formula is valid,
then every S-structure in the class S guarantees that the resulting dependency relation �
for Φ is acyclic, hence Φ is consistent for S. Otherwise, there is an S-structure in S yield-
ing a cyclic dependency relation� for Φ2. Unfortunately, to encode cycles in a graph, one
needs to encode the notion of path, which is the transitive closure of a relation encoding
arcs, but it is a well-known fact that first-order logic cannot express transitivity. To cir-
cumvent that, we can add a transitive closure operator to the logic, arriving at the so called
transitive closure logics, as described for instance in [Alechina and Immerman 2000].

2Note that for S-formulas only S-structures matters, and we could ignore any relation not in S. To be
precise, if a first-order structure D falsifies θS → ψΦ, then there is an S-structure DS (formed by ignoring
non-S relations) falsifying it.

This approach was put forward by Jaeger [Jaeger 2002], who assumed one could
write down the S-formula ψΦ by employing a transitive closure operator. He conjectured
that with some restrictions on the arity of the relations in S and R one could hope to
obtain a formula θS → ψΦ that is decidable. Nevertheless, no hint was provided as to how
to construct such a formula, or as to its general aspect. A main difficulty is that, if an S-
structureD satisfying θS has domainD = {d1, . . . , dn}, the size of the resulting Bayesian
network is typically greater than n, with one node per ground atom, so a cycle can also
contain more nodes than n. Thus, there is no direct way of employing the transitive
closure operator to devise a formula ¬ψΦ, encoding cycles with more than n nodes, that
is to be satisfied by some structures D over a domain with only n elements. In the next
section, we explore a path to encode ψΦ for an augmented domain, through an auxiliary
formula whose satisfying structures will represent both the S-structure and the resulting
ground Bayesian network. Afterwards, we adapt the formula θS accordingly.

4. Encoding the Structure of the Ground Bayesian Network

Our idea to construct a formula ψΦ, for a given relational Bayesian network Φ, is first to
find a first-order V -formula BΦ, for some vocabulary V containing S, that is satisfiable
only by V -structures that encode both an S-structure DS and the structure of the ground
Bayesian network resulting from it. These V -structures should contain, besides an S-
structure DS , an element for each node in the ground Bayesian network and a relation
capturing its arcs. Then we can use a transitive closure operator to define the existence of
paths (and cycles) via arcs, for enforcing acyclicity by negating the existence of a cycle.

Suppose we have two disjoint vocabularies S and R = {r1, . . . , rm} of predefined
and probabilistic relations, respectively. We use a(v) to denote the arity of a relation v.
Consider a relational Bayesian network Φ = {Fr(x) | r ∈ R}, where each Fr(x) is a
(S,R)-probability formula. Let D be a V -structure satisfying BΦ. We want D to be de-
fined over a bipartite domainD = DS∪DB, whereDS is used to represent an S-structure
DS and DB = D \DS is the domain where the structure of the resulting ground Bayesian
network is encoded. We include in V a unary predicate DS(·) that shall be true for all
and only the elements in DS . The structure D shall represent the structure of the ground
Bayesian network BΦ(DS), over the elements of DB, that is induced by the S-structure
DS codified in DS . In order to accomplish that, D must have an element in DB for each
ground atom over the domain DS . Furthermore, the V -structure D must interpret a rela-
tion, say Parent(·, ·), over DB according to the arcs of the Bayesian network BΦ(DS).

Firstly, we need to define a vocabulary V , which includes the predefined relations
S3 and contains the unary predicate DS . Furthermore, V must contain a binary relation
Parent to represent the arcs of the ground Bayesian network. As auxiliary relations for
defining Parent, we will need a relation Depji , for each pair ri, rj ∈ R, whose arity
is a(ri) + a(rj). For elements in DB to represent ground atoms r(t1, . . . , tn), we use
relations to associate elements in DB to relations r and to tuples 〈t1, . . . , tn〉. For each
relation ri ∈ R, we have a unary relation r̄i ∈ V , where r̄i(x) is intended to mean that
the element x ∈ DB represents a ground atom of the form ri(·). As for the tuples, recall
that each ti represents an element in the set DS over which the S-structureDS is codified.
Hence, we insert in V binary relations ti for every 1 ≤ i ≤ maxi a(ri), such that ti(x, y)

3Recall that the equality symbol (=) is included in S.

should be true iff the element x ∈ DB corresponds to a ground atom r(t1, . . . , tk) where
ti = y, for a y ∈ DS and some r ∈ R. To save notation, we use Ri(x, y1, . . . , yk) to
denote r̄i(x)∧ t1(x, y1)∧ . . .∧ tk(x, yk) henceforth, meaning the element x in the domain
represents the ground atom ri(y1, . . . , yk), where a(ri) = k.

Now we proceed to list, step-by-step, the set of conjuncts required in ψΦ, together
with their meaning, for the V -structure D in [[ψΦ]] to hold the desired properties.

4.1. Encoding the Nodes of the Bayesian network
We have to ensure that the elements in DB correspond exactly to the ground atoms in the
ground Bayesian network BΦ(DS).

• Each element in DB = D \ DS should correspond to a ground atom for some
ri ∈ R. Hence, we have the formula:

∀x¬DS(x)→
m∨
i=1

r̄i(x) (1)

• No element may correspond to ground atoms for two different ri ∈ R. Therefore,
the formula below is employed:

∀x
i 6=j∧

1≤i,j≤m

(¬r̄i(x) ∨ ¬r̄j(x)) (2)

• Each element corresponding to a ground atom should correspond to exactly one
tuple. To achieve that, let k = maxja(rj) and consider the formula below:

∀x∀y∀z
k∧

j=1

(tj(x, y) ∧ tj(x, z)→ y = z) (3)

• Each element corresponding to a ground atom for a ri ∈ R should be linked a to
tuple with arity a(ri). Thus, let k = maxja(rj) and consider the formula below
for each ri ∈ R:

∀xr̄i(x) → (∃y1 . . . ∃ya(ri)Ri(x, y1, . . . , ya(ri))∧∀z¬ta(ri)+1(x, z)∧. . .∧¬tk(x, z))
(4)

• Only elements in DB = D \ DS should correspond to ground atoms. This is
enforced by the following formula, where k = maxia(ri):

∀yDS(y)→ (
m∧
i=1

¬r̄i(y) ∧ ∀x
k∧

j=1

¬tj(y, x)) (5)

• Each ground atom must be represented by at least one element (in DB = D \DS).
So, for each ri ∈ R, with a(ri) = k, we need a formula:

∀y1 . . . ∀ykDS(y1) ∧ . . . ∧DS(yk)→ ∃xRi(x, y1, . . . , yk) (6)

These formulas enforce that each ground atom r(t) is represented by an element
x that is in DB, due to the formula (5).

• No ground atom can be represented by two different elements. Hence, for each
ri ∈ R, with a(ri) = k, we employ a formula:

∀y1, . . .∀yk∀x∀zRi(x, y1, . . . , yk) ∧Ri(z, y1, . . . , yk)→ x = z (7)

The conjunction of all formulas in (1)–(7) is satisfied only by structures D over
the domain D = DS ∪ DB such that there is a bijection between DB and the set of all
possible ground atoms {r(t) | for some r ∈ R and t ∈ Da(r)

S }. Now we can put the arcs
over these nodes to complete the structure of the ground Bayesian network BΦ(DS).

4.2. Encoding the Arcs of the Bayesian network

The binary relation Parent must hold only between elements in the domain D repre-
senting ground atoms r(t) and r′(t′) such that r(t) � r′(t′). Recall that the dependency
relation � is determined by the S-structure DS . While the ground atoms represented in
DB, for a fixed R, are determined by the size of DS by itself, the relation Parent be-
tween them depends also on the S-formulas that hold for the S-structure DS . We want
these S-structures to be specified byD over DS only, not over DB. To ensure this, we use
the following group of formulas:

• For all s ∈ S, consider the formula below, where a(s) = k:

∀y1 . . . ∀yks(y1, . . . , yk)→ DS(y1) ∧ . . . ∧DS(yk) (8)

The formula above forces that s(t), for any s ∈ S, can be true only for tuples
t ∈ Da(s)

S .

For a known S-structure DS , it is straightforward to determine which ground
atoms r′(t′) are the parents of r(t) in the ground Bayesian network BΦ(DS). One can
simply use recursively the definition of the set of parents α(Fr(x), t,DS) given in Section
2. Nonetheless, with an unknown S-structureDS specified inD overDS , the situation is a
bit trickier. The idea is to construct, for each pair ri(t) and rj(t′), an S-formulaDepji (t, t

′)
that is true iff ri(t) � rj(t

′) for the DS encoded in D. To define Depji (t, t
′), we employ

auxiliary formulas Cr′(t′)
F (t) , for a ground probability formula F (t) and a ground atom r′(t′),

that will be an S-formula that is satisfied byD iff r′(t′) ∈ α(F (x), t,S). We define Cr′(t′)
F (t)

recursively, starting from the base cases.

• If F (t) = c, for a c ∈ [0, 1], then Cr′(t′)
F (t) = ⊥.

• If F (t) = r′′(t), then Cr′(t′)
F (t) = (t′ = t) if r′ = r′′; and Cr′(t′)

F (t) = ⊥ otherwise.

Above, (t′ = t) is a short form for (t′1 = t1) ∧ . . . ∧ (t′k = tk), where k is the arity
of t. These base cases are in line with the recursive definition of α(F (x), t,S) presented
in Section 2. The third case is also straightforward:

• If F (t) = F1(t)F2(t) + (1− F1(t))F3(t), then Cr′(t′)
F (t) =

3∨
i=1

C
r′(t′)
Fi(t)

.

In other words, the computation of F (t)[DR] depends on r′(t′)[DR], for some DR,
if the computation of some Fi(t)[DR], for 1 ≤ i ≤ 3, depends on r′(t′)[DR].

The more elaborated case happens when F (x) is a combination
function, for there is an S-formula involved. Recall that if F (x) =

comb{|F1(x, y), . . . , Fm(x, y)|y;ϕ(x, y)|}, then the parents of F (t) are given

by
⋃

t′,DS |=ϕ(t,t′)

m⋃
i=1

α(Fi(x, y), (t, t′),DS). Thus, to recursively define C
r′(t′)
F (t) ,

we need an S-formula that is satisfied by an S-structure DS iff r′(t′) ∈⋃
t?,DS |=ϕ(t,t?)

m⋃
i=1

α(Fi(x, y), (t, t?),DS). The inner union is analogous to the defini-

tion of Cr′(t′)
F (t) for convex combinations. But to cope with any t? such that DS |= ϕ(t, t?),

we need an existential quantification:
• If F (x) = comb{|F1(x, y), . . . , Fm(x, y)|y;ϕ(x, y)|}, then we have that Cr′(t′)

F (t) =

∃t?ϕ(t, t?) ∧
m∨
i=1

C
r′(t′)
Fi(t,t?).

Now we can employ the formulas Cr′(t′)
F (t) to define the truth value of the ground

relation Depji (t, t
′), that codifies when ri(t) � rj(t

′).
• For each pair ri, rj ∈ R, with a(ri) = k and a(rj) = k′, we have the formula:

∀x1 . . . ∀xk∀y1 . . . ∀yk′Depji (x1, . . . , xk, y1, . . . , yk′)↔ C
rj(y1,...,yk′)

Fri (x1,...,xk) (9)

In the formula above, Crj(y1,...,yk′)

Fri (x1,...,xk) has free variables x1, . . . , xk, y1, . . . , yk′ and is

constructed according to the four recursive rules that define Cr′(t′)
F (t) , replacing the tuples

t and t′ by x and y. We point out that such construction depends only on probability
formulas in the relational Bayesian network Φ, and not on any S-structure. To build each
C

rj(y)

Fri (x), one just starts from the probability formula Fri(x) and follows the recursion rules

until reaching the base cases, when C
rj(y)

Fri (x) will be formed by subformulas like >,⊥,
S-formulas ϕ(·) and equalities (· = ·), possibly quantified on variables appearing in ϕ.

The relation Parent(·, ·) is defined now over elements that represent ground
atoms ri(t) and rj(t′) such that Depji (t, t

′), meaning that ri(t) � rj(t
′).

• For each pair ri, rj ∈ R, with a(ri) = k and a(rj) = k′, let y and y′ denote
y1, . . . , yk and y′1, . . . , y

′
k′ , respectively:

∀x∀x′∀y1 . . . ∀yk∀y′1 . . . ∀y′k′Ri(x, y)∧Rj(x
′, y′)∧Depji (y, y′)↔ Parent(x, x′)

(10)
Definition 3 Given disjoint sets of relations S and R and a relational Bayesian network
Φ = {Fri | ri ∈ R}, the formula BΦ can be defined as the conjunction of all formulas in
(1)–(10).

For some fixed relational Bayesian networks Φ, the formula BΦ is satisfied only
by V -structures D over a bipartite domain DS ∪DB such that:

• the relations in S are interpreted in DS , forming an S-structure DS;
• there is a bijection b between the the domain DB = D \ DS set of all ground
R-atoms formed by the tuples in DS;
• each x ∈ DB is linked exactly to one ri ∈ R, via the predicate r̄i(x), and exactly
k = a(ri) elements in DS , via the relations t1(x, .), . . . tk(x, .), and no ground
atom is represented through these links twice ;
• the relation Parent(·, ·) is interpreted as arcs in DB in such a way that
〈DB, Parent〉 form a directed graph that is the structure of the ground Bayesian
network BΦ(DS).

5. Encoding Acyclicity
The original formula ψΦ was intended to capture the consistency of the relational
Bayesian network Φ. Our idea is to check the consistency by looking for cycles in the
ground Bayesian network BΦ(DS) encoded in any V -structure satisfying BΦ. Hence, we
replace ψΦ by an implication BΦ → ψ′Φ, which is to be satisfied only by V -structures D
such that, if D represents an S-structure DS and the resulting ground Bayesian network
BΦ(DS), then BΦ(DS) is acyclic. Thus, ψ′Φ should avoid cycles of the relation Parent in
the V -structures satisfying it.

There is a cycle with Parent-arcs in a V -structure D over a domain D iff there
exists a x ∈ D such that there is a path of Parent-arcs from x to itself. Consequently,
detecting Parent-cycles reduces to compute Parent-paths, or Parent-reachability. We
say y is Parent-reachable from x, in a V -structure D, if there are z0, . . . , zk ∈ D such
that x = z0, y = zk, and D |=

∧
1≤i≤k

Parent(zi−1, zi). Thus, for each k, we can define

reachability through k Parent-arcs: Parent−Pathk(x, y) = ∃z0 . . . ∃zk(z0 = x)∧(zk =
y)∧

∧
1≤i≤k

Parent(zi−1, zi). Unfortunately, the size of the path (k) is unbounded a priori,

as the domain D can be arbitrarily large. Therefore, there is no means in the first-order
logic language to encode reachability, via arbitrarily large paths, with a finite number of
formulas. In order to circumvent this situation, we can resort to a transitive closure logic.

Transitive closure logics enhance first-order logics with a transitive closure oper-
ator TC – see e.g. [Alechina and Immerman 2000]. If ϕ(x, y) is a first-order formula,
TC(ϕ)(x, y) means that y is ϕ-reachable from x. Accordingly, a V -structure D, over a
domain D, satisfies TC(ϕ)(x, y) iff there is a k ∈ N and there are z0, . . . , zk ∈ D such
that x = z0, y = zk, and D |=

∧
1≤i≤k

ϕ(zi−1, zi). Employing the transitive closure op-

erator, the existence of a Parent-path from a node x to itself (a cycle) can be encoded
directly by TC(Parent)(x, x); and the absence of a Parent-cycle can be enforced by
ψ′Φ = ∀x¬TC(Parent)(x, x).

The V -structures D over a domain D satisfying BΦ → ψ′Φ have the following
format:

• either it is not the case that D encodes both an S-structure in DS ⊆ D (the part
of the domain satisfying DS(·)) and the corresponding ground Bayesian network
BΦ(DS) in DB = D \DS;
• or it does encode an S-structure in DS ⊆ D and the corresponding acyclic ground

Bayesian network BΦ(DS) in DB = D \DS .

6. Encoding the Consistency-Checking Problem
Back to the consistency-checking problem, we need to decide, for a fixed relational
Bayesian network Φ, whether or not a given class S of S-structures ensures the acyclicity
of the resulting ground Bayesian network BΦ(DS). Recall that the class S must be de-
fined via a (first-order) S-formula θS . As we are already employing the transitive closure
operator in ψ′Φ, we can also allow its use in θS , which is useful to express S-structures
without cycles, for instance.

To check the consistency of Φ for a class S, we cannot just check the validity
of C ′Φ,S = θS → (BΦ → ψ′Φ), since θS specifies S-structures over D, while BΦ → ψ′Φ

presupposes the S-structure is given only over DS = {d ∈ D | D |= DS(d)} (D. To
see the kind of problem that might occur, think of the class S of all S-structures D where
each d ∈ D is such that si(d) holds, for some unary predefined relation si ∈ S. Consider
an S-structure D ∈ S (D |= θS), over a domain D. The formula BΦ cannot be satisfied
by D, for DS(x) must hold for all x ∈ D, because of the formulas in (8), so no x ∈ D
can represent ground formulas, due to the formulas in (5), contradicting the restrictions
in (6) that require all ground atoms to be represented. Hence, this D satisfies θS without
encoding the ground Bayesian network, thus falsifying BΦ and satisfying BΦ → ψ′Φ,
yielding the satisfaction of C ′Φ,S . Consequently, C ′Φ,S is valid for this specific class S, no
matter how the relational Bayesian network Φ looks like. Nonetheless, it is not hard to
think of a Φ that is trivially inconsistent for any class of S-structures, like Φ = {Fr(x) =
r(x)}, with S = ∅ and R = {r}, where the probability formula associated to the relation
r ∈ R is the indicator function r(x), yielding a cyclic dependecy relation �.

In order to address the aforementioned issue, we need to adapt θS , constructing θ′S
to represent the class S in the extended, bipartite domain D = DS ∪DB. The unary pred-
icate DS(·) is what delimits the portion of D that is dedicated to define the S-structure.
Actually, we can define DS as the set {x ∈ D | D |= DS(x)} ⊆ D. Therefore, we must
construct a V -formula θ′S such that the V -structure D satisfies θ′S iff the S-structure DS ,
formed by DS ⊆ D and the interpretation of the S relations, satisfies θS . That is, the
S-formulas that hold in a S-structure D′ ∈ S must hold for the subset of a V -structure D
defined over the part of its domain that satisfiesDS(·). This can be performed by inserting
guards in the quantifiers inside θS .

Definition 4 Given a (closed) S-formula θS , θ′S is the formula resulting from applying
the following substitutions to θS :

• Replace each ∃xϕ(x) in θS by ∃xDS(x) ∧ ϕ(x);
• Replace each ∀xϕ(x) in θS by ∀xDS(x)→ ϕ(x).

Finally, we can define the formula that encodes the consistency of a relational
Bayesian network Φ for a class of S-structures S:

Definition 5 For disjoint sets of relations S and R, a given relational Bayesian network
Φ and a class of S-structures defined by θS , CΦ,S = θ′S → (BΦ → ψ′Φ).

The main result of this work is the translation of the consistency-checking problem
to the validity of a formula from the transitive closure logic:

Theorem 1 For disjoint sets of relations S and R, a given relational Bayesian network
Φ and a class of S-structures S defined by θS , Φ is consistent for S iff CΦ,S is valid.

As first-order logic in general is already well-known to be undecidable, adding a
transitive closure operator clearly does not make things easier. The first-order formula
θS (and thus θ′S) might already be undecidable, so we assume it is decidable. Ideally,
we would like to show cases for which the validity of CΦ,S would also be decidable.
Nevertheless, even restricting the relations in R to be unary, besides assuming a de-
cidable θS , we could not show the decidability of the resulting problem, although there
are some decidable fragments of first-order logic with transitive closure operators – e.g.
[Alechina and Immerman 2000, Ganzinger et al. 1999]. Conversely, we did not manage
to prove general undecidability. Hence, the question is still open for investigations.

7. Conclusion and Future Work
In this work, we studied the problem of checking the consistency of relational Bayesian
networks for a given class of input structures. We used first-order logic to encode the
output ground Bayesian network into a first-order structure. Then we employed a transi-
tive closure operator to express the acyclicity needed for consistency, finally reducing the
consistency-check problem to that of deciding the validity of a logical formula.

We conjecture that Jaeger’s original proposal to the format of the formula encod-
ing the consistency of a relational Bayesian network Φ for a class S, θS → ψΦ, cannot
be followed as stated. As we argued, the possible number of tuples built from a domain
typically outnumbers its size, so that there is no straightforward way to encode the ground
Bayesian network, whose nodes are ground atoms, into the input S-structure. Therefore,
it is hard to conceive of a method that translates the acyclicity of the ground Bayesian net-
work into a formula ψΦ to be evaluated over an input structure in the class S (satisfying
θS).

Future work includes searching for decidable instances of the formula encoding
the consistency of a relational Bayesian network for a class of input structures and explor-
ing new applications for the logic techniques here developed.

References
Alechina, N. and Immerman, N. (2000). Reachability logic: An efficient fragment of

transitive closure logic. Logic Journal of IGPL, 8(3):325–337.

Ganzinger, H., Meyer, C., and Veanes, M. (1999). The two-variable guarded fragment
with transitive relations. In Logic in Computer Science, 1999. Proceedings. 14th Sym-
posium on, pages 24–34. IEEE.

Getoor, L. and Taskar, B. (2007). Introduction to statistical relational learning. MIT
press.

Jaeger, M. (1997). Relational bayesian networks. In Proceedings of the Thirteenth con-
ference on Uncertainty in artificial intelligence, pages 266–273. Morgan Kaufmann
Publishers Inc.

Jaeger, M. (2002). Relational bayesian networks: a survey. Electronic Transactions in
Artificial Intelligence, 6:60.

Jaeger, M. (2008). Model-theoretic expressivity analysis. Lecture Notes in Computer
Science, 4911:325–340.

Koller, D. (1999). Probabilistic relational models. In International Conference on Induc-
tive Logic Programming, pages 3–13. Springer.

Poole, D. (1993). Probabilistic horn abduction and bayesian networks. Artificial intelli-
gence, 64(1):81–129.

Richardson, M. and Domingos, P. (2006). Markov logic networks. Machine learning,
62(1):107–136.

Sato, T. (1995). A statistical learning method for logic programs with distribution se-
mantics. In Proceedings of the 12th International Conference on Logic Programming
(ICLP’95), pages 715–729. Citeseer.

