Generalized Probabilistic Satisfiability

Glauber De Bona
Instituto de Matematica e Estatistica
Universidade de Sdo Paulo, Brazil
Email: debona@ime.usp.br

Abstract—This paper studies the Generalized Probabilistic
Satisfiability (GPSAT) problem, where the probabilistic satisfi-
ability problem is extended by allowing Boolean combinations
of probabilistic assertions and nested probabilistic formulas.
We introduce a normal form for this problem and show that
nesting of probabilities does not increase the expressivity in
GPSAT. An algorithm to solve GPSAT problems via mixed integer
programming is proposed, and its implementation shows evidence
of phase-transition phenomena.

I. INTRODUCTION

Propositional logic and probability theory stand as major
knowledge representation tools in many fields, and notably
in artificial intelligence. Useful combinations of propositional
logic and probability theory are already pursued by Boole [3,
Chapter XVIII], who was concerned with problems where
propositional formulas are associated with probability as-
sertions. Loosely speaking, we have propositional sentences
{¢:}L_,, each containing a subset of atomic propositions
{A;}7_,. We may associate one or more of these sentences
with probabilities, writing for instance P(¢;) = «;. To estab-
lish semantics for these assessments, we consider a probability
measure over the set of truth assignments. The Probabilistic
Satisfiability (PSAT) problem is to determine whether it is
possible to find a probability measure over truth assignments
such that all assessments are satisfied [11]. PSAT problems
have received attention in a variety of fields [4], [12], [13],
[71, [15]; in artificial intelligence research, PSAT problems
appear as a foundation for probabilistic rules [19] and first-
order probabilistic logic [14], [18], [20].

In this paper we consider an extended version of PSAT
problems. To understand our goal, note that the satisfiability
of probabilistic formulas P(¢;) = a;, 1 < i < g obtains when
there is a probability measure (over the truth assignments) that
satisfies

P(¢1) =1 AP(p2) = az A+ A P(gg) = o

. However flexible this may be, PSAT problems can only
handle conjunction of probability assessments. One obvious
generalization is to deal with disjunction and negation of
probabilistic assertions to construct more complex formulas,
such as

~(P(¢1) = 1) A (P(¢2) = a2) V (P(¢3) = as3).

We will see that the same semantics used for PSAT can
be adopted in such an extended probabilistic satisfiability
problem.

We can move to an even more expressive language by al-
lowing probabilistic formulas to be nested; that is, by allowing

Fabio G. Cozman
Escola Politécnica
Universidade de Sdo Paulo, Brazil
Email: fgcozman@usp.br

Marcelo Finger
Instituto de Matematica e Estatistica
Universidade de Sdo Paulo, Brazil
Email: mfinger@ime.usp.br

a subformula of ¢ in P(¢) = « to be P(¢) = «'. The problem
of deciding satisfiability of these formulas is what we define as
Generalized Probabilistic Satisfiability (GPSAT). The resulting
language can be viewed as the closure of probabilistic formulas
with respect to Boolean and probabilistic operators.

To give meaning to nested probabilities, we use the as-
sumption that “one believes the probability of ¢ is « if, and
only if, one believes that the probability of the probability of ¢
being « is 17 [21]. Clearly, this assumption is restrictive, in the
sense that it claims an agent may not have uncertainty about his
own probabilistic beliefs. However, maybe surprisingly, under
this premise we can prove that satisfiability of formulas with
nested probabilities can be reduced to satisfiability without
nesting.

There are no algorithms currently available to determine
satisfiability of GPSAT problems, as far as we know. In this
paper we present the first such algorithm. The most direct way
to solve a PSAT problem is through its linear programming
formulation [12], using column generation methods to handle
the exponential number of columns [17]. A recent alternative
approach reduces PSAT into logical satisfiability [9]. Neither
of these approaches is easily extended to deal with disjunction
of contraints, that is essential to solve GPSAT.

In this paper we present an approach to Generalized Prob-
abilistic Satisfiability, where the original problem is written
as an integer linear program of a size that is polynomial on
the size of the original problem. This technique were firstly
proposed to solve Probabilistic Satisfiability in [6], and this
paper builds on that work to deal with GPSAT problems.

Section II summarizes necessary background on SAT and
PSAT. The Generalized Probabilistic Satisfiability is defined in
Section III, where a normal form is introducted. An algorithm
for GPSAT is described in Section IV, building on a reduction
from PSAT to mixed integer programming. Implementation
and experiments, with a discussion of phase transitions, are
presented in Section V.

II. SAT AND PSAT

Consider n atomic propositions A; and ¢ sentences ¢;
in propositional logic. If a truth assignment w is such that
sentence ¢ is True, write w = ¢; if ¢ is False, we write w [~ ¢.
The Satisfiability (SAT) problem is to determine whether or
not there exists a truth assignment to all variables such that all
sentences evaluate to True [5], [10]. If every sentence ¢; is a
conjunction of clauses, then we have a SAT problem in CNF.
A SAT problem in CNF is a k-SAT problem when each clause

has k literals. The 2-SAT problem has a polynomial solution,
while k-SAT is NP-complete for k& > 2.

Suppose now we have ¢ propositional sentences, say ¢1
to ¢4, associated with probabilities through assessments of the
form P(¢;) < «y;, where < is one of >, =, <. The semantics
of such an assessment is as follows. Take the set of 2" truth
assignments that can be generated for the n propositions. A
probability measure P over this set satisfies the assessments
if, for each assessment P(¢;) < a,

Z P(w) < o (1)

wEe;

The Probabilistic Satisfiability (PSAT) problem is to determine
whether a given set of probabilistic assessments can be satisfied
in the sense that there is a probability measure over truth
assignments such that all assessments are satisfied. PSAT is
know to be in NP, as it has a small model, and since SAT is
a subproblem where all assigned probabilities are 1, PSAT is
NP-complete [11]. A few polynomial special cases of PSAT
are known [1].

There are many proposed algorithms for PSAT. The most
obvious one is to write down ¢ constraints of the form (1), one
for each sentence, associated with assignments P(¢;) > .
Each constraint can be written as

1 ifw; =¢;
ZI@ w;)P wj > oy, where Iy, (Wﬂ) { 0 othejrv‘vise,
2

while truth assignments w; are ordered from 1 to 2" (say by
the n-bit binary number obtained by writing 0 for False and 1
for True as assigned to Ay, ..., A,). Probabilistic Satisfiability
is then obtained when the resulting set of linear constraints has
a solution. The challenge is that we have 2" truth assignments,
so the size of the linear constraints is exponential in the input.

The most efficient algorithms for PSAT apply linear pro-
gramming tecniques to this set of contraints. As linear pro-
gram, if there is a solution, there is one solution with no
more than ¢ + 1 truth assignments with positive probability
[11]. The two-phase simplex method can be used with the
addition of ¢ + 1 artificial variables in order to find a feasible
solution in the first phase. Starting with a basis with these ¢+ 1
artificial variables, at each iteration a new column (variable)
enter the basis, keeping the solution feasible, until the basis has
no artificial variables. If this point is reached, a solution was
found; otherwise the linear program has no feasible solution
and the PSAT problem is unsatisfiable. As the number of
columns is exponential, column generation techniques are
used. A good survey on this approach is [15]. Combining
inference rules with linear programming techniques leads to
the currently most efficient algorithms, as showed in [16].

III. GENERALIZED PROBABILISTIC SATISFIABILITY

The language we contemplate is syntactically easy to
specify: simply take Boolean operations over assessments, and
allow a subformula in an assessment to be itself any well-
formed formula of the language. That is, we allow sentences
such as

(P(A1A(AsV—A3)) > 1/2)V(P(A3) <1/4)V(P(A;)=1/5),

(P(A1) < 1/3)V P(As A (P(A3) > 3/4)) > 1/2,

both of which contain a single “clause” of assessments (a
disjunction of assessments). Another example is the following,
where we find two “clauses” of assessments:

((P(A1) = 1/3) vV =(P(A2) < 3/5)) A
(P(=A1) =2 2/3) V (P(ALV —~A3) # 3/7)).

To make sense of these sentences, we must establish an
appropriate semantics. Note that in any PSAT problem the truth
value of an assessment such as P(¢;) = «; is derived from
a probability measure on the truth assignments wy,...,wan
(because the relation w; = ¢; is well defined). This is not
the case when nested probabilities are allowed and ¢; may
contain probabilistic subformulas. This next section shows how
to define a semantics that characterizes when a probabilistic
assessment is true in a possible world wj.

A. Syntax and Semantics

We start with an infinite set of atomic (or primitive)
propositions A = {A;, As, As,...}. Our language is then
defined recursively as the smallest set £ such that:'

o If¢pe A, then ¢ € L;

o Ifpe L, then ~¢ € L

o IfpeLand e L, then (pV0) €L
o IfpeLandfe L, then (pA0) € L;

o If ¢ €L, then (P(¢) < «) € L, for e {<,>} and
a€0,1].

Parentheses are omitted whenever possible. As usual, P(¢) =
a, P(¢) < a and P(¢) > « are abbreviations for (P(¢) <
a) A (P(¢) = a), 2(P(¢) =) and ~(P(¢) < a)

respectively.

To give truth values to formulas in £, we define a structure
M = (Q,P(.)), where Q = {w1,ws,...,wan} is the set of
propositional truth assignments (valuations), and P : Q —
[0, 1] is a probability distribution over). With this machinery
in hand, we now define when a pair (M, w) satisfies a formula
o€ L, or (Mw) o

e Myw)EA ifwlE A

o (Mw) ¢ if (M,w) [~ ¢;

o M,w) | diAg if (M, w) = ¢1 and (M, w) |= o

o Mw)E 1V if (Mw) = 1 or (M,w) |= ¢

o (Mw) = P(¢) > aif 3 {P(wi)|(M,wi) |= ¢} b
a, for a € {<, >}

This semantics makes propositional formulas and probabilistic
formulas have their truth value associated to possible worlds
(M, w). This means one can talk about the truth value of
formulas such as

61 A (P(6) < 0.5) V (P(~(P(d3) > 0.7)) < 0.2)

IFor simplicity, we left the connective — outside the language, without loss
of generality.

in a given pair (M, w). However, as the truth value of P(¢) p<
a in (M,w) does not depend on w, P(¢) < o will be true
either in all worlds (M, w) or in none of them — this captures
the intuition that nested probabilities collapse to either 1 or 0.

Given a formula ¢ € L, we say that it is satisfiable if there
is a pair (M, w), where M = {Q, P(.)} and w € w, such that
(M, w) = ¢; otherwise we say ¢ is unsatisfiable.

The Generalized Probabilistic Satisfiability (GPSAT) is
then the problem of deciding whether or not a given ¢ € L is
satisfiable.

The logic presented by Fagin, Halpern and Megido in [7]
had alredy dealt with Boolean combinations of probabilistic
assessments, but they kept the probabilities applied only to
pure propositional formulas, hence avoiding nesting. Their
semantics assigns truth values only to probability assessments
through a whole structure M, and not a pair (M,w). So
their semantics is closer to PSAT’s, even though they use
probability “inside” the language. Another difference is that
Fagin et al. allow more general assessments assessments of
the form a; P(ay) + a1 P(aq) + -+ + amP(a,) > « (this
enabled them to axiomatize their logic). They show that the
corresponding satisfiability problem is NP-complete, but do
not propose algorithms to solve it. One of our goals here is to
provide concrete algorithms.

In another work, Fagin and Halpern [8] investigated a more
general logic to reason about knowledge and probabilities. Its
probabilistic semantics is similar to ours because the proba-
bilitic formulas have truth value in specific states (worlds),
but they introduce a probability distribution for each set of
indistinguishable possible worlds (states). Additionally, their
logic has an epistemic modal relation, so that multi-agent and
linear combinations of probabilities are also allowed. Again,
they axiomatize their logic, show the complexity of the related
decision procedure, but do not provide algorithms.

The logic we propose here can be seen as a particular
case of the logic in [8], where there is only one agent and
all possible worlds are indistinguishable (all with identical
probability distributions). It follows that GPSAT inherits an
NP upper bound proved by Fagin and Halpern (Theorem 4.6
in [8]); and as PSAT is a subproblem of GPSAT, the latter is
also NP-complete.

B. GPSAT Normal Form

The algorithm for GPSAT to be proposed decides satisfia-
bility only for formulas without nested probabilities and with
all propositional formulas in a probability assessment. That is,
the algorithm cannot handle a formula such as P(P(¢)) or a
formula such as ¢ A P(¢2). As we now show, any GPSAT
problem can be reduced in polynomial time to a normal form
that complies with these constraints and keeps satisfiability.

We say a formula ¢ € L is in normal form if it is the
conjunction of two formulas ¥ A I', where

e U is the conjunction of 3-clauses over probabilistic
assessments in the form P(A4;) > «, in which each
assessment is over a different atomic proposition A;,
and

e I'is a probabilitic assignment P(+y) > 1, in which ~
is a 3-SAT problem,

and where probability values that are smaller than one can be
assigned only to atomic propositions, and additionally where
every atomic proposition occurrence is a subformula of no
more than one probabilistic assessment in .

An example of a formula in normal form is:

(P(A1) 2 0.3) V (P(A2) > 0.1) V (P(43) > 0.4)) A
(P((A1V =Ag V Ag) A (A1 V Az V —A3z)) > 1).

This normal form is based on the PSAT normal form
introduced by Finger and De Bona [9], and, although it may
seem quite restrictive, we can show that all formulas in £ can
be brought to the normal form. Before we apply techniques
from Finger and De Bona, a sequence of intermediate results
is needed.

First, we investigate the case of Boolean propositions
outside the scope of any probability assessment. Consider the
formula ¢ = Ay A (P(A;1) < 0). Note that ¢ is satisfied by
(./\/l,wl), where M = ({wl,wg},P(.)), w1 ': Al, (0%5) bé Al,
P(w;) =0 and P(w2) = 1. It may seem counterintuitive that
Aj is satisfied by a world with zero probability, but in the lan-
guage we can have a formula simultaneously possible and with
zero probability. For instance, § = A; A Ay A (P(41) <0)
is unsatisfiable, as A; A —A; is impossible. If one wants that
¢ be satisfiable only if A; has probability greater than zero,
this can be expressed as ¢’ = =(P(A;) < 0) A (P(A41) <0).
That being said, the following lemma shows how a formula ¢
can be transformed, in polynomial time, into a formula 6 with
no propositions outside any probability assignment.

Lemma 1: For every ¢ € L, there exists § € £ whose all
pure propositional subformulas are subformulas of a proba-
bility assignment P()) > « (or P(¢) < «), such that ¢ is
satisfiable if, and only if, 6 is; furthermore, 6 is computed in
linear time.

Proof: We assume that ¢ has n atomic propositions
Aj,..., A,. Let I be the set of indexes of all atomic propo-
sitions A; ocurring in ¢ outside the scope of a probability
ass1gnment To build 0, for all i € I, substitute p(B;) > 1,
where B; is a fresh atomic proposition, for all ocurrences of
A; out of a probability assessment; this is done in linear time
in the size of ¢. Now we need to prove that 6 is satisfiable iff

¢ is.

(<) Suppose ¢ is satisfied by a pair (M, w;), with M =
(Q, P(.)). Create a structure M’ = (', P'(.)), where for all
w; € Q there exists a wj € Q' such that w; = A; iff W) = A;.

Make o) |= B; iff o), = A; and P(w;) = P'(w}), for all
ieland1 <j<|9. Clearly, (M, wi,) | P(B;) = 1 iff

(M wju) | Ai, so (M0, 1= 6.

]*

(—) Suppose now that (M,w;.) = 6 , with M =
(Q2, P(.)). Build Q" = {wj, ..., wj. } with an w’ for each truth
assignment on Aj,..., A,. For each A; and each w;-, let z;;
denote the literal, either A; or = A4;, such that w§ = 2;;; analo-
gously, let y;; be A; or its negation such that w; = y;;. Make
P(w)) = Z{P(wk)m” = yix , forall 1 < i < n}. Finally,
there is a w;, such that w;, = A; iff (M,wj,) = p(B;) =1;
thus (M', w),) = ¢, with M' = (0, P'(.)). [

Z*

We now show how to transform a formula with nested
probabilities into one without nesting.

Lemma 2: For every ¢ € L, there exists § € L whose
all probability assignments are not subformulas of another
probability assignment, such that ¢ is satisfiable if, and only
if, 4 is; furthermore, 6 is computed in polynomial time.

Proof: To prove by induction, we show how to decrease
the number of nested probabilities, keeping the satisfiability.
Given a formula ¢ with nested probabilities, construct ¢’ by
substituting a new atomic proposition B; for a expression
P(¢) > a (or P(¢) < «) inside the scope of probability
assessment. Define ¢ = ¢/ A ((P(B;) > 1)V P(B;) <0)) A
(~(P(B) = 1)V (P(W) = a)) A (P(B) 2 1)V ~(P(¢}) >
«)). Now we need to prove that ¢" is satisfiable iff ¢ is.

(+) Suppose (M,w;. =)o, with M = (Q,P(.)). We
can extend M to satisfy ¢”. For each w; € (2, make w; |=
B; iff (M,wjs) = P(¢) > « and insert the other possible
truth assignments in €2, with zero probability mass, to form
(Y. Create a structure M’ = (', P’(.)), in which P’ extends
P. As either w; = B; for all w; € Q' with P'(w;) > 0,
or w; = B; for all w; € Q" with P'(w;) > 0, then either
(M wj. E)P(B;) < 0 or (M',w; E=)P(B;) > 1. Thus
M, Wi ’:)¢//

(—) Note that the last two clauses in ¢” state that
P(B;) > 1 < P(¥) > «. Hence, if (M,w E)¢",
(M,wiy) = P(B;) > 1iff (M, w;y) = P(¢) > o Then, due
to the clause ((P(B;) > 1)V P(B;) <0)), (M,w;x) E B;
iff (M,w;x) E P(¥) > « Finally, as (M,w;.)¢/,

By iterating the process of building ¢", a formula 6 without
nested probabilities is reached. As the number of nested
probabilities is linear in the size of ¢, and each iteration takes
no more than linear time in the size of ¢, the whole process
of building 6 is polynomial in time.]

Note that the process of eliminating probabilities nest-
ing does not generate subformulas out of the scope of any
probability assignment. So, by using Lemma 1 and Lemma
2 we have a formula which is a Boolean combination of
probability assingments over pure propositional formulas — we
call them probabilistic atoms. If each probabilistic atom of a
formula ¢ is replaced by a new atomic proposition B;, then we
have a formula 6 from the classical propositional logic. Using
standard techniques, by adding new atoms, we can build a 3-
SAT problem 6’ which is (Boolean) satisfiable iff 6 is. Replace
the atomic propositions B; by the corresponding probabilistic
atoms and the new atomic propositions by probabilistic atoms
of the form P(C;) > 1, where C; a fresh atomic proposition.
Now we have a GPSAT problem ¢’ that is satisfiable only if
¢ is. For our normal form transformation procedure, we start
from a formula like ¢’, which is the conjunction of 3-clauses,
each formed from probabilistic atoms or their negation using
only >. Observe that a probability assessment in the form
P(v¢;) < « is equivalent to the assignment P(—);) > 1— ;.

Theorem 1: For all fomulas ¢ € L, there is a formula
6 € L in normal form that is satisfiable iff ¢ is; € can be
computed in polynomial time.

Proof: Given a formula ¢ with 3-clauses of probabilistic
atoms, we construct ¥ from ¢ e I' from scratch. For each

P(¢;) > «; in ¢, substitute a new atomic proposition B; for
t; to construct . Let T be assignment P(y) > 1, where v
is the conjunction of the clauses corresponding to (¢;) + B;,
(=; V B;) A (¢; V = B;), for all B; introduced. We have built
0 = ¥ AT in polynomial time, it remains to prove that 6 is
satisfiable iff ¢ is.

() Suppose (M, w;, =)o, with M = (€, P(.)). We can
extend M to satisfy . For each w; € €2, make w; = B; iff
(M, wjs) = ¢; and insert the other possible truth assignments
in 2, with zero probability mass, to form €2'. Create a structure
M = (Q,P'(.), in which P’ extends P. Observe that
(M/,w]‘*):)P(Bz) > o iff (M/,Wj):)P(’(/}l) > ;. Thus
(M wye 0.

(—) Now suppose (M, w;. =)0, with M = (Q, P(.)). As
(M,wj*):)P((_'"ll)l V Bl) AN ("Ll)l \ _‘Bz)) > 1, for all wj; € Q
with P(Wj > 0) (M,Wj): B; iff (M,wj): ;, for all 4.
Hence (M,w]‘* }Z P(B,L) > 5 iff (./\/l,wj* ': P(wz) > (678
for all ¢. Finally, (M, w;. = ¢. [

Solutions to a GPSAT problem in normal form ¥ A P(y) =
1 can be seen as solutions to U restricted by -, because all
truth assignments with positive probability must satisfy v. We
usually represent GPSAT problem in normal form simply by
the pair (U, 7).

IV. GPSAT THROUGH INTEGER PROGRAMMING

Assume our GPSAT problem is in Normal Form with
q clauses, which with 3 assessments {P(A;) > «;} and
a sentence 7 in CNF with m clauses, each clause with 3
literals. So our problem is parameterized by the number of
atomic propositions n, the number of clauses with probability
assessments ¢, and the number of clauses m. Such a parame-
terized Normal Form neatly separates the probabilistic and the
propositional aspects of Probabilistic Satisfiability.

Call a probabilistic atom or its negation a probabilistic
literal. To satisfy a GPSAT formula, at least one probabilistic
literal in each clause in ¥ must be satisfied. Hence, for
the same reasons of PSAT, if a formula is satisfiable, a
solution exists with only ¢+ 1 truth assignments with positive
probability.

Suppose, without loss of generality, the i** clause contains
assignments over As; o, As;—1 and As;. Our problem is: find
the (¢+1) truth assignments w; satisfying v and the following
disjunction of restriction, for 1 < k < g

i=3k q+1
VoD Ia(w))Plwy) > ai,
i=3k—2 j=1

1 if w; i
where 14, (w;) = { 0 othe]rv)vzisf,

Hence we have 3¢(q+ 1) optimization variables (values of
I4,(wj), denoted by a; ;); all of them are binary with values
0 and 1. Furthermore, we have a probability measure over
g+1 truth assignments, represented by the real-valued variables
P1,---,DPg+1 € [0,1], that must sum up to 1. Following the
approach of [6], we find {a; ;} and {p;} by solving an integer
program.

Algorithm 1 GPSAT solution based on integer linear program-
ming.

Input:Propositions {A;}7_;, ¥ with 3-clauses of (possibly
negated) assignments over As;_o, Az;—1 and Ag; for 1 <i <
g, a sentence 7, from I' = P(~y) > 1 in CNF with m 3-clauses.
Output: “Satisfiable” if U A T" is satisfiable; “Unsatisfiable”
otherwise.
I: > Variables a; ; are binary; variables b; ; and p; are
real-valued in [0, 1].
:for j € {1,...,q9 + 1} and each clause (\/f/;lAil,) Y%
(VE/_—4;,) of ¢ do

N

3: Generate linear constraint (Zf,lzl a;, j)+ (Zﬁ;l(l -
i, j)) > 1.
4: end for) ,
s: for each clause Vi_, P(Ay) > ay V V5, _ =P(Ap) >
Qr do

6: Generate disjunction of linear constraints
k' q+1) k" q+1)
(Vy=y 22521t = aw) V (Vs D255 by < aurr).
7: end for
8 for i € {1,...,3q} do
9. forje{l,...,q+1} do
10: Generate linear constraints 0 < b; ; < a; ; and a; ; —
1 + pj < bi,j < pj-
11: end for
12: end for
13: Generate linear constraint ng p; = 1.
14: return Satisfiable if linear constraints have a solution,
Unsatisfiable otherwise.

The elements a;; for a fixed j corresponds to a truth assign-
ment that satisfies v. We explore the well known connection
between SAT and integer programming to find such a truth
assignment [5]. Start by generating a vector a; with n binary
variables {a;;}7_;, all with values 0 and 1. Now take one
clause of ~y; suppose it is written as

(\/f’:lAiu) \ (\/f/’:l_'Aiw)

For this clause, generate the linear inequality:
k//

g
Dk, |+ D (I —ari,) | > 1. 3)

r=1 =1

Consider the m inequalities generated this way (one per
clause). A vector a; that satisfies these m inequalities yields a
truth assignment w; for v by assigning True to A; when a; ;
is one, and assigning False to A; when q; ; is zero.

We generate the truth assignments by generating (g+1) sets
of variables a; and their related inequalities. These valuations
correspond to the possible worlds w; € € with positive
probabiity. Now we have to force the probability measure over
these worlds to satisfy a probabilistic literal in each clause of
.

To do so, note that each probabilistic atom in W that is not
negated represents an inequality as follows:

q+1

Zai,jpj >, 4)
j=1

where p; denotes P(w;). When the atom is negated, the
contraint becomes:

g+1

Zai,jpj < ag, &)
=1

The inequalities in (4) and (5) do not have to hold for all 3¢
probabilistic atoms. Only one per clause must hold. So, we
have the following disjunction of contraints for each clause
1<k<q:

3k g+l
\/ E a; jpj > ag, (6)
i=3k—2 j=1

where <; denotes < if the probabilistic atom P(A;) > «; is
negated; otherwise it denotes >. The challenge is to reduce
the bilinear term a; ;p; to linear constraints. We do that by
introducing a new fresh variable b; ; and the constraints:

0<bi; <ai, and aij —1+pj <bi; <pj. (7)

Note that if a; ; = 0, then b; ; = 0; and if a;; = 1, then
bi,j = pj-
A last restriction ensures P(.) is a probability distribution:

q+1

> op=1 ®)
j=1

The whole procedure is presented in Algorithm 1; it
basically collects constraints from Expressions (3), (6), (7),
and (8). The algorithm produces an integer linear program that
has a solution if and only if the original GPSAT problem is
satisfiable.

V. IMPLEMENTATION, EXPERIMENTS, AND PHASE
TRANSITION

We have coded our GPSAT method using the Java language
with calls to CPLEX version 12, extending the implementation
from [6] to solve PSAT, and run experiments in a computer
with 2GBytes of memory running Linux.

We were particularly interested in investigating whether
phase transition phenomena can be identified in our solutions
to GPSAT. Until the recent work of Finger and De Bona [9],
there was little evidence of phase transition for PSAT in the
literature. Baiotelli et al. [2] have shown empirical results for
the 2CPA problem — that is equivalent to the PSAT in Normal
Form with only two literals per clause — in which a typical
phase transition shape is seen. However, 2CPA is not exactly
a normal form of PSAT, even though it is NP-complete. As our
normal form extends Finger and De Bona’s, and GPSAT is also
NP-complete, we expect to find evidence of phase transition
also for GPSAT. Consequently we examine the behavior of
GPSAT for various values of n, m for a fixed ¢, looking for
hard problems instead of randomly trying out large problems
that in the end may be easy.

Following the approach from Finger and De Bona [9], we
fix the number of clauses in ¥, ¢, and the total number of
probabilistic literals in ¥, 3¢q. For a total number of variables
n = 50, we varied the number m of clauses in order to
explore the complexity profile of GPSAT for m/n. For each

100 25

%0 Iy 1]
1 L]
B0 i h 20
T h
gl « N
] "y
Yy
1]
B0 ' 15
]
'
50]
L
v
40 B 10
'
.
30 '
.
*
20 .- . 5
- *
10 Nemm -
0 0
1 2 3 = Time(s) 4 5 &
-—ESAT
Fig. 1. GPSAT Phase Transition, for n = 50 and ¢ = 15.

point m/n, 100 random GPSAT formulas in normal form
were generated, submitted to the implementation of Algorithm
1, and the average computation time was registered together
with the percentage of satisfiable formulas. Figure 1 shows the
results of such experiment.

A easy-hard-easy pattern, typical from phase transition
phenomena, is seen in Figure 1. The hardest problems were
found close to the transition between regions of satisfiable
and unsatisfible problems. If ¢ = 0, the problem is Boolean
satisfiability, and the point of approximately 50% of satisfiable
instances is around m/n = 4.3 [10]. Here we add some
probabilistic contraints, so the phase transition point has moved
leftwards, as expected, to around m/n = 4.

Comparing to the results in [6] solving GPSAT seems
harder than PSAT. This is not surprinsing, since it is known
that disjunctive linear programming is considerably harder than
linear programming.

VI. CONCLUSION

In this paper we have introduced the Generalized Prob-
abilistic Satisfiability problem, a normal form for it, and an
algorithm to solve it. GPSAT is considerably more expressive
than PSAT, allowing negation and disjunction of probabilistic
assessments and probabilistic nesting as well, but it is still NP-
complete. Based on an integer linear programming solution to
PSAT, we introduced an integer linear programming solution
for GPSAT. Evidence for phase transition was found in our
initial experiments, but an exhaustive investigation is needed
to confirm and understand this phenomenom in GPSAT and
PSAT.

For future work, it would be interesting to enlarge our
language to embed linear combinations of probabilistic assign-
ments, conditional probabilities and multi-agent probability
measures. Another path would be to generalize the coherence
checking problem, as we did for PSAT, from de Finetti’s
framework for probability.

(1]

(2]

(3]

(4]

(31

(6]

(71

(8]

(91

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

Kim Allan Andersen and Daniele Pretolani. Easy cases of probabilis-
tic satisfiability. Annals of Mathematics and Artificial Intelligence,
33(1):69-91, 2001.

Marco Baioletti, Andrea Capotorti, Paolo Tiberi and Sauro Tulipani.
An empirical complexity for a 2CPA solver. In 10th International
Conference IPMU, pages 1857-1864. 2004.

George Boole. The Laws of Thought. Dover edition, 1958.

G. Bruno and A. Gilio. Applicazione del metodo del simplesso al
teorema fondamentale per le probabilit nella concezione soggettivistica.
Statistica, 40:337-344, 1980.

Vijay Chandru and John Hooker. Optimization Methods for Logical
Inference. John Wiley & Sons Inc., 1999.

Fabio G. Cozman and Lucas F. di Ianni. Probabilistic satisfiability and
coherence checking through integer programming. To be published in
ECSQARU2013.

Ronald Fagin, Joseph Y. Halpern, and N. Megiddo. A logic for
reasoning about probabilities. Information and Computation, 87:78—
128, 1990.

Ronald Fagin and Joseph Y. Halpern. Reasoning about knowledge and
probability Journal of the ACM, 41(2):340-367, 1994.

Marcelo Finger and Glauber De Bona. Probabilistic satisfiability: Logic-
based algorithms and phase transition. In IJCAI, pages 528-533, 2011.

I. P. Gent and T. Walsh. The SAT phase transition. In European
Conference on Artificial Intelligence, pages 105-109, 1994.

G. Georgakopoulos, D. Kavvadias, and C. H. Papadimitriou. Proba-
bilistic satisfiability. Journal of Complexity, 4:1-11, 1988.

Theodore Hailperin. Best possible inequalities for the probability of a
logical function of events. American Mathematical Monthly, 72:343—
359, 1965.

Theodore Hailperin. Boole’s Logic and Probability: a Critical Ex-
position from the Standpoint of Contemporary Algebra, Logic, and
Probability Theory. North-Holland, Amsterdam, 1976.

Joseph Y. Halpern. Reasoning about Uncertainty. MIT Press, Cam-
bridge, Massachusetts, 2003.

Pierre Hansen and Brigitte Jaumard. Probabilistic Satisfiability. Tech-
nical Report G-96-31, Les Cahiers du GERAD, Ecole Polytechique de
Montréal, 1996.

Pierre Hansen and Sylvain Perron. Merging the local and global
approaches to probabilistic satisfiability. International Journal of
Approximate Reasoning, 47(2):125-140, 2008.

Brigitte Jaumard, Pierre Hansen, and Marcus Poggi de Aragio.
Column generation methods for probabilistic logic. ORSA Journal on
Computing, 3(2):135-148, Spring 1991.

Thomas Lukasiewicz. Expressive probabilistic description logics. Arti-
ficial Intelligence, 172(6-7):852-883, April 2008.

Raymond Ng and V. S. Subrahmanian. Probabilistic logic programming.
Information and Computation, 101(2):150-201, 1992.

N. J. Nilsson. Probabilistic logic. Artificial Intelligence, 28:71-87,
1986.

Soshichi Uchii. Higher order probabilities and coherence. Philosophy
of Science, 40(3):373-381, 1973.

