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Abstract
We extend epistemic graphs, a powerful representa-
tion language employed in argumentation theory, first,
by allowing conditional probabilities in that language.
We also offer a new way of interpreting the graph as
a set of restrictions based on a selected semantics for
the abstract argumentation frameworks. The resulting
semantics for epistemic graphs are given by credal
sets that we characterize through inequalities. We il-
lustrate the main issues in our proposals by resorting
to arguments related to climate change.
Keywords: Argumentation, Epistemic graphs, Proba-
bilistic logic, Conditional probabilities.

1. Introduction

Human argumentation is a remarkably complex activity
with a vast array of applications, for instance in negotiation,
in political debate and in court proceedings [25]. During
the last few decades several computational techniques have
been proposed to support human argumentation and to en-
able machine argumentation. In particular, since 1995 there
has been significant activity around argumentation frame-
works as defined by Dung [7]. Argumentation frameworks
take arguments in a very abstract form, looking at ways
to decide which arguments prevail and which fail without
examining the internal structure of each argument. Some of
the ensuing literature studies arguments handled by a single
agent, while others look at sets of agents; some allow for
specification of preferences or values amongst arguments,
while others take beliefs and uncertainties into account;
some aim at convincing disagreeing parties, while others
are primarily concerned with building consensus around
decisions. In this paper we work within this research pro-
gram, and we equate “argumentation” with “argumentation
as it appears in work aimed at artificial intelligence”.

There are many probabilistic argumentation schemes
that attach to an argument A a probability P(A). Several
such theories resort to inequalities over probabilities. An ex-
ample can be found in Thimm’s proposal for probabilistic
argumentation frameworks [24]: there the statement that ar-
gument A is attacked by arguments B1, . . . ,Bn is translated

into the inequalities

1−∑
i

P(Bi) ≤ P(A) ≤ 1−max
i

Bi.

The intuition here is that P(A) is bounded from above by
each one of 1−P(Bi), that is by the belief in the “comple-
ment” of its attacker Bi, and also P(A) is bounded from
below by one minus the the sum of beliefs in all attack-
ers of A. Yet another example is to be found in epistemic
graphs [14, 16] as those allow for sentences such as

(P(A)≥ 0.7)∧ (P(A)< 0.9).

Epistemic graphs combine the graph-theoretical tools that
have been central to argumentation theory in the past two
decades with rather general probabilistic assessments; the
usual semantics is based on attaching a credal set to any
given epistemic graph.

In this paper we expand the language of epistemic graphs,
first, by adding assessments based on conditional probabil-
ity. For instance, we allow constraints such as

P(A|B)≥ 0.6 or P(A|B∧C)≤ P(A|B).

We show that many relevant inferences can be reduced to
linear integer programming and related optimization tech-
niques, and we examine the consequences of assessments
based on our proposed constraints. We also introduce a
novel semantics for the nodes and edges that appear in an
epistemic graph, by introducing novel constraints based on
labelings (we refer to them as labeling constraints). For
instance, one might require that only admissible labelings
should get positive probability. Thus the new semantics in-
troduces a possible way of interpreting the epistemic graph
structure. Throughout we use examples from debates on
connections between climate changes and oceans, a topic
that has produced countless arguments in recent years.

In Section 2 we review relevant concepts about proba-
bilistic argumentation. Section 3 looks at possible ways to
employ conditional probabilities in epistemic graphs and
their resulting semantics. In Section 4 we examine how
constraints affect edges in graphs, and in Section 5 we look
at novel constraints that can be extracted from graphs. Sec-
tion 6 presents a few thoughts on difficulties still faced by
probabilistic argumentation theory.
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2. Argumentation and Probabilities

In this paper we suppose that agents are trying to reach
decisions as to which arguments, from a given pool of
arguments, are acceptable and which are not. Given that
arguments can support or oppose each other in defeasible
ways [11, 25], the direct construction of a state space as-
sociated with probabilities and utilities may not be trivial.
Thus it makes sense to resort to argumentation graphs and
other devices of argumentation theory. On the other hand,
it seems also sensible to adopt probability theory as a key
decision support tool when it comes to uncertainty — even
though there are other proposals based on weights or possi-
bility measures in the literature [1]. (Note that we do not
employ utilities in this paper, leaving the discussion about
values and actual decision making to future work.)

There are two main approaches to probabilistic argumen-
tation in the literature, often referred to as the constellation
and the epistemic approaches [14]. Before we describe
them, we summarize the main concepts employed in argu-
mentation frameworks [5, 7].

An abstract argumentation framework (AAF), as origi-
nally proposed by Dung [7], is a tuple (A ,→) where A
is a set whose elements are abstract arguments and→ is
a binary relation in A ×A . The intended interpretation
of A→ B is that A attacks B; that is, if argument A is ac-
cepted then argument B is to be rejected. These days the
literature considers not only attacks but also supports; we
might write A −→ B to indicate that A attacks B and A +→ B
to indicate that A supports B. Moreover, as noted previously,
there are extensions to Dung’s AAFs where weights can
be attached to arguments, attacks, supports. Figures 1 and
2 illustrate these relations in a particular domain, namely,
climate change in the Blue Amazon (a vast region of the
Southern Atlantic Ocean). A directed graph where each
node is an argument and each edge corresponds to an attack
or support is an argumentation graph.

The semantics of an AAF is established by associat-
ing each argument to a label, either in, out, or undecided,
respectively indicating whether it is accepted, rejected,
or remains neither accepted nor rejected. A labeling L :
A →{in,out,undecided} assigns a label to each argument
(Dung defined semantics using extensions, but labelings are
equivalent [4]). A labeling is conflict-free if for no A, B that
are in we have A→ B; a conflict-free labeling is admissible
when: first, for each argument A that is rejected, there is
an argument B that is in and that attacks A; second, for
each argument A is that is in, all arguments B that attack
A are out. And an admissible labeling is complete when
for each undecided argument A there is no in argument B
that attacks A and there is some argument C that attacks A
and that is not out. A complete labeling is said stable when
there is no argument labeled undecided; it is semi-stable
when the set of arguments labeled undecided is minimal.

There are many other semantics besides the stable and the
semi-stable ones [4].

Now suppose we take A as a sample space, and specify a
probability measure over it. What could these probabilities
mean? One possibility is to interpret P(A) as the probability
that A is in fact included in the argumentation graph. An
event (a set of arguments) is then mapped to a subgraph of
the original argumentation graph containing all arguments.
Thus the probability measure over A induces a probability
measure over a constellation of argumentation graphs. We
may then compute the probability that some argument A is
labeled in: it is the probability of all those subgraphs where
A is in. Likewise, we can compute the probability that A is
out or left undecided. Still, the meaning of P(A) may be a
bit mysterious in the constellations approach: if an event
with arguments A and B is realized, then one should expect
both of these arguments to hold, thus it does not seem
reasonable to question whether they should be accepted or
rejected. Such issues have been discussed by Hunter, who
has proposed that P(A) should be treated as the probability
that A is a justified contribution to the argumentation graph
[13]. We note that even if this perspective is embraced,
there are still issues with assumptions of independence
usually made within the constellation approach [10, 18].

The epistemic approach is different. It assumes that all
arguments and relations are given in a single argumentation
graph, and that probabilities reflect whether arguments are
believed or not. One of the first proposals related to epis-
temic argumentation, by Thimm [24], explicitly indicated
that P(A) captures the degree of belief of A and then ex-
tracted labelings from those probabilities. Similarly, Hunter
and Thimm take probabilities to denote “the belief that an
agent has that an argument is justifiable” (that is, premises
and associated reasoning are valid), and then extract label-
ings from them [14]. This seems to be the perspective in
the recent work on epistemic graphs [14, 16] that we use
as starting point in our investigation.

An epistemic graph combines nodes and edges respec-
tively standing for arguments and their relations, plus in-
equalities connecting probabilities of arguments. Figure 3
depicts the structure of an epistemic graph constructed
using arguments about whether an investment in the preser-
vation of the Blue Amazon is appropriate.

In many ways, epistemic graphs offers an extremely pow-
erful language that subsumes and extends most of what has
been done within epistemic argumentation. Notably, so far
epistemic graphs do not mention conditional probabilities;
this is a gap we address in the next section.

3. Epistemic Graphs and Conditional
Probabilities

In this section we introduce epistemic graphs that are en-
dowed with conditional probabilities, thus extending the
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Figure 1: Attack relation between arguments.

Figure 2: Support relation between arguments.

epistemic graphs in the literature [14, 16]. Instead of first
presenting the current language of epistemic graphs and
then inserting conditional probabilities into that language,
we present our complete language at once, commenting on
how it differs from past proposals.

Note that we introduce epistemic graphs with the power
to represent conditional probabilities in two incremental
steps. Firstly, we use linear restrictions over unconditional
probabilities. These include constraints like P(A∧B)−
0.2P(B)≥ 0 that represent P(A|B)≥ 0.2.1 Then we expand
the language to allow for linear restrictions directly over
conditional probabilities such as P(A|B)−P(B|C)≥ 0.

Epistemic graphs will be introduced as pairs consisting
of argumentation graphs and probabilistic constraints over
these arguments. The semantics of the probabilistic con-
straints will be precisely defined in this section, but the
semantics of the graph, thus the semantics of the whole
epistemic graph, will be discussed in Sections 4 and 5.

3.1. The Language Llinear

To formally introduce our languages for probabilistic con-
straints, let (G , `) be a labelled graph, where G = (V,R)
is a directed graph, with V being a finite set of arguments
(nodes) and R ⊆ V ×V is the set of arcs. The function
` : R→ 2Ω associates a set of labels from Ω = {+,−,∗} to
each arc, which are read as support, attack or dependency,
respectively. If `(r) is a singleton for every r ∈ R, the graph
is uni-labelled; if additionally `(r) ∈ {+,−} for all r ∈ R,
the graph is bipolar.

In the first language we present, which is basically the
one proposed by Fagin, Halpern and Meggido [9], proba-
bilistic linear constraints are built over the probability of
propositional formulas (terms) over the arguments, like
φ = A∨¬B. Formally, we define an epistemic atom as

n

∑
i=1

αiP(φi)≥ α0

1. We assume that conditional probabilities are defined only when the
conditioning proposition has positive probability.

where, for all i, φi is a term and αi ∈ Q. The language
Llinear is then defined as the set of Boolean formulas
formed with epistemic atoms, called here epistemic for-
mulas [9]. Adopting the graph shown in Figure 3, the fol-
lowing would be examples of some epistemic formulas in
Llinear:

P(A∧B)−0.5P(B)≤ 0,
P(A∧C)−0.7P(C)≥ 0,

P(B)> 0.5 ∨ P(D)> 0.5.
(1)

The semantics is then given by a belief distribution π :
2V → [0,1]. Each Γ⊆V can be seen as a possible world or
valuation, where Γ |= A iff A∈ Γ. As usual, this satisfaction
relation can be extended via Γ |=¬φ iff Γ 6|= φ ; Γ |= φ1∧φ2
iff Γ |= φ1 and Γ |= φ2; and Γ |= φ1∨φ2 iff Γ |= φ1 or Γ |= φ2.
A belief distribution π is assumed to behave as a probability
distribution, so that for each term φ :

Pπ(φ) = ∑{π(Γ)|Γ |= φ}.
A belief distribution π satisfies an epistemic atom ψ =

n
∑

i=1
αiP(φi) ≥ α0 iff

n
∑

i=1
αiPπ(φi) ≥ α0, which we denote

by π |= ψ . The classical semantics apply to epistemic for-
mulas: π |= ¬ψ iff π 6|= ψ; π |= ψ1 ∧ψ2 iff π |= ψ1 and
π |= ψ2; π |= ψ1∨ψ2 iff π |= ψ1 or π |= ψ2. If C ⊆Llinear
is a set of formulas, π |= C iff π |= ψ for every ψ ∈ C .
We also use C |= φ to denote entailment between a set of
formulas C and a formula φ ∈Llinear, which means that
π |= φ for every belief distribution π such that π |= C . We
use C ∗ to denote the closure of C , which is the the set of
all formulas φ ∈Llinear entailed by it.

For simplicity, the only mathematical relation allowed
in epistemic atoms is ≥. Nevertheless, given the semantics,
we can multiply all αi by −1 to represent a ≤-inequality
and negate an atom to emulate strict inequalities (<,>).
Equality and its negation can be represented via conjunc-
tions of atoms. Thus, we might use <,>,≤,=, 6= in atoms
to denote these formulas. Furthermore, we use a ./ b, with
./∈ {≥,≤,>,< .=, 6=}, to denote a probabilistic formula
a−b ./ 0.
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Figure 3: Nodes and edges in epistemic graph.

The epistemic language proposed by Hunter, Polberg
and Thimm [16] is a proper subset of Llinear, where the
coefficients are restricted to αi ∈ {−1,1}, for i ≥ 1, and
additionally α0×α1 ∈ [0,1]2. The related computational
complexity is the same in both languages, though. For in-
stance, the decision problem of finding a belief distribution
satisfying a set of epistemic formulas is NP-complete in
both cases. On one hand, both decision problems general-
ize the Boolean Satisfiability problem (SAT), thus being
NP-hard. On the other hand, the satisfiability problem for
the language Llinear (the most general of the two) is known
to be in NP [9]. Furthermore, both satisfiability problems
can viewed as instances of the Classical Generalized Prob-
abilistic Satisibility problem (GGenPSAT) [6], also in NP.
The latter can be solved in practice for instance via a reduc-
tion to Satisfiability Modulo Theory (SMT) with respect
to the theory of Quantifier-Free Linear Integer and Real
Arithmetic (QF-LIRA) [6].

The key advantage of Llinear is that conditional probabil-
ity assessments in the form of P(B|A)≥ q can be encoded
through epistemic atoms via P(B∧A)−qP(A)≥ 0. When
Pπ(A) > 0, this atom is satisfied exactly by those belief
distributions π with Pπ(B∧A)/Pπ(A) = q. For instance, in

2. In the language proposed by Hunter, Polberg and Thimm [16], α1 = 1
and α0 ∈ [0,1] and ≤ is in the language. We are allowing also α1 =
−1 and α0 ∈ [−1,0] to emulate ≤.

our example represented by Figure 3 and the epistemic for-
mulas 1, the first formula P(A∧B)−0.5P(B)≥ 0 encodes
P(A|B)≥ 0.5.

Combining a labelled graph (G , `) with a set C of epis-
temic formulas, also called constraints, we have an epis-
temic graph (G , `,C ).

3.2. The language Lcond

Arcs in an epistemic graph could be given probabilistic
semantics as well. The most intuitive, and perhaps the first
one we should try, semantics for a bipolar argumentation
graph is to allow each arc from A to B to mean either

P(B|A)> P(B)

when the arc is a supporting one, or

P(B|A)< P(B)

when the arc is an attacking one. Adopting the ratio formula
interpretation (P(B|A) = P(B∧A)/P(A)), the inequalities
above would become non-linear when clearing the denomi-
nators. The result cannot be captured by epistemic atoms
in Llinear.
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To circumvent that, we can enrich our language by al-
lowing conditional probabilities in the epistemic atoms:

n

∑
i=1

αiP(φi|φ ′i )≥ α0.

The set of all Boolean combinations out of these atoms
forms the language Lcond .

The semantics of the epistemic atoms is based on the non-
linear restrictions obtained when conditional probabilities
are interpreted via the ratio formula and the denomina-
tors are cleared. We point out that the belief distributions
π : 2V → [0,1] are still unconditional. We say a belief dis-

tribution π satisfies ψ =
n
∑

i=1
αiP(φi|φ ′i )≥ α0 iff

n

∑
i=1

αi
Pπ(φi∧φ ′i )

Pπ(φ ′i )
≥ α0

or
Pπ(φ

′
i ) = 0 for some 1≤ i≤ n.

Note that the second condition implies the non-linear re-
striction resulting from clearing the denominators to be
trivially satisfied.

The semantics for epistemic formulas in Lcond is derived
again from the semantics of the atoms as usual, and we use
the entailment relation |= in the same way. Using a set
C of epistemic formulas in Lcond , we may form also an
epistemic graph (G , `,C ).

By allowing explicitly for non-linearity, Lcond enriches
the epistemic approach to argumentation and allows greater
expression power. For instance, the epistemic formulas in
Expression (2) can be associated with Figure 3 so as to
build an epistemic graph:

P(A|C∧D)≥ P(A|C∨D),

P(A|C)≥ P(A),

P(A|D)≥ P(A),

P(B|E)≤ P(B),

P(E|I)≥ 0.5,
P(C|F)≥ P(C),

P(F |J)≤ P(F |K),

P(D|H)≥ P(D),

P(D|G)≤ P(D|H).

(2)

However, for the corresponding satisfiability problem,
the formulas in Lcond are basically polynomial weight for-
mulas from Fagin et al. [9], and they show the satisfiability
problem to be PSPACE-complete.

3.3. Recovering Credal and Bayesian Networks

In this section we just point out that, by moving to Lcond ,
one can capture a large class of probabilistic modeling tech-
niques that rely on independence assumptions. Of course,

this is not too surprising: within that language, one can ex-
plicitly impose P(A|B)−P(A) = 0 for arguments A and B.
So independence is easily asserted; similarly, conditional
independence can be readily expressed.

Now, with independence assumptions we can have epis-
temic graphs that actually specify credal networks [19] or
Bayesian networks [21]. To do so, we cannot have any
directed cycles in the epistemic graph (that is, we cannot
leave one node and, following directed edges, get back
to the same node). Note that the assumption of acyclicity
of arguments has been made in connection with existing
frameworks [8]. Once we have such an acyclic directed
graph, we can write down independence relations to the
effect that each argument is conditionally independent of
its nondescendans given its parents (that is, the conditional
probability of each argument given all configurations of
nondescendants is not affected by the nondescendants that
are not parents). By imposing such independence relations
we in fact obtain the usual Markov condition that is adopted
both by credal and by Bayesian networks. We then add
probability assessments that specify probabilities for each
argument given configurations of its parents. If all such
probabilities are sharply specified, we obtain a Bayesian
network; otherwise, we have a credal network.

Consider our running example on the Blue Amazon. The
example was built without any intention to produce a credal
network. Still, the graph is acyclic, as it was the natural
structure given arguments that we found in public debates.
Note that the assessments conveyed by Expression (2) al-
ways relate a node with its parents (also the natural con-
straints to impose). So, it is a typical credal network —
minus the independence assumptions that must be imposed
separately.

Other kinds of assessments can be used in practice. One
possibility is to borrow from qualitative Bayesian net-
works [26]. For instance, in a qualitative Bayesian network
we may mark the edge from B to A with label +, referred
to as a positive influence, to mean that

P(A|B∧ (C = c)) = P(A|B)

for all configurations (C = c) of parents of A that are dis-
tinct from B. Finally, if all configurations of arguments and
their parents are associated with sharp probabilities, we
obtain a Bayesian network.

4. From Probabilistic Constraints to Arcs

An epistemic graph has two separate parts, the graph itself
and the probabilistic constraints. In the previous section, we
introduced two languages for the probabilistic constraints
and defined their semantic via a set of belief distributions.
In this section we explore a viewpoint from which the
graph structure can be interpreted. One can view, following
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Hunter [16], the graph arcs as summarizing some informa-
tion from the probabilistic constraints, thus verifying if the
former are justified by the latter under some reasonable
interpretation. We explore this path and adapt it to the pres-
ence of conditional probabilities, as these are enabled by
the languages we propose.

The semantics of an epistemic graph can be simply de-
fined as the semantics of its probabilistic constraints, which
is the credal set satisfying them. From such a point of view,
the arcs appearing in the graph should simply reflect proper-
ties that hold for the involved arguments. These properties
can be analyzed in two steps, first verifying whether an
arc is justifiable, then searching for its appropriate labels.
One could start with only a set of probabilistic constraints
and derive the missing arc. Alternatively, a labeled graph
can be given together with the probabilistic constraints and
one just checks if the former is in fact corresponding to the
latter. Maybe only the arcs are given, and one is searching
the correct labels. In any case, the methods are the same,
for the problem is always finding whether an arc between a
pair of arguments and its label correspond in some precise
and justifiable way to the probabilistic constraints.

To illustrate this procedure, let’s consider the relation
between arguments A and C from the epistemic graph in
Figure 3 and the epistemic formulas in Expression (2).
Considering just the latter, we have P(A|C) ≥ P(A), that
could be interpreted as “the probability of A being accepted
is greater when C is also accepted”. That means a support
relation between both the arguments, which corresponds
precisely to what is represented in the graph.

Given a set C of probabilistic constraints in Llinear or
Lcond and a labelled graph (G , `), with G = (V,R), one can
see each arc (A,B) ∈ R, together with its label `((A,B)),
as representing information already contained in C . For
instance, if A attacks (supports) B, one expects that the
constraints somehow entail that a high probability for A im-
plies a low (high) probability for B. This can be encoded in
different ways, as Hunter, Polberg and Thimm explore [16].

The basic idea is that an arc (A,B), regardless its label,
means that adding a probability for A to the probabilistic
constraints change the set of possible values for the prob-
ability of B. This notion is parameterized by a set F ⊂ V
of arguments whose probability are held fixed. In the most
flexible definition, not every probabilistic constraint in the
set C is considered, but only a subset of its logical clo-
sure C ∗. This is formally captured by the definition be-
low, where the probabilistic constraints can be in Llinear or
Lcond :

Definition 1 (By Hunter, Polberg and Thimm [16]) Let
(G , `,C ) be an epistemic graph, with G = (V,R),
Z ⊂ C ∗ be set of probabilistic constraints and
F = {C1, . . . ,Cm} ⊆ V \ {A,B} be arguments. Then
(A,B) ∈ V ×V is semi-effective w.r.t (Z,F) if there are

x,y,q1, . . . ,qm ∈ [0,1] such that

D .
= Z∪{P(Ci) = qi|1≤ i≤ m}∪{P(A) = y}

is consistent and at least one of the following conditions
hold:

• D 6|= P(B) 6= x and D∪{P(A) = y} |= P(B) 6= x;

• D |= P(B) 6= x and D∪{P(A) = y} 6|= P(B) 6= x.

For instance, suppose we have a the set probabilistic
constraints C = {P(C)> 0.5→ P(A)+P(B) = 1}. Fixing
value q∈ [0.5,1] for P(C) entails P(B)= 1−P(A). Without
restricting the value of P(A), in principle P(B) can have
any value in the interval [0,1]. When we further assume
P(A) = x, P(B) must be precisely 1− x, therefore (A,B) is
semi-effective w.r.t. (C ,{C}). Note that (A,B) is not semi-
effective w.r.t. (C ,∅), for there is no restriction on P(B)
when P(C)≤ 0.5.

If an arc (A,B) is semi-effective w.r.t to some pair
(Z,F), it can be labelled as according to the type of effect
P(A)> 0.5 has on P(B). Details on how to derive consis-
tent labels to arcs from the the probabilistic constraints can
be found in the work of Hunter, Polberg and Thimm [16].
It is worth noting though that a given arc can be supporting
and attacking for different pairs (Z,F), justifying the use
of sets for labels and showing the flexibility of the whole
framework.

The main intuition behind this interpretation is that an arc
(A,B) indicates that the probability of A affects the proba-
bility B in a given context, where the context is captured by
the pair (Z,F). Conditional probabilities, though, enables
the arguments in the context to be represented directly in
the conditioning proposition. Intuitively, given a Z ⊂ C ∗

and a conjunction of arguments F , assigning a value to
P(A|F) could change the possible values for P(B|F). For-
mally, using the power of Llinear to represent conditional
probabilities, we can define conditionally effective arcs:

Definition 2 Let (G , `,C ) be an epistemic graph, with
G = (V,R), Z ⊂ C ∗ be a set of probabilistic constraints
and F be conjunction of arguments C1, . . . ,Cm ∈V \{A,B}.
Then (A,B) ∈V ×V is conditionally effective w.r.t (Z,F),
if there are x,y ∈ [0,1] such that

D .
= Z∪{P(A∧F) = yP(F)}

is consistent and at least one of the following conditions
hold:

• Z 6|= P(B∧F) 6= xP(F) and D |= P(B∧F) 6= xP(F);

• Z |= P(B∧F) 6= xP(F) and D 6|= P(B∧F) 6= xP(F).

For instance, consider a set of probabilistic constraints

C = {P(A∧C)> 0.5P(C)→ P(B∧C)< 0.5P(C)}.

6



EPISTEMIC ARGUMENTATION WITH CONDITIONAL PROBABILITIES AND LABELING CONSTRAINTS

In principle, P(B) can be assigned any value in [0,1]. Fur-
thermore, there is no value for P(C) and P(A) that together
with C restricts the value of P(B). Formally, (A,B) is
not semi-effective w.r.t. (Z,C ). However, C ∪P(A∧C) =
0.6P(C) entails P(B∧C) < 0.5P(C), and (A,B) is condi-
tionally effective w.r.t (Z,C).

Once an arc is conditionally effective, we would have
still to derive the set labels implied by the probabilistic
restrictions. Moving from Llinear to Lcond , we have more
expressivity, allowing the interpretation of arcs based on the
Bayesian confirmation theory [25], where a set of evidences
E is said to (dis)confirm a hypothesis H if P(H|E)> P(H)
(P(H|E) < P(H)). Accordingly, we can interpret an arc
(A,B) as effective and attacking if P(B|A)−P(B) < 0 is
entailed by the constraints and as effective and supporting
if P(B|A)−P(B)> 0 is so. More interestingly, we can use a
subset Z ⊆ C ∗ and a context F to parameterize a definition
of effectiveness.

Definition 3 Let (G , `,C ) be an epistemic graph, with
G = (V,R), Z ⊂ C ∗ be set of constraints and F be conjunc-
tion of arguments C1, . . . ,Cm ∈ V \ {A,B}. Then (A,B) ∈
V ×V is confirmationally effective w.r.t (Z,F) if Z is con-
sistent and one of the following conditions hold

• Z |= P(B|F ∧A)−P(B|F)> 0, when (A,B) is confir-
mationally supporting;

• Z |= P(B|F ∧A)−P(B|F)< 0, when (A,B) is confir-
mationally attacking.

The definitions of effectiveness we propose need not
replace the original one, but may instead offer alternative
notions of attack and support, without losing the flexibility
of the context. Once a definition is chosen, each arc in the
graph can be checked for effectiveness, and missing arcs
may then be added.

5. From Arcs to Probabilistic Constraints
In a different view of the role of nodes and edges, one
may take arcs as additional constraints on the the set of
belief distributions induced by the epistemic graph. These
extra restrictions from the graph may have the form of
epistemic formulas in the language or even express higher-
order restrictions that cannot be reduced to probabilistic
constraints.

Going beyond the epistemic language, one could ex-
plore restrictions over the set of belief distributions, and
not over each of them. For instance, the notion of posi-
tive/negative monotonicity [16] can be used to translate
a supporting/attacking arc (A,B) into the restrictions stat-
ing that Pπ1(A)> Pπ2(A) should imply Pπ1(B)> Pπ2(B) (or
Pπ1(B) < Pπ2(B)), within a given context, for any belief
distributions π1 and π2 in the semantics of the epistemic
graph. In general, any constraint outside the probabilistic

language adopted could increase the representation power
of the whole framework (generally followed by higher com-
putational complexity). Here we focus on the former path,
to stay within the bounds of optimization problems that can
be reduced to constraint satisfaction problems.

Staying within the probabilistic language, either Llinear
or Lcond , the most direct approach to associate the labeled
graph to a set of probabilistic constraints is arc-wise, as-
suming arcs are either attacking or supporting. For instance,
in Llinear, an attacking (supporting) arc (A,B) can repre-
sent the probabilistic formula P(A) > 0.5→ P(B) < 0.5
(P(A)> 0.5→ P(B)> 0.5). In Lcond , we can again in the
spirit of Bayesian confirmation theory use (A,B) to rep-
resent P(A|B)−P(A)> 0 (support) or P(A|B)−P(A)< 0
(attack). In either case, we would have an epistemic for-
mula directly derivable from each arc, so it is not clear what
is gained by representing these restrictions using a graph
instead of the probabilistic language, besides the visual
analysis.

To properly take advantage of the graph representation,
we can look for the information conveyed by it as a whole,
not by each arc in isolation. If we permit only attacking
arcs, the label-based semantics for Abstract Argumentation
Frameworks (AAF) can be employed to restrict the belief
distributions satisfying the epistemic graph. By construing
the probability of an argument (P(A)) as the probability
of it being accepted (P(L(A) = in)), the semantics of the
probabilistic restrictions could be given by probability dis-
tributions π over labelings. The probability Pπ(A) could
then the defined as the sum of the probabilities of labelings
L where A is accepted (L(A) = in). The graph structure
could then restrict the possible labeling according to the
semantics assumed for the AAF. For instance, one might
require conflict-free, admissible, complete, stable or semi-
stable labelings, constraining the domain of the probability
distribution. This is proposed for Probabilistic Labeling
Frames by Riveret et al [23], where the sample space is
defined as the set of labelings with a certain property. By
viewing each labeling as its set of its accepted arguments,
these restrictions on labelings consenquently narrow the
domain of the belief distributions π : 2V → [0,1].

Here we adopt an alternative, equivalent semantics for
the graph, forcing sets of arguments that do not correspond
to labelings with a desired property to have null probability
instead of removing them from the sample space. For exam-
ple, under the stable semantics, π(Γ) may be positive only
if there is a stable labeling accepting exactly the arguments
in Γ.

Formally, the semantics of an epistemic graph (G , `,C )
is given through belief distributions π : 2V → [0,1]
over sets of arguments. For a labeled graph (G , `),
with G = (A ,→), where every arc is labeled simply
as an attack, consider the AAF G = (A ,→). Each
labeling L : A → {in,out,undecided} yields a set of
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accepted arguments ΓL = {A ∈ A |L(A) = in}. Each
semantics for AAF associates a set of labelings L to a
AAF G , corresponding to a set of sets ΓL. For each S ∈
{conflict− free,admissible,complete,stable,semi− stable},
let S(G ) denote the set

{ΓL ⊆A |L : A →{in,out,undecided} is S}.

For instance, semi− stable(G ) contains all sets ΓL of ac-
cepted arguments according to a semi-stable labeling. For
a set of arguments Γ ⊆A , let φΓ denote the conjunction∧
{A|A ∈ Γ} ∧

∧
{¬A|A ∈ A \ Γ}. For instance, if A =

{A,B,C,D} and Γ = {A,B}, then φΓ = A∧B∧¬C∧¬D.
Note that Pπ(φΓ) = π(Γ) for any set Γ ⊆ A and any
belief distribution π : 2A → [0,1]. Now, for each S ∈
{conflict− free,admissible,complete,stable,semi− stable},
the labeled graph (G , `) can be associated with the follow-
ing set of probabilistic formulas in Llinear, which we call
labeling constraints:

CG = {P(φΓ) = 0|Γ ∈ 2A \S(G )}.

Equivalently, CG can be defined via a single restriction
that forces the belief distribution of the sets in S(G ) to sum
up to one:

CG = { ∑
Γ∈S(G )

P(φΓ) = 1}.

Fixing a label-based semantics for the AAFs (S ∈
{conflict− free,admissible,complete,stable,semi− stable}),
the semantics of an epistemic graph (G , `,C ), where all
arcs in G are simply attacks, can be defined as the set of
belief distributions satisfying C ∪CG .

To illustrate how the graph structure can impose restric-
tion based on a given semantics for abstract argumentation
frameworks, consider the AAF G = (A ,→) from Figure
4, formed from the graph in Figure 1 by abstracting the
arguments. For this AAF, there are exactly only two stable
labelings, shown in Figure 5. Each labeling corresponds
to a set of accepted arguments, say Ψ = {A,C,E} and
Ψ′ = {A,D}, so that stable(G ) = {Ψ,Ψ′}. The derived
probabilistic restrictions prevent any other set of arguments
to have positive probability; namely CG = {P(φΓ) = 0|Γ ∈
2A \ {Ψ,Ψ′}}. Note that CG implies P(A) = 1, P(C) =
P(E) and P(C) +P(D) = 1; in fact CG is equivalent to
{P(A∧¬B∧C∧¬D∧E)+P(A∧¬B∧¬C∧D∧¬E) = 1},
as mentioned above. An epistemic graph (G , `,C ), with
C = {P(C) = 0.2}, would be satisfied only the belief
distribution π : 2A → [0,1] with π({A,C,E} = 0.2) and
π({A,D}= 0.8), for instance.

Epistemic probabilities were firstly proposed as a set of
{P(A) = q|A ∈ A ,q ∈ [0,1]} of probabilistic restrictions
over arguments, together with some desiderata relating
them to the graph [14]. By imposing a particular label-
based semantics, some of these postulates can be recovered.

Figure 4: An Abstract Argumentation Framework.

Figure 5: AAF with its two different stable labelings.

For instance, requiring conflict-free labelings, we have that
an arc (A,B) in G implies P(A)+P(B) = 1 [23], a desir-
able property known as coherence. Furthermore, forcing
complete labelings yields P(A) = 1 for every argument A
with no attackers [23], when the epistemic probabilities are
said to be founded.

6. A Bit of Discussion

The past ten years have seen growing interest in proba-
bilistic argumentation frameworks of various kinds; in this
paper we just added a few proposals to that literature. Still,
probabilistic argumentation, as explored in artificial intelli-
gence, is filled with difficult conceptual questions.

To begin, is the theory a normative or a descriptive one?
Abstract argumentation frameworks usually resort to seem-
ingly intuitive conditions to generate labelings, and their
descriptive power is often emphasized, particularly through
examples that discuss daily issues such as dental care deci-
sions. On the other hand, probabilistic modeling is a nor-
mative endeavor; people do not normally follow exactly the
probability calculus [17]. Although credal sets are useful
in representing imperfect agents, they are also based on a
normative theory [2]. Hence probabilistic argumentation
tries to glue a mix of descriptive and normative elements.
Even if existing work on empirical evaluation [22] and on
processing real utterances as arguments [20] may clarify
the extent to which a descriptive viewpoint is tenable, more
debate is needed on the exact status of the theory.

Suppose we adopt probability theory: What then is the
meaning of the probability of an argument? This may be
the most difficult question. As noted at the end of Sec-
tion 2, some authors take P(A) to capture the belief that
A is justified or the belief that A holds (apparently mean-
ing that an argument holds when it applies correct rules to
correct premises). This is not the universal wording. Some-
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times a probability value is said to carry the belief that
an argument is acceptable [3, 15]. It does seem attractive
to assign uncertainty to whether or not the agent(s) will
accept an argument, rather than trying to clarify what ex-
actly it means for an argument to be justified or to hold.
However, taking P(A) as the probability of accepting A
is somewhat at odds with the approach adopted in AAFs,
where acceptability is derived from attacks and supports
rather than taken as a starting point. In fact, sometimes
probabilities are themselves used to build labelings that
indicate acceptability [24]. It does seem that more debate
is needed to clarify the semantics of probabilities in proba-
bilistic argumentation.

As a digression, we note that the very flexibility that is
sought in probabilistic argumentation seems to point in-
evitably to a theory based on credal sets. This observation
goes beyond the mere fact that agents are imperfect and
must be modeled accordingly. Argumentation aims at a
gradual combination of arguments and their associated un-
certainty; thus it is natural to work with a formalism that
allows for incomplete specifications. In fact it is not surpris-
ing that some of the initial work on argumentation within
artificial intelligence [12] were closely related to proposi-
tional probabilistic logic, typically dealing with probability
bounds (in some cases resorting to semantics based on
Dempster-Shafer theory).

Another nontrivial issue is the relationship between the
graph itself (nodes and edges) and the probability assess-
ments that one may have. Is this graph just a visual tool
that can be replaced by suitable constraints? Is the graph
built first and then constraints extracted from it, or the
other way around? These pressing questions are particu-
larly important in the context of epistemic graphs; we have
touched on some of them in this paper. In many cases, one
can start either with constraints or with nodes and edges,
and move freely between them. However, there are some
constraints that are intrinsically tied to the structure of the
graph, such as labeling constraints. More work seems to be
due to understand the status of all these concepts and their
connections.

7. Conclusion

In this paper we have extended epistemic graphs in two
directions: first, by allowing for conditional probabilities;
second, by extracting novel constraints out of nodes and
edges (in particular, labeling constraints). Depending on
how conditional probabilities are used, the overall com-
plexity of inference may remain essentially the same, or it
may change substantially; there is a trade-off here between
expressivity and complexity.

It should be noted, in connection with our proposed la-
beling constraints, that they offer a novel semantics for
epistemic graphs. There the graph imposes strong con-

straints over the probabilities, on top of whatever other
constraints may be explicitly specified. Namely, the graph
indicates which label-based semantics must be respected
by probabilities.

There are several possible avenues for future work. One
is to develop algorithms for inference and decision mak-
ing for the languages we have proposed, in particular for
Lcond . Another is to investigate how these languages fare
in practical scenarios. A third possibility, perhaps the most
difficult one, is to look carefully at the questions discussed
in Section 6 so as to build a solid and comprehensive the-
ory of argumentation under uncertainty based on (suitably
extended and interpreted) epistemic graphs.
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