
PMLR: Proceedings of Machine Learning Research, vol. 62, 49-60, 2017 ISIPTA ’17

Modeling Markov Decision Processes with Imprecise Probabilities
Using Probabilistic Logic Programming

Thiago P. Bueno TBUENO@IME.USP.BR
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Abstract
We study languages that specify Markov Decision Processes with Imprecise Probabilities (MDPIPs)
by mixing probabilities and logic programming. We propose a novel language that can capture
MDPIPs and Markov Decision Processes with Set-valued Transitions (MDPSTs); we then obtain
the complexity of one-step inference for the resulting MDPIPs and MDPSTs. We also present
results of independent interest on the complexity of inference with probabilistic logic programs
containing interval-valued probabilistic assessments. Finally, we also discuss policy generation
techniques.
Keywords: Markov decision processes; MDP; MDPIP; MDPST; imprecise probabilities; non-
determinism; probabilistic logic programming; credal semantics.

1. Introduction

To be able to plan, one must be able to represent the relation between actions and their consequences
on the world. Operator-based languages such as STRIPS or PDDL (Fikes and Nilsson, 1971; Mc-
Dermott et al., 1998) have been devised so as to encode deterministic sequential decision problems,
with a specific solution in mind (heuristic search). Action languages such as A or C (Giunchiglia
and Lifschitz, 1998), as well as programming languages such as GOLOG (Levesque et al., 1997),
add more expressiveness, but also focus primarily on deterministic problems. Other languages focus
on decision under uncertainty; for instance, PPDDL (Younes and Littman, 2004), RDDL (Sanner,
2010), DT-GOLOG (Boutilier et al., 2000). In particular, languages based on probabilistic logic
programming (Kersting and De Raedt, 2003; Nitti et al., 2015; Srivastava et al., 2014; Bueno et al.,
2016) allow for probabilities, while C+ (Giunchiglia et al., 2004) and K (Eiter et al., 2004) allow
for nondeterminism. There are languages that even allow both probabilities and nondeterminism
(Halpern and Tuttle, 1993; Eiter and Lukasiewicz, 2003; Trevizan et al., 2008; Iocchi et al., 2009).

In this paper, we study the properties of planning domain description languages that have enough
power so as to encode Markov Decision Processes with Imprecise Probabilities (MDPIPs) (White III
and Eldeib, 1994; Delgado et al., 2009, 2011). We propose a novel language based on probabilistic
logic programming, enhanced with decision theoretic constructs such as actions, state fluents and
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utilities. We consider interval-valued probabilities attached to independent facts, and we adopt a
semantics given by Lukasiewicz (2007) within the context of probabilistic description logics. The
semantics assigns probability measures over answer sets (Gelfond and Lifschitz, 1988). As has been
recently noted by Cozman and Mauá (2016), this semantics induces an infinitely-monotone Cho-
quet capacity on intepretations of atoms. We show that our language can be used to specify Markov
Decision Processes with Set-valued Transitions (MDPSTs) when all probabilities are point-valued.
This class of MDPIPs encompass a wide spectrum of planning tasks ranging from the classical, de-
terministic case to the probabilistic setting in which actions have stochastic and/or uncertain effects
(Trevizan et al., 2007, 2008). We derive the complexity of one-step inference with the resulting
languages; we also present results of independent interest on the complexity of inference with prob-
abilistic logic programs containing interval-valued probabilistic assessments. We also discuss how
to generate optimal policies from a specification in our language, in this paper focusing on MDPSTs.

The paper is organized as follows. We offer some background knowledge on MDPIPs and
MDPSTs, and on probabilistic logic programming, in Section 2. We then present our language
in Section 3. We discuss the complexity of one-step inference in Section 4, and describe policy
generation algorithms in Section 5. Finally, Section 6 concludes the paper.

2. Background

In this section we review the main concepts behind Markov Decision Processes and some of their
variants. We also summarize the main ideas in probabilistic logic programming.

2.1 MDPs, MDPIPs and MDPSTs

Markov Decision Processes (MDP) represent a class of sequential decision-making problems in
a stochastic environment (Puterman, 2014). Intuitively, a planning agent has to deliberate over
his/her model of the world to choose an optimal action in each decision stage in order to maximize
his/her accumulated reward (or minimize the accumulated cost) given the immediate and long-term
uncertain effects of available actions.

Formally, an MDP consists of (i) a finite set of states S; (ii) a finite set of applicable actions
A(s) for each state s; (iii) a Markovian transition model T (s, a, s′) = P(s′|s, a) specifying the
probability that after executing action a in state s the next state is s′; (iv) a reward modelR(s, a, s′)
specifying the reward (or cost) of executing action a in state s and transitioning to state s′; and (v)
a set of decision stages D = 1, ...,H . The solution of an MDP with infinite horizon (i.e., H →∞)
is a stationary, deterministic optimal policy π∗ : S → A(s) that prescribes an optimal action a in
state s in order to maximize the expected cumulative reward of state s defined by the optimal value
function V ∗ : S → R given by:

V ∗(s) = max
a∈A(s)

{∑
s′∈S

P(s′|s, a)(R(s, a, s′) + γ V ∗(s′))

}
, (1)

where γ ∈ [0, 1[ is the discount factor necessary for convergence.
There are situations in which it is not easy (or even possible) to define a precise probability

measure for a given transition. In this case, it is necessary to consider a more general version of
an MDP known as Markov Decision Processes with Imprecise Probabilities (MDPIP) (White III
and Eldeib, 1994; Satia and Lave Jr, 1973). In this model, the probability parameters are imprecise
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and therefore the transition model cannot be specified by a single conditional distribution, but it
must be defined by sets of probabilities for each state transition. These sets are commonly referred
to as transition credal sets K(·|s, a) (Delgado et al., 2009). All other components of the MDP are
unchanged (i.e., finite state and action space, reward function).

There are several objective criteria for solving an MDPIP with infinite horizon. In this paper,
we only consider the Γ-maximin criterion (Delgado et al., 2009) which selects a robust policy that
yields the supremum of the lower expected reward. The optimal value function of state s is:

V ∗(s) = max
a∈A(s)

{
min

P(·|s,a)∈K(·|s,a)

∑
s′∈S

P(s′|s, a)(R(s, a, s′) + γ V ∗(s′))

}
. (2)

Finally, another interesting variant model of MDP is the Markov Decision Process with Set-
valued Transition (MDPST). This model is a particular instance of an MDPIP aimed at repre-
senting the transition model of an MDP with (separate) components for probabilistic and non-
deterministic action effects (Trevizan et al., 2007, 2008). In an MDPST, the transition model is de-
fined by the probability mass function m(k|s, a) and the non-deterministic function F (s, a) ⊆ 2S ,
such that k ∈ F (s, a). Its semantics is that after applying action a to state s the probability that the
next state s′ is in the reachable set k ∈ F (s, a) is given by m(k|s, a). These components together
induce the imprecise probabilities over next states constrained by the following set of inequalities:

0 ≤ m({s′}|s, a) ≤ P(s′|s, a) ≤
∑

k∈F (s,a) s.t. s′∈k

m(k|s, a) ≤ 1, (3)

0 ≤
∑

s′∈D(k,s,a)

P(s′|s, a) ≤ m(k|s, a) ≤
∑
s′∈k

P(s′|s, a) ≤ 1, (4)

where D(k, s, a) = k − ∪
k′∈F (s,a),k′ 6=k

k′.

Inequalities 3 and 4 define a transition credal set K(·|s, a) as demonstrated by Trevizan et al.
(2007) therefore proving that an MDPST is indeed an MDPIP. Though, the contrary does not nec-
essarily holds since the class of MDPIPs is much more general than that of MDPSTs.

The solution of an MDPST under the minimax criteria is an optimal policy with respect to the
optimal value function, given by:

V ∗(s) = max
a∈A(s)

{ ∑
k∈F (s,a)

m(k|s, a) min
s′∈k

(R(s, a, s′) + γ V ∗(s′))

}
. (5)

Throughout the paper we assume a factored representation of the state in which a state s is
given by a set of state fluents {x1, ..., x2} which are state properties whose truth value changes
with the actions; the factored transition function is P(s′|s, a) =

∏n
i=1 P(x′i|x1, ..., xn, a) and the

reward function is also factored. This representation implies a dynamic Bayesian network in which
next-state fluents are independent given the current-state fluents and action.

2.2 Probabilistic Logic Programming and the Credal Semantics

Probabilistic Logic Programming (PLP) extends Logic Programming (LP) by assigning probability
measures to logical facts. It is typically assumed a fixed vocabulary of constants and relations. An
atom is a predicate r(t1, ..., tn) representing a n-arity relation over terms t1, ..., tn where a term is
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either a logical variable or a constant from the vocabulary. We use lowercase to denote constants
and uppercase to denote variables. A ground atom is an atom with no variables as one of its terms.

A probabilistic logic program is a pair Lp = 〈BK,PF〉 consisting of a set of logical rules
BK called background knowledge and a set of probabilistic facts PF. A logical rule is of the form
h :− b1, ..., bm, not bm+1, ..., not bn., where atom h is called the head and the atoms bi, i = 1, ..., n
are called the body. The reserved symbol not is to be interpreted as negation as failure, i.e., not bi is
true in the absence of information that justifies bi being true. A probabilistic fact denoted by α :: f.
is an atom f annotated with probability α ∈ [0, 1]. All probabilistic facts are probabilistically
independent and cannot be unified with any rule’s head atom.

A total choice denoted by θ is a complete truth assignment to the probabilistic facts of Lp. Each
total choice θ induces a logical program denoted by Lθ containing the background knowledge of
Lp and only the facts with a true value in θ. This semantics defines each probabilistic fact αi :: fi
as a boolean random variable fi distributed accordingly to the Bernoulli distribution with mean αi.
Since the probabilistic facts αi :: fi are independent, the probability of the induced logic program
Lθ is given by:

P(Lθ|Lp) =
∏
fi∈θ

αi
∏
fi 6∈θ

(1− αi) . (6)

The semantics of a probabilistic logic program Lp is given by the set of all probability models
of Lp, accordingly to its credal semantics (Lukasiewicz, 2007; Cozman and Mauá, 2016). A prob-
ability model for a program Lp is a probability measure P over logical interpretations of its atoms
such that (i) every interpretation I with P(I) > 0 is a stable model of the induced program Lθ for
the total choice θ that is consistent with I on the set PF; and (ii) the probability of the induced
program Lθ is given by Equation 6. If the probabilistic logic program Lp is acyclic or stratified
(Lloyd, 2012) then the credal set for program Lp consists of a single probability model related to
its unique stable model.

An interpretation I over the set of atoms of a logic program L is a stable model if and only if I
is the minimal model of the reduct program LI . The reduct program LI is the set of positive rules
{H(r) :− B+(r) | r ∈ L and B−(r)∩ I = ∅} where H(r) is the head of rule r; B+(r) and B−(r)
are the sets of positive and negative atoms in the body of rule r. A typical logic program with more
than one stable model is the non-stratified program L = {p :− not q. q :− not p.} which has two
stable models, namely the set of models {{p}, {q}}.

Given a probabilistic logic program Lp whose credal semantics is given by the credal set KLp ,
the inference tasks of computing the lower conditional probability of query Q given evidence E
denoted by P(Q|E) and respectively the upper conditional probability denoted by P(Q|E) are given
by:

P(Q|E) = inf
P∈KLp

P(Q|E) (7)

P(Q|E) = sup
P∈KLp

P(Q|E) (8)

where Q and E are consistent sets of literals and it is assumed that P(E) > 0 .

3. A Language to Specify MDPIPs and MDPSTs

One can specify an MDP through a probabilistic logic program, by annotating atoms with special
meanings so as to distinguish actions, state fluents and rewards. This has been, for instance, the
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approach taken by LOMDP (Kersting and De Raedt, 2003), DTBLOG (Srivastava et al., 2014), and
DDC (Nitti et al., 2015). In a previous work, we devised the MDP-PROBLOG specification language
for sequential decision problems based on the PROBLOG language (Bueno et al., 2016). Here we
extend the language so as incorporate incomplete and imprecise assessments.

An MDP-PROBLOG program consists of three parts: a program LSPACE
MDP declaring state fluents

and actions, a program LTRANSITION
MDP encoding a transition model, and a program LREWARD

MDP encoding
the reward model.

The dependency graph of an MDP-PROBLOG program is the signed directed graph over the
ground atoms of the program; there is a positive (resp., negative) arc B → A if there is a rule with
B in the body and A in the head, and B is non-negated (resp., negated). In our previous work,
we showed that MDP-PROBLOG programs with acyclic dependency graphs represents a factored
MDP, whose transition model for each action is a dynamic Bayesian network: each ground atom is
a variable; probabilistic facts are root nodes associated with corresponding probabilities and non-
probabilistic facts are internal nodes associated with deterministic functions. We also showed that
MDP-PROBLOG with positive cycles in its dependency graph still represent factored MDP (note that
dynamic Bayesian networks do not allow cycles). We did not define the semantics of programs with
cycles; we close this gap here.

We use the following running example to illustrate concepts:

Example 1 In the Viral Marketing (VM) domain, we are given an information about individuals
and their trust relationships, and we are interested in selecting individuals to market a certain
product. The goal is to maximize the long-term profit by increasing the likelihood of sales while
decreasing the cost of marketing. We assume that a person might buy the product after being
marketed or because she trusts someone who already bought it. Also, if a person has not been
the target of a marketing action in the current step, but she has been marketed in the past, then the
delayed effect of past marketing actions should be accounted for.

The program LSPACE
MDP consists of (invariant) facts and two types of rules: state fluent declara-

tions and action fluent declarations. State fluent declarations are of the form state fluent(A) :−
B1, . . . , Bn., where A is an atom representing a state fluent and B1, . . . , Bn are literals men-
tioning action fluents (actions that may or may not occur) or non state fluents (state properties
whose truth value does not change, i.e. invariants). Action fluent declarations are of the form
action fluent(A) :− B1, . . . , Bn., where A is an atom representing an action and B1, . . . , Bn are
as before. The state fluents are distinguished between current state and next state. Current-state
fluents take an extra argument 0 to indicate the current stage, while next-state fluents take an extra
argument 1 to indicate the next stage.

Consider our running example. We declare individuals by a set of (invariant) ground facts
person(pi), a state and action fluents by:

state fluent(marketed(P )) :− person(P ).

state fluent(buys(P )) :− person(P ).

action fluent(market(P )) :− person(P ).

Given persons p1 and p2, we have 4 state fluents: marketed(p1), marketed(p2), buys(p1) and
buys(p2). Thus, the program above defines 24 states. For example, we have a state where marketed(p1)

53



BUENO ET AL.

is true, and all of marketed(p2), buys(p1) and buys(p2) are false. Similarly, we have 2 actions flu-
ents: market(p1) and market(p2). Thus, the program defines 22 actions. For example, we have an
action where market(p1) is true and market(p2) is true 1.

The program LTRANSITION
MDP contains a set of rules such that no action fluents nor current-state

fluents unify with head atoms.
The transition model of our running example is given by the program:

0.5 :: decay(Person).

marketed(Person, 1) :− market(Person).

marketed(Person, 1) :− not market(Person), marketed(Person, 0), decay(Person).

0.2 :: buy from marketing(Person).

0.3 :: buy from trust(Person).

buys(Person, 1) :− marketed(Person, 1), buy from marketing(Person).

buys(Person, 1) :− trusts(Person, Person2), buys(Person2, 1), buy from trust(Person).

According to this program, an individual is under the effect of a marketing action if she has
either been targeted in the current stage, or, with probability 0.5, if she was under the effect in a
previous stage. There is also the idea that a person buys the product with a certain probability if
she has been the target of marketing, and with a different probability if some of her trustees was the
target of marketing.

The transition program induces a transition credal set K(s′|s, a), where s is an interpretation
of current-state fluents, a is an interpretation of action fluents and s′ is an interpretation of next-
state fluents. Each conditional distribution in the transition credal set specifies a transition model
T (s, a, s′) assigned with probability P(s′|s, a) given by the credal semantics of the program.

The program LREWARD
MDP contains a set of rules of the form utility(A, c) :− B1, . . . , Bn, where A

is state or action fluent, c is a value denoting reward/cost, and each Bi is a literal.
In our running example, every product bought contributes with a reward of 5, and every market-

ing action costs -1:
utility(buys(Person, 1), 5).

utility(market(Person), − 1).

Finally, the program LREWARD
MDP specifies an additive reward model R(s, a, s′) over current states

(interpretation of current-state fluents), actions (interpretation of action fluents) and next states (in-
terpretations of next-state fluents). A rule utility(A, c) :− B1, . . . , Bn contributes with (additive)
reward c if and only if A,B1, . . . , Bn are all true in the interpretation.

Since we adopted the credal semantics for the transition program, the transition credal set is the
dominating credal set of an infinitely monotone Choquet capacity (Cozman and Mauá, 2016); that
is, each transition is governed by a probabilistic transition into a reachable set that consists of the
stable models. To get some intuition on this result, consider that for each fixed total choice, we
obtain a logic program that may have more than one stable model (if it has no stable model, the
whole probabilistic logic program has no semantics). And recall that over the total choices we have

1. Note that the semantics of the probabilistic logic programming allows concurrent actions just like in RDDL (Sanner,
2010).
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a product measure. Hence we have a multi-valued mapping form one sample space endowed with a
probability measure (the space of total choices) into another space (the space of stable models); this
implies that over the latter space we have an infinitely monotone Choquet capacity (Augustin et al.,
2014). Thus we have the following surprising (and pleasant) consequence:

Theorem 1 An MDP-PROBLOG program specifies a factored MDPST.

Although an MDPST is a particular case of MDPIP, so far we have assumed that every proba-
bility value is known with absolute precision. This is obviously unrealistic in practice. The natural
solution then is to allow a fact to be associated with a probability interval. We denoted these ex-
tended probabilistic facts by [α, β] :: p. where p is an atom and parameters α and β are probability
bounds such as 0 ≤ α ≤ β ≤ 1. In the case of α = β, we have a standard probabilistic fact. The
semantics of a probabilistic logic program with interval-valued facts is the credal set that consists
of all probability distributions that satisfy the constraints (that is, whose marginal probabilities for
facts lies within given intervals).

For example, in the viral marketing domain, we might be uncertain about the probabilities that
an individual will buy a product given different scenarios:

[0.1, 0.3] :: buy from marketing(Person).

[0.2, 0.4] :: buy from trust(Person).

Now suppose we have an MDP-PROBLOG program, possibly with interval-valued probabilistic
facts and negative cycles 2. Suppose also the current state S0 is given, and possibly an additional
set of grounded atoms E on the current time step; finally suppose we have a set of grounded atoms
Q of next state, and we wish to compute P(Q|E,S0). By using arguments that apply to inference
in credal networks, we have that the value of P(Q|E,S0) is attained at a selection of extreme points
of the probability intervals, together with a selection of reachable set for all resulting probabilities
(Augustin et al., 2014). That is, to compute an upper probability, we must go through all extreme
points of probability intervals, and all possible extreme points of the induced infinitely monotone
Choquet capacities. The same result obtains for the computation of lower probabilities. We will use
these results in Section 5.

4. The Complexity of One-Step Inference

In this section we will need a number of concepts from complexity theory; most of them are stan-
dard: we use languages, decision problems, many-one reductions, and complexity classes such as P
and NP (Papadimitriou, 2003). The complexity class PP consists of those languages L such that:
there is a polynomial time nondeterministic Turing machine M such that ` ∈ L if and only if more
than half of the computations of M on input ` end up accepting). We consider oracle machines and
complexity classes such as ΣP

i , recursively defined as ΣP
i = NPΣP

i−1 with ΣP
0 = P. We also use

classes from Wagner’s polynomial counting hierarchy: that is, the smallest set of classes containing
P and, recursively, for any class C in the polynomial counting hierarchy, the classes PPC, NPC, and
coNPC (Torán, 1991; Wagner, 1986).

2. One could suppose that an MDP-PROBLOG program with interval-valued probabilities defines a BMDP (Givan et al.,
1997), however in our language the imprecision is over state fluents while in BMDPs the imprecision is over states.
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We are interested here in the complexity of one-step inference; that is, if we have the state at
time t, then what is the computational cost of computing the probability of {Xt+1 = x}? We start
by analyzing a problem of independent interest: the complexity of inferences in probabilistic logic
programs with interval-valued probabilistic facts (Section 4.1) and then we look at the complexity
of one-step inference (Section 4.2).

4.1 Credal logic programs with interval-valued probabilistic facts

Suppose we have a credal logic program, possibly disjunctive and non-stratified, but not necessarily
aimed at modeling planning scenarios. That is, we just have a disjunctive logic program associated
with a number of interval-valued probabilistic facts. The only restriction we impose is that there is a
bound on predicate arity. Suppose that additionally we have, as input, a set Q of truth assignments
to grounded atoms, and another set E of truth assignments to grounded atoms; additionally we have
a rational number γ in [0, 1]. We refer to (Q,E) as the query, and to E as the evidence. As output we
have the decision as to whether P(Q|E) > γ where the probabilities are computed with respect to
the input credal logic program. Consider the strings describing a credal logic program, a query, and
a rational, and denote by C the language consisting of all such strings that satisfy P(Q|E) > γ. Note
that if we restrict our programs to be non-disjunctive and acyclic, then they specify credal networks
(Cozman, 2005), and therefore deciding C is at least a NPPP-hard problem. It is remarkable that we
can also decide C in NPPP; that is:

Theorem 2 Deciding whether a string is in C is a NPPP-complete problem.

Proof Hardness follows, as already noted, from the fact that inference with credal networks is
NPPP-complete (De Campos and Cozman, 2005). Membership is a consequence of the following
construction. First, guess the extreme point of each interval-valued probability assessment (this
requires a nondeterministic Turing machine, but given that predicate arity is bounded, there is a
polynomial number of guesses to be made). Then call, as an oracle, a counting Turing machine that
guesses the truth assignment for all grounded probabilistic facts; by counting the number of such
assignments that leads to satisfaction of Q and E, we can decide whether the base nondeterministic
choice satisfies or not the inequality of interest. The problem is that, for each selected truth assign-
ment for ground probabilistic facts, we must decide whether it is possible to satisfy the query; for a
disjunctive logic program this can be made using a ΣP

3 oracle. That is, our problem can be solved in

NPPPΣP
3 . However, due to a remarkable result by Toda and Watanabe (Toda and Watanabe, 1992),

we have that PPPΣP
k = PPP; consequently, our decision problem is in NPPP and the proof is fin-

ished.

4.2 One-step transitions

Now consider the specification of a planning problem using a credal logic program as described in
Section 3. That is, we have a logic program with added interval-valued probabilistic facts. Denote by
PC the language that consists of strings encoding a credal logic program with a bound on predicate
arity, a query, and a rational as in Section 4.1, but now the credal logic program is the description of
a planning scenario as in Section 3, and with the following additional restrictions. The query must
now refer only to grounded atoms at the next time step (not at current time step), and a string is
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in the language if and only if P(Q|E,S0) > γ where S0 is the current state. That is, we focus on
one-step, from current to next state, and we wish to compute an inference about the time step.

Using the result in the previous section we immediately have:

Theorem 3 Deciding whether a string is in PC is a NPPP-complete problem.

Proof Note that when we fix S0, we obtain a decision problem for a credal probabilistic program.
Then Theorem 2 implies the result.

Now suppose we restrict ourselves to point-valued probabilistic assessments; that is, every prob-
abilistic facts is of the form α :: A.. As discussed in Section 3, such assessments allow us to define
MDPSTs when programs can be disjunctive/non-stratified. Now denote by PM the language de-
fined exactly as PC, with the difference that every probabilistic assessment is point-valued. It is
known that the complexity of inference in non-disjunctive probabilistic logic programs that can be
non-stratified is PPΣP

2 -complete, while the complexity of inference in disjunctive probabilistic logic
programs is PPΣP

3 -complete (Cozman and Mauá, 2017), submitted. Hence we obtain, as a direct
consequence:

Theorem 4 Deciding whether a string is in PM is a NPΣP
3 -complete problem.

5. Dynamic Programming for MDP-PROBLOG programs

In this section, we discuss how dynamic programming can be applied to solve sequential decision
problems specified by MDP-PROBLOG programs. To emphasize: we allow programs with (negative
and positive) cycles in the dependency graph and interval-valued probabilistic facts.

For simplicity, we consider grounded programs. So consider a (ground) MDP-PROBLOG pro-
gram, a current state s (i.e., an interpretation of state fluents) and action a ∈ A(s) (i.e., an inter-
pretation of actions). Due to Theorem 1, given evidence s, a, the transition model induces a set of
probability mass functions m(k|s, a) over sets of stable models k ∈ F (s, a). One can show that the
robust (i.e., maximin) policy is given by the argument of the following modified Bellman equation:

V ∗(s) = max
a∈A(s)

{
min

m(·|s,a)∈K(·|s,a)

∑
k∈F (s,a)

m(k|s, a) min
s′∈k

(R(s, a, s′) + γ V ∗(s′))

}
(9)

The outer (i.e., leftmost) minimization can be solved by considering all extremes of the interval-
valued probabilities; after each choice is made, the resulting program specifies an MDPST whose
transition is governed by the stable models of the transition program: this is the inner (rightmost)
minimization in the equation above.

When all reachable sets are singletons (i.e., ∀k ∈ F (s, a), |k| = 1) there is no need to perform
the inner minimization over the states in k and then we have the traditional case of MDPIPs given by
Equation 2. On the other hand, if all interval-valued probabilistic facts degenerate to point-valued
standard probabilistic facts the outer minimization over the probabilistic models of the credal set
K(·|s, a) is not need and then we have the Equation 5 for precise MDPSTs. Finally, when both
assumptions hold we are back to the classical MDP case of Equation 1.

The traditional dynamic programming scheme for solving the set of equations defining the state
value function is the Value Iteration algorithm (Puterman, 2014). Essentially, it assigns an initial
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value to all states and iteratively updates all state values until the convergence by using Equation 9 as
an update rule known as Bellman backup. A number of optimizations exist for avoiding redundant
calculations and restricting the computation for only the most promising states regarding the optimal
policy. Nevertheless, virtually all of these techniques has to deal one or more backup calculations.

6. Conclusion

In this paper, we addressed the problem of modeling MDPIPs and MDPSTs using probabilistic logic
programming. Our contributions are:

• an extension of the MDPPROBLOG language that aimed at representing imprecise probabil-
ities and non-determinism;

• novel results about the complexity of one-step inference in credal logic programs with interval-
valued probabilistic facts (and on the complexity of probabilistic logic programs with interval-
valued probabilistic facts); and

• a scheme for generating optimal policy for MDPIPs and MDPSTs encoded by probabilistic
logic programming.

For the future, we plan to implement and test algorithms for policy generation. In order to
do so, it would be valuable to maximize expected values with respect to the credal sets encoding
transitions. Given that heuristics are important in state-of-art algorithms for MDPs, we believe that
similar heuristics must be developed for MDPIPs and MDPSTs. In particular, it should be important
to import techniques from logical reasoning into the realm of probabilistic logic programming.
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