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Abstract

Semi-qualitative probabilistic networks (SQPNs) merge
two important graphical model formalisms: Bayesian
networks and qualitative probabilistic networks. They
provide a very general modeling framework by allow-
ing the combination of numeric and qualitative assess-
ments over a discrete domain, and can be compactly
encoded by exploiting the same factorization of joint
probability distributions that are behind the Bayesian
networks. This paper explores the computational com-
plexity of semi-qualitative probabilistic networks, and
takes the polytree-shaped networks as its main target.
‘We show that the inference problem is coNP-Complete
for binary polytrees with multiple observed nodes. We
also show that inferences can be performed in time lin-
ear in the number of nodes if there is a single observed
node. Because our proof is constructive, we obtain an
efficient linear time algorithm for SQPNs under such as-
sumptions. To the best of our knowledge, this is the first
exact polynomial-time algorithm for SQPNs. Together
these results provide a clear picture of the inferential
complexity in polytree-shaped SQPNs.

Introduction

Qualitative probabilistic networks abstract the precise prob-
ability values that are mandatory in Bayesian networks. In-
stead of displaying precise values, a qualitative probabilistic
network (QPN) only states algebraic relations among proba-
bility values (Druzdzel and Henrion 1993b; Wellman 1990).
There are several efficient algorithms for QPNs (Druzdzel
and Henrion 1993b), including algorithms for multiple ob-
servations (Renooij, van der Gaag, and Parsons 2000), am-
biguous signs (Bolt, Renooij, and van der Gaag 2003), non-
monotonic influences (Renooij and van der Gaag 2000) and
other relations (Bolt, van der Gaag, and Renooij 2004; 2003;
Renooij and Witteman 1999; Renooij, van der Gaag, and
Parsons 2002b; van der Gaag, Bodlaender, and Feelders
2004). Parsons and Dohnal (1993) and Renooij and van
der Gaag (2002) have proposed semi-qualitative probabilis-
tic networks (SQPN) that mix quantitative and qualitative
assessments. For SQPNs the computation of exact infer-
ences is generally a more complex undertaking (de Campos
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and Cozman 2005), and the only existing algorithms either
are fast and focus on approximate solutions (Renooij and
van der Gaag 2002) or are very inefficient in all but a few
particular cases (de Campos and Cozman 2005).

This paper focuses on polytree-shaped SQPNs, that is,
networks whose underlying graph after dropping arc direc-
tions has no cycles. We present two main results regard-
ing the computational complexity of inferences in such net-
works: (1) a polynomial-time algorithm for inferences where
a single node of the network is observed — to the best of our
knowledge, this is the first exact polynomial-time algorithm
for SQPNSs; (2) a proof that SQPN inferences in binary poly-
trees with multiple observations is coNP-Complete.

Qualitative Probabilistic Networks

A QPN consists of an acyclic digraph, a set of random vari-
ables X where each variable is associated to a node in the
graph, and a collection of constraints on probability values.
The digraph conveys a Markov condition: every variable is
independent of its nondescendants nonparents given its par-
ents. We start by assuming that variables are binary, with a
“higher” value (indicated by z') and a “lower” value (indi-
cated by z). This is not an intrinsic limitation of QPNs, but
it is arguably the most valuable scenario. Nodes and their
variables are used interchanged in our discussion. To sim-
plify notation, we denote an event {X = z} by & whenever
the meaning is clear. The state space of a random variable
X € X is denoted by Qx, while x € Qx = X xexQx, is
said to be an instantiation of variables X C X.

Constraints in a QPN derive from qualitative influences
and synergies among probability values (Wellman 1990). An
influence between two variables expresses how the values of
one variable influence the probabilities of the values of the
other variable. For instance, a positive influence of variable
A on its effect B expresses that observing higher values for
A makes higher values for B more likely, regardless of any
other direct influence on B. Negative influences and zero in-
fluences are defined analogously.

Definition 1 Let A, B € X and X C X \ {A, B}. An in-
fluence of A on B with respect to variables X, denoted by
S1(A, B, X) (with I equals to +, —, 0 for positive, negative
and zero influences, respectively) means that

vx € Qx : P(b'la',x) R'P(b']a’,x), (1)



where R is >,< =, respectively. In case none of them holds,

we say that the influence is ambiguous, and denote it by
S?(A, B, X).

Synergies represent interactions among influences. An ad-
ditive synergy between three variables expresses how the
values of two variables jointly influence the probabilities of
the values of the third variable. For instance, a positive addi-
tive synergy of variables A and B on their common effect C'
expresses that the joint influence of A and B on C'is greater
than the sum of their separate influences, regardless of other
influences on C.

Definition 2 Let A,B,C € X and X C X \ {A,B,C}.
An additive synergy of A and B on C with respect to vari-
ables X, denoted by YI({A, B},C,X) (with I equals to
+,—,0 for positive, negative and zero synergies, respec-
tively) means that

Vx € Ox : P(cl|a1,b17x)+P(cl|a0,bo,x) R!

P(cl|a0,b17x) + P(cl|a1,b0,x) , ()

where where RY is >,<,=, respectively. In case none of them
holds, we say that the additive synergy is ambiguous, and
denote it by Y ({A, B}, C, X).

Definition 3 A qualitative probabilistic network (QPN)
N = (G, D) consists of an acyclic digraph G with nodes as-
sociated to binary random variables X and a Markov condi-
tion given by the graph, where each variable is independent
of its nondescendants nonparents given its parents; and a
set of qualitative assessments D of the form S (A, B, X),
with! pag(B) = X U {4}, or Y/({A, B},C,X), with
pag(C) = X U {A, B}. If an assessment is not given be-
tween variables and their parents, it is assumed to be am-
biguous (nodes without parents in G, called root nodes, are
assumed to be ambiguous w.r.t. all qualitative assessments).

There are several extensions to the QPNs just defined
(Bolt, Renooij, and van der Gaag 2003; Bolt, van der Gaag,
and Renooij 2003; Renooij, van der Gaag, and Parsons 2000;
Renooij and van der Gaag 2000), including product syner-
gies which express how the value of a variable influences
the probabilities of the values of another variable given the
value of a third variable, non-monotonic influences of a vari-
able on a child provoked by a sibling, situational signs that
capture the sign of a non-monotonic influence, besides the
enhanced formalism for qualitative networks (Renooij and
Witteman 1999). Our complexity results extend to networks
that allow most of these extra qualitative statements, even
though we do not explicitly account for them in this paper.

An SQPN consists of an acyclic digraph with nodes as-
sociated to variables and a Markov condition, where each
node A is either associated to conditional distributions
P(A|pa(A)), or associated to qualitative statements from
QPNs (this encompasses other definitions found in litera-
ture (Parsons and Dohnal 1993; Renooij and van der Gaag
2002)). Thus SQPNs offer a combination of QPNs and

'The parents of a node Z in G are denoted by pag (Z).
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Bayesian networks. One might hope that such a combina-
tion would not be harder than the hardest of its components;
that is, no harder than Bayesian networks. In fact SQPNs
are harder than QPNs and Bayesian networks, and these two
types of networks should be viewed as lower complexity
special cases of the former (de Campos and Cozman 2005).

Definition 4 A semi-qualitative probabilistic network N' =
(G, D) consists of an acyclic digraph G with nodes asso-
ciated to binary random variables X and a Markov con-
dition given by the graph; a set of assessments D of two
types: qualitative assessments of the form ST (A, B, X), with
pag(B) = XU{A}, or Y/({A, B}, C,X), with pag(C) =
X U{A, B}; or quantitative assessments specified by condi-
tional probability mass functions P(A|pag(A)) (specified
as numbers in [0,1] for every m € Qpag(a)), with the re-
striction that each variable has either qualitative or quan-
titative assessments associated to it (but not both). Further-
more, each root node A has either a marginal mass function
P(A) associated to it, or is ambiguous (as in a QPN).

A (S)QPN N can be viewed as a compact way to rep-
resent all joint probability mass functions P that satisfy its
constraints. Hence, we employ the notation P € N to indi-
cate that P is in accordance with all qualitative and quanti-
tative assessments of N\, and respects

n

H P(X; = zi|pag(X;) = m)

i=1

P(x) =

with all x;, m;, for every i, conforming with x € Q.

Generally, an inference in a (S)QPN refers to the qual-
itative question of how the observation of some variables
changes the probability of a query variable. Suppose @ is
the query variable and e € Qg is our observed event for the
set of variables E. We need to evaluate P(q'le) — P(g").
The idea is to identify the type of influence that evidence e
has on Q. When P(q'le) — P(q") is non-positive for ev-
ery P € N, we have a negative influence* of e over Q. If
P(q'le) — P(q") is always non-negative, then a positive
influence exists. If both hold, then P(q'le) = P(q") and
we have a zero influence. Otherwise, we have an ambiguous
influence. The formal definitions are as follows.

Definition 5 Let N' = (G, D) be an (S)OPN specified by
rational numbers, ) € Vg be a variable of the domain and
e € Qg, with non-empty E C Vg \ {Q}, be an observation
of some variables. We name as negative influence query, or
(S) QPN-NEGINE(N, Q, e) for short, the task of deciding
whether VP € N : P(q'|e) < P(q"). We name as positive
influence query, or (S)QPN-POSINF(N,Q,e) for short,
the task of deciding whether VP € N : P(q1 \e) > P(ql).

Before any computational complexity analysis, we must
define the size to encode the input of our queries, and for

2Strictly speaking, this is a “non-positive” influence, because a
zero influence would satisfy the assertion. We abuse notation using
the name negative.



that we need the size to encode an SQPN NV = (G, D). Let
|X| = |Vg| = n be the overall number of random vari-
ables. We parametrize our analysis by the maximum num-
ber of parents a node may have in G, called d, and we con-
sider it to be “small” unless explicitly said otherwise. We do
so because a large number of parents per node may lead to
an exponentially large input, as ©(2/P26(4)) numbers?® are
needed to specify the mass functions of a node A, and even
an exponential-time algorithm (in n) could be considered to
be polynomial in the input size if a node is allowed to have
©O(n) parents. Hence, the conditional mass functions that are
given for a node have at most O(2¢) numbers. Nodes with-
out quantitative assessments may have qualitative ones. We
assume that all qualitative assessments can be written using
at most O(n24) numbers (this is achievable by using a rea-
sonable encoding). The digraph of the SQPN can be encoded
using O (nd) numbers, and so we can assume that the whole
SQPN is encoded by ©(n2%) numbers (a more precise anal-
ysis could consider the exact number of parents per node,
but it would lead us to the same conclusions, as it will be-
come apparent from the theorems later). In terms of bits, we
define as SZ(N) = Zivzl sz(V;) the size of the SQPN NV,
where N; represents its i-th number, with N € ©(n29) its
total number of numbers. The size sz(N;) of a rational num-
ber N; is given by [log, N;|, while the size of a recursive
(i.e. computable) real number N; is defined by the size to
encode a deterministic Turing Machine (DTM) that, given b,
is capable of producing a rational r such that |r — N;| < 27°
(i-e. at least b bits of precision of N;) in time poly(b). When
clear from the context, we write SZ without its argument N

Complexity Results

A polynomial inference algorithm for QPNs has been pro-
posed by Druzdzel and Henrion (1993a) with observation
in a single node, later extended by Renooij et al. (2002a)
to handle multiple observations: the algorithm generates a
sign for each variable, implied by the observations in the
QPN, and these signs are precisely the answer to the desired
queries. For SQPNs, the situation is much more compli-
cated, and different network topologies lead to distinct hard-
ness of inference. De Campos and Cozman (2005) showed
that the general inference in SQPNs is NPPP-hard (although
the definition of inference used there is slightly less precise
than the one we use here). This leaves no hope for truly effi-
cient algorithms for general SQPNs. Because of such hard-
ness, here we focus on polytrees, when the underlying graph
of G after dropping arc directions has no cycles.

The first part of this section demonstrates that, in a loose
sense, inferences in SQPNs with some real numbers are
not harder than SQPNs with rationals. This holds for any
SQPN (not only polytrees) and directly extends to Bayesian
networks too, which can be seen as a subcase of SQPNs
where all nodes are defined through quantitative assess-
ments. The result is important for the proof of Theorem
11 presented later on. The second part concerns polytree

3We use the standard asymptotic notation of O and ©, and
poly(v) to mean O(v°), for any desired fixed c.
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SQPNs with a single observed variable. We show construc-
tively that inferences can be performed in polynomial time.
In fact, the described algorithm is very efficient and runs
in linear time in n. This algorithm is probably the best re-
sult in terms of tractability (i.e. exact polynomial-time algo-
rithms) for which we can hope, as the third part of this sec-
tion shows that allowing multiple observations already leads
to a hardness-of-inference result.

Recursive Real versus Rational Numbers

The following results regard the numerical precision of
SQPNs’ specifications. They show that recursive real num-
bers provide no extra power (in a loose sense) to the prob-
lem with respect to using only rational numbers. This ques-
tion about input specification is an important matter, at
least from the computational complexity viewpoint, because
the way we define the input may drastically change the
complexity class on which a problem lies. Moreover, it
is not unlike that reductions between problems in graph-
ical models need the use of recursive real numbers for
them to be useful (Maud, de Campos, and Zaffalon 2012;
de Campos 2011). The following lemmas show that we can
approximate an SQPN with recursive real numbers as pre-
cise as we want (up to a polynomial number of bits) using a
SQPN with only rational numbers.

Lemma 6 Given an SOPN Ny, specified by rational and/or
recursive real numbers, and a rational € > 27”01?4(52), we
can construct, in polynomial time in SZ, an SQPN N with
rational numbers such that VPr € Ng : 3P € N where
|Pr(x) — P(x)| < ¢, foreveryx € Qx and X C X (and
vice-versa, that is, VP € N : 3Pr € Ng).

Proof Take A\ to be equal to N'r except that each recursive
real number ¢ used in the specification of Ny is replaced by
the rational r with |r — | < 272" (some special care has
to be taken to keep distributions summing one, but that can
be done without affecting the precision). As ¢ > 2P0l (S2)|
we can use the DTM for ¢ to obtain r in polynomial time in
poly(SZ) + 2n, and hence polynomial in SZ.

For now, assume that x € ()x is a complete instantia-
tion, that is, X = X. In this case, the desired result follows
from the binomial expansion of the factorization of Pr and
P (there will be 2" — 1 terms with (at least) one factor ¢
multiplied by probabilities that are less than or equal to 1):

Pix) < [[(Prlailmg(X:) +272") < 272 2"
i=1

+ [ Prlailmg(X:) = Pa(x) + 27",
i=1
and similarly to obtain P(x) > Pr(x) — 2~ "¢. For the case
where X C X, it is enough to use these inequalities and to
sum over all the compatible complete instantiations:

Px)= > P, x)< Y (Pr(,x)+27"),
x'€Qx\x x'€Qx\x

which is less than € + Pr(x), and analogously for the lower
bound. Hence we have |Pr(x) — P(x)| <e.0O



Lemma7 Let 0 < e < u < p1 < pa < 1 be real numbers.
Then

no_
D2

2e
u—c

p1+e

P2 — ¢

2 _p—e¢

< <Dy
u p2+¢€

b2

3

Proof We first manipulate the left-hand inequality:

2e —€ 2¢
L= s (ot e)(pr—pa—) < pipa—poe
P2 u  p2te U

2
) ” g P2 (p2 + 5)
p1+ P2

which is true because u < (p2 + £) and pff_i)z > 1. A
similar manipulation proves the result for the right-hand of
Expression (3), which we omit for the sake of brevity. O

2e
> (p1 +p2)e < ;pz(pz +e

Lemma 8 Given (Ng,Q, e) where Ny is an SOPN speci-
fied by rational and/or recursive real numbers such that each
number is either zero or greater than 2~?°YS?9) * and a ra-
tional 27P°WG%) < ¢ < 1, we can construct, in polyno-
mial time in SZ, an SOQPN N with rational numbers such
VPr € Ng : 3P € N where

|(Pr(q'le) — Pr(q")) — (P(q'le) = P(¢"))| <&, )

for any given Q) € X and e € Qg with non-zero probability
(and vice-versa, that is, VP € N' : 3Pr € Ng).

Proof First, note that Pr(e) = ZX’EQX\E Pr(x',e) >
27Y, with v n - poly(SZ), because of the assumption
that Pr(e) > 0 and the fact that Pr(x), for any complete
x € Qu, is either zero or is greater than (27PoW(SZ))n —
277 (it is a product of n numbers).

Build NV from N using Lemma 6 with an e = 279~ 2¢’,
For any situation where Pr(g',e) = 0, Equation (4) fol-
lows directly from Lemma 6. If Pg(q',e) > 0, then
Pr(q*,e) > 27 (by the same reasoning as before), and
we have the following (the first line uses Lemma 6, and the
second uses Lemma 7): P(q'|e) — P(q*) <
PR (ql’ e) + 2771726./

PR(e) — 2-v=2¢/

_ (PR(ql) _ 2—1)—28/)

Pr(q',e 2.27v2! e
- sz(e) | yo gz al@) 12
PR(qlae) 25/ ——
S ppe) ta—o Pela) 2
< Pg(¢'le) — Pr(q") +¢,
as 42_6;, + 27972 < ¢/, for any £’ < 1. The lower bound

is obtained in a similar way by applying Lemmas 6 and 7:

P(q'le) — P(q") >

PR (ql’ e) _ 271}725/
Pr(e) +27v—2¢

Pr(q*,e) 2.27v"2%
PR(e) 2—v

“Note that this is trivially true for the explicitly given numbers,
but it is not necessarily the case for the recursive real ones.

_ (PR(ql) + 2—11—25/)

— _ PR(ql) _ 27v72€/’
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Figure 1: Piece of the network graph used in the proof of
Theorem 9.

which is greater than or equal to Pr(¢'|e) — Pr(q') —¢’. O

The results of the previous lemmas will be used later. For
now, they tell us that we can compute with networks, such as
Bayesian networks, specified by rationals and obtain results
as close as we want to the results that would be obtained
with networks specified by recursive real numbers, as long
as none of them is extremely close to zero.

Single Observation

We devise an efficient algorithm for polytree-shaped net-
works with observation in a single node. We present the al-
gorithm in the form of the following theorem.

Theorem 9 Given (N,Q,e) such that N is a polytree
SQOPN specified with rational numbers, and e € Qg is such
that |E| = 1, SQPN-NEGINF and SQPN-POSINF are
solvable in linear time in n and quadratic in 2% (recall that

SZ = O(n24)).

Proof Let Qr.;(q, e) denote the statement “IP : P(qle) —
P(q) Rel 07, where Rel is replaced by either > or < (F =
e is the observation). We will check whether Q- (¢!, e)
is true, which is the complement of SQPN-NEGINF, and
whether Q_(q!,e) is true, which is the complement of
SQPN-POSINF. As we devise a polynomial-time algo-
rithm, solving SQPN-NEGINE/SQPN-POSINF or their
complement is the same. The first assertion to note is that
O-(q,e) < Q(—q,e), achievable by simple manipu-
lations (use P(qle) = 1— P(—qle) and P(q) = 1— P(—q)).
Because of that, an algorithm for Q- (g, e) (for any given
g and e) is also an algorithm for Q. (g, e). The second im-
portant fact is that Q- (q,e¢) <= Qs (e, ¢), which comes
from P(qle) — P(q) > 0 <= P(q,e) — P(e) P(q) >
0 < P(elg) — P(e) > 0.
The algorithm to compute Q- (g, €) is as follows:

1. If Q is an ancestor’® of F, then return Q- (e, q).

2. If E is a parent of @, then let y = (y1,...,yx)
Qy, where Y are the other parents of ), and P(y)

Hle P(y;). In this case, return true if and only if

3P ) " (P(gle,y) — P(q|~e,y)) P(y) > 0.

S

(&)

Note that to check whether this last assertion is true, we
can obtain upper and lower bounds for each P(y;) sepa-
rately, for instance using the 2U algorithm (Fagiuoli and

5 A is ancestor of B if there is a directed path from A to B.



Zaffalon 1998). After that, we solve Equation (5) (an ex-
haustive approach suffices). Note that if @ is associated to
qualitative assessments, then this is an even simpler task.

3. Otherwise, let X be the parent of () in the only path be-
tween E and (). Return

(Q5(g,2") N Qs (2t ) V(25 (g, 2') A Qs (2% €)) .

(6)

We prove the correctness of this algorithm by induction.
Let W be the sequence of nodes in the unique path from Q)
to E (including them). Note that every node that is not an
ancestor of a node in W is a barren node for this query and
can be simply discarded. First, suppose that () is an ancestor
of E. In this case, Step 1 calls the algorithm with ¢ and e
interchanged, so we can assume that () is never an ancestor
of E. This step is correct as already explained.

We show the algorithm’s computation by induction on W.
Take Figure 1. First, suppose that W = {Q, E'}, that is, F
is a parent of () (consider it to be £ = X in the figure).
This is processed by Step 2 of the algorithm, where Equation
(5) is solved by taking the upper and lower bounds for each
P(y;) separately and exhaustively trying their combinations.
It is known that the maximum of Equation (5) is achieved
by one of such combinations (Fagiuoli and Zaffalon 1998).
Because of the independences of the network, Equation (5)
is equivalent to 3P : P(qle) — P(g|-e) > 0 <= 3P :
P(gle) (1 — P(e)) — P(¢q,—e) > 0 <= 3P : P(qle) —
P(q) > 0, which is exactly O~ (g, e). This concludes the
basis of the induction.

Now assume |W| > 3. Take Figure 1, where X is the only
parent of @ € W. By induction hypothesis, suppose that
Q- (x',e) and Q- (20, ¢) are already computed and their

results are available to us. Note that P(g|e) — P(q) =
= Y Plale) (P(ale) — P(x))
= P(qla') (P(a'le) - P(a")) +

P(ga”) (P(2%le) — P(a7))
(P(alz") = Pgla?)) (P(z'le) — P(a1)) .
Because we know the possible signs of the second factor of
this equation (available from Q- (2!, ¢) and Q- (2", ¢)), we
only need to find the possible signs of P(glz') — P(q|a?).
This latter question is the same as solving the queries
Q- (g,z"') and Qs (—gq,z"), because P(g|z') — P(q|z") >
0 < P(qlz') — P(q) >0 <= Qs (q,"), while we
have P(g|z') — P(g|2°) < 0 <= Q- (~gq,x'). More-
over, these queries and the queries Q- (2!, ¢) and Q- (20, €)
do depend only on disjoint local conditional mass func-
tions, that is, O~ (2!, ¢e) and Q- (2°,e) are computed us-
ing nodes X and “above” (those from X towards E), while
Q- (q,x') and Q- (—q,x') are computed using node Q,
plus Y7, ..., Y% and their ancestors, so their computations
can be done separately without affecting each other. Hence,
we obtain Equation (6). The correctness of the whole algo-
rithm follows from the induction.

The complexity of the procedure is as follows. Equation
(6) has two terms related to the recursive calls (second and
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Figure 2: Network graph used in the proof of Theorem 11.
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fourth) and two terms (first and third) that are going to be
solved by Equation (5) (because we know that the arguments
of Q are directly connected in this case). By caching the re-
sults of the queries along the path W, there will be O(W)

calls to solve Equation (5), each spending time O(n;22?),
where n; is the amount of nodes involved in each compu-
tation 5 along W (the algorithm 2U that is used as auxil-
iary to solve Equation (5) takes time at most O(n;22?) and
the local computation takes time O(22%)). The total time is
>-;0(n;2*%) = O(n2*%), because the sets of nodes in-
volved in each of those computation of Equation (5) are dis-
joint. The algorithm’s asymptotic time is linear in n (and
also in SZ for any fixed d) and at most quadratic in 2¢ (which
is relevant only if d is not considered constant). O

Multiple Observations

Before we show the hardness result for inferences in
polytree-shaped SQPNs, we need the definition of the prob-
lem on which we base our polynomial-time reduction.

Definition 10 Given a set of positive integer numbers C =
{c1,...,¢n}, the PARTITION problem is the task to de-
cide whether exists I C {1,...,n} suchthat?2 -3y, ;c; =
>oiy ¢i. The input size SZ is assumed to be Y, sz(c;)
(number of bits to encode all numbers).

We can assume without loss that the problem is to find I
such that .., a; = 1, with a; = ¢;/s, and 2s = > 7" | ¢;.
Note that 0 < a; < 1 (if there is any a; > 1, then the
instance would be trivially answered as NO) and s < 257
(the sum of all ¢; uses obviously at most SZ bits).

Theorem 11 Given (N, Q,e) such that N is a polytree
SOPN with only rational numbers, SQPN-NEGINF and
SQPN-POSINF are coNP-Complete.

Proof We prove the desired result by showing that
their complements are NP-Complete. The complement of
SQPN-NEGINF, namely not-SQPN-NEGINF, decides
whether 3P € NV : P(ql\e) — P(ql) > 0. Pertinence in
NP is immediate, because there is a polynomial certificate,
that is, given P € N, we can compute P(q'|e) — P(q*)
in polynomial time using two queries of belief propagation
(the SQPN becomes a Bayesian network) and check the sign
of the difference. Hardness comes with a reduction from
PARTITION.

Firstly, we build a SQPN ANy formed of rational
and recursive real numbers and show that a given



not-SQPN-NEGINF query solves PARTITION. Later we
apply Lemma 8 to show that an SQPN formed only by ratio-
nals is enough, thus completing the proof. For each number
a; in the PARTITION problem, withi =1, ..., n, we build
three nodes: X, Y;, E;, such that X; and F; are root nodes,
P(el) = ¢/(1+¢€) (e > 0 will be specified later), P(X;)
is ambiguous, and Y; has F;, X; and Y;_; as parents (Y is
defined with P(y&) =1) and

( lyz 1;€ 17 z)

( lyz 15 € 17 z)
for all e;, x;,

(yz‘yz e 17 ’L) t
(yz |yz 176?’ ’L) ( ) ’
(yz |y7, 1,64, T z) 0

where 1/2 < t; = 2% < 1. Figure 2 depicts the network
graph we have built for this reduction. Let e = (e}, ..., el)
and I = {i : X; = x!}. Now, we have that (using Z as the

indicator function)

1,
1,

P(y}l\e) = H (IXi:z}ti +IXi::n9) = Htiv
i=1 ' / i€l
P(y,) = f[ Ty (o ()2t ) +
n J Ximoi \ 144" L+e”

@
I
—

1 €
Tx._ —
wes (et 152)
1 €
- ti2 ti 9
T (=0 + =)

i€l
and using 0 < %E <eand1l —e < ﬁ < 1, we have

—e<—sH H(t’)2<€Hti§6'

iel iel iel

Lett = [[;e;ti = 27 2ier%_ Then we have the fol-
lowing guarantee: | (P(yLle) — P(ys)) — t(1 — t)] <
€. Note from Figure 2 that Ey is a root node and @
has Ey and Y, as parents. Define o = i — 2 > 0,
P(e)) = a and P(¢|Y,,Ey) = o for {y},el} and
{99, €3}, 2a for {y},ed} and zero for {y2, e} }. Now some
simple manipulations give us P(q'le,ef) — P(q') =

<Pyn

o (P(yile) — P(y.) — a), and thus
‘(P(q1|e,e(1)) — P(ql)) —a(t(l—t)— a)| <ae. (7)
The function h(t) = a(t(1—t)—«) is concave on t and has

maximum h* at a(§ — a) = 2ae. This maximum happens
when Zie[ a; = 1 (hence t = 271), and in this case the
instance of PARTITION is an YES instance. Because our
SQPN computes /i with an error of at most ae (by Equation
(7)), an YES instance of PARTITION certainly achieves
P(q'le,e}) — P(¢*) > 0, so it is an YES instance in the
query not —~SQPN-NEGINF with input (Ng, Q, {e, e} }).
Now, we must prove that a NO instance of PARTITION
corresponds to a NO instance here. Because there is a
gap of at least % among distinct values of ), a;, ev-
ery NO instance of PARTITION achieves at most b/ =

max{h(2-0+1/)) p(2=(O=1/))} < p* — 279, with g =

222

poly(SZ), because s < 252, Although our query does not

compute h’ precisely, if we set ¢ = 279, then we are sure
that

W <h*—279=20e—279 :§_4€2_€< —2ae,
and again by Equation (7), a NO instance of PARTITION is
aNO of not ~SQPN-NEGINF with input (Ng, Q, {e, e} }).

Finally, we apply Lemma 8 using ¢’ = ae/2, which sat-
isfies 27P°W(SZ) < ¢ < 1 (and all numbers in Ny are
either zero or greater than 2*1’(’“/(52)), and thus obtain an
SQPN A only with rationals where the same decision for
PARTITION holds, because from Equation (7) and Lemma
8 the difference between the result of the rational SQPN N
and the function i will be strictly less than ae + &' < 2ae,
which suffices since h* = 2ae and b’ < —2ae (i.e. the sign
of h is computed correctly by the query on \).

The same can be applied to not-SQPN-POSINF by
interchanging the states ¢* and ¢" in the construction of
Ny (and thus of N). In this case, the result holds for
not-SQPN-POSINF because P(¢°le) — P(¢") > 0 <
P(q'le) — P(q") <0. O

We have used a network with very simple topology and
qualitative assessment in order to obtain the hardness re-
sults; the inclusion of other qualitative influences and syner-
gies, situational signs and non-monotonic relations, can only
make the problem harder, but the problem still belongs to
coNP as long as we only consider polytrees, because the ex-
istence of a polynomial-time certificate is unaltered (given
P € N of a polytree, we can check whether P falsifies the
influence in polynomial time by belief propagation). This
implies that exact inferences in other specialized polytree
semi-qualitative networks are coNP-Complete too.

Conclusion

We can summarize the contributions of this paper as fol-
lows. First, we have characterized the complexity of exact
inference in polytree-shaped SQPNs to be coNP-Complete.
Second, we demonstrated that we can approximate as well as
we want the inferences in SQPNs with recursive real num-
bers (and hence inferences in Bayesian networks and other
related probabilistic graphical models too) using networks
with only rational numbers (this is valid for any network,
not only polytrees). Finally, we have devised a very effi-
cient linear-time algorithm for inferences in polytree-shaped
SQPNs with observation in a single node, which is, to the
best of our knowledge, the first exact polynomial-time algo-
rithm for SQPNs. As future work, we intend to apply SQPNs
to real problems and to develop other efficient but not nec-
essarily exact algorithms for SQPNs.
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