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Abstract
This papers investigates the computation of lower/upper
expectations that must cohere with a collection of proba-
bilistic assessments and a collection of judgements of epis-
temic independence. New algorithms, based on multilin-
ear programming, are presented, both for independence
among events and among random variables. Separation
properties of graphical models are also investigated.

1 Introduction

Among the concepts of independence that have been in-
vestigated in connection with sets of probability measures,
the concept of epistemic irrelevance is probably the easi-
est to explain — intuitively, Y is epistemically irrelevant
to X if assessments about X do not change when we ob-
serve Y [33]. Epistemic independence is the symmetric
concept: X and Y are epistemically independent if each
one is epistemically irrelevant to the other. Despite their
intuitive content, epistemic irrelevance and epistemic in-
dependence are quite difficult to handle computationally.
Given probabilistic assessments and judgements of epis-
temic irrelevance, how can one compute lower and upper
expectations?

Our main contribution in this paper is to show that judge-
ments of epistemic irrelevance can generally be recast
as multilinear constraints. We show how to compute
lower/upper expectations that take into account epistemic
irrelevance through multilinear programming. We ap-
ply our multilinear approach to multivariate models with
graph-theoretical representations, often called credal net-
works. We consider credal networks under “epistemic ir-
relevance” and “epistemic independence” semantics, and
investigate separation properties of these networks.

Section 2 presents a few relevant definitions and results.
Section 3 introduces our multilinear approach to epistemic
irrelevance among events (Appendix A compares our ap-
proach to Walley’s algorithm for epistemic irrelevance).
Sections 4 and 5 look respectively into credal networks

and separation properties of Markov chains. Section 6
concludes the paper.

2 Credal sets and concepts of independence

We deal with categorical random variables. To distinguish
random variables from (non-random) variables employed
in optimization problems, we refer to the latter as opti-
mization variables.

A set of probability measures induced by distributions
on random variable X is denoted by K(X) and called a
credal set. A joint credal set K(X) contains joint prob-
ability measures for random variables X. Conditioning
is performed by applying Bayes rule to each measure in
a credal set; the posterior credal set is the union of all
posterior probability measures [17]. A conditional credal
set K(X |A) contains conditional measures on the event
A. Given a credal set K(X), the lower expectation and
the upper expectation of a bounded function f(X) are de-
fined respectively as E[f(X)] = infp(X)∈K(X) E[f(X)]

and E[f(X)] = supp(X)∈K(X) E[f(X)], where E[f(X)]
is standard expectation. Lower/upper probabilities are de-
fined similarly, as are conditional lower/upper expecta-
tions/probabilities.

We defer to future work the very important case of condi-
tioning on events with zero probability [4, 9, 31]; here we
assume throughout that any conditioning event has lower
probability larger than zero.

Lower and upper expectations can be viewed as linear
constraints on probabilities: E[f(X)] ≤ EP [f(X)] ≤
E[f(X)]. Conditional lower and upper expectations also
yield linear constraints, as E[f(X)|A] = α is equiva-
lent to E[A(X)(f(X) − α)] = 0, where we use A(X)
for the indicator function of event A (this equation is
Walley’s generalized Bayes rule [33]). If a collection of
lower/upper expectations defines a convex set of probabil-
ity measures, such that every constraint is tight, we say that
the lower/upper expectations are coherent. We do not as-
sume that every given set of constraints is coherent; we as-



sume only that any set of constraints defines a non-empty
set of measures and thus can be made coherent by adjust-
ing some assessments. A set of constraints with this prop-
erty is said to avoid sure loss [33].

In general, we are interested in the largest set of proba-
bility measures that satisfies a given set of constraints —
these constraints may be coherent or not, but they must
avoid sure loss. We call this largest set the natural exten-
sion of the constraints, borrowing from Walley’s terminol-
ogy [33].

Several concepts of independence can be used when one
deals with credal sets [5, 10, 14, 33]. We review here three
non-equivalent concepts; relationships between them have
received considerable attention in the literature [8, 11, 24].

The most commonly adopted concept is strong indepen-
dence:1 Events A and B are strongly independent when
every extreme point of the underlying credal set K satis-
fies standard stochastic independence of A and B. Like-
wise, random variables X and Y are strongly indepen-
dent when every extreme point of the underlying credal
set satisfies standard stochastic independence of X and
Y . Conditional strong independence (for events and for
random variables) is obtained by demanding that extreme
points satisfy stochastic independence conditional on a
given event. Strong independence usually produces a mul-
tilinear program, as the following example illustrates.2

Example 1 Consider a generalized version of Boole’s
challenge problem [19]. Take three Boolean random vari-
ables X1, X2 and X3; random variable Xi takes values
i and î. We want to find tight bounds on P(X3 = 3).
Whenever possible we indicate the events {Xi = i} and
{Xi = î} simply by i and î, and we indicate conjunc-
tion of events A ∧ B simply by A, B. Suppose we have
P(1) ∈ [l1, u1], P(2) ∈ [l2, u2], P(1, 3) ∈ [l3, u3],
P(2, 3) ∈ [l4, u4], P(1̂, 2̂, 3) = 0, with li > 0. Sup-
pose also that X1 and X2 are strongly independent; given
that relevant probabilities are positive, strong indepen-
dence implies P(1, 2) = P(1)P(2) for every vertex of
K(X1, X2). Defining p1 = P(1, 2, 3), p2 = P(1, 2, 3̂),
p3 = P(1, 2̂, 3), p4 = P(1, 2̂, 3̂), p5 = P(1̂, 2, 3), p6 =
P(1̂, 2, 3̂), p7 = P(1̂, 2̂, 3), p8 = P(1̂, 2̂, 3̂), we have:

max / min p1 + p3 + p5 + p7, subject to
p1 + p2 + p3 + p4 = π1, p1 + p2 + p5 + p6 = π2,

p1 + p3 = π3, p1 + p5 = π4, p1 + p2 = π1π2,

p7 = 0, p1 + · · · + p8 = 1, li ≤ πi ≤ ui, pk ≥ 0.

Suppose that l1 = 0.1, l2 = 0.2, l3 = 0.1, l4 = 0.3,
u1 = 0.5, u2 = 0.8, u3 = 0.3, and u4 = 0.7. The solution

1We should note that terminology is not completely standardized on
this topic [5, 8].

2Multilinear programming has also been related to other concepts
of independence, for example independence in comparative probabili-
ties [3].

of this multilinear program yields P(3) ∈ [0.3, 0.79]. If
the independence judgement is dropped, then linear pro-
gramming produces P(3) ∈ [0.3, 1.0]. 2

Unlike geometric programs, multilinear constraints lead to
nonconvex primal and dual programs, and no known trans-
formation can convexify them. Existing solution methods
produce sequences of sub-problems using either branch-
and-bound or cutting-plane techniques [18, 20, 22, 26, 29].
The algorithms of Maranas and Floudas [22], and Gochet
and Smeers [18] produce convex nonlinear sub-problems,
while Sherali and Adams’ algorithm produces linear sub-
problems [26]. We employ Sherali and Adams’ branch-
and-bound algorithm in our calculations, as it is particu-
larly appropriate for computing lower/upper expectations
— because the sub-problems generated by this method
are linear programs, column generation and other valuable
techniques can be employed [19].

A different definition of independence is Kuznetsov’s: X
and Y are Kuznetsov independent when the interval of
expected values E[f(X)g(Y )] is equal to the interval-
product of the intervals E[f(X)] and E[g(Y )], for any
bounded f(X) and g(Y ) [21]. Little is known about
the computation of lower/upper expectations under judge-
ments of Kuznetsov independence; the available method
works by explicitly constructing a joint credal set [10],
a potentially complex operation that is not applicable to
large multivariate settings in any obvious way.

A third concept of independence for credal sets is epis-
temic independence [32, 33]. In many ways, this is the
concept with the most appealing definition, because it
can be given a direct behavioral interpretation. We now
present the relevant definitions both for events and random
variables:

Definition 1 Event A is epistemically irrelevant to event
B given event C when P(B|A, C) = P(B|A{, C) =
P(B|C) and P(B|A, C) = P(B|A{, C) = P(B|C).

We indicate that A is epistemically irrelevant to B given
C by EIR(A, B|C).

Definition 2 Events A and B are epistemically in-
dependent given event C when EIR(A, B|C) and
EIR(B, A|C).

Definition 3 Random variable X is epistemically ir-
relevant to random variable Y given event C when
E[f(Y )|X = x, C] = E[f(Y )|C] for any bounded f(Y )
and any x.

We indicate that X is epistemically irrelevant to Y given
C by EIR(X, Y |C).

Definition 4 Random variables X and Y are epistemi-
cally independent given event C when EIR(X, Y |C) and
EIR(Y, X |C).



We indicate that A and B are epistemically indepen-
dent given C by EIN (A, B|C). Likewise, EIN (X, Y |C)
indicates that X and Y are epistemically independent
given C. We can also have irrelevance and indepen-
dence conditional on a random variable Z; as we restrict
ourselves to categorical random variables, the judgement
EIR(X, Y |Z) simply means that EIR(X, Y |Z = z) for
every value z of Z (and likewise for epistemic indepen-
dence).

3 Epistemic independence for events

In this section we propose a multilinear programming for-
mulation for the computation of upper expectations un-
der judgements of epistemic irrelevance of events. The
computation of lower expectations can be tackled with the
same methods. We focus on epistemic irrelevance as any
judgement of epistemic independence can be expressed as
two judgements of epistemic irrelevance.

Consider that s assessments are given as P(Fi|Gi) = αi;
assessments are not necessarily coherent. Suppose we
want to compute P(D) for an event D. Suppose we have
N atomic events — each atomic event is a conjunction of
events involved in assessments. Note that N can be ex-
ponential on the number of assessments and judgements.
Denote by pk the probability of the kth atomic event. The
probability of any event A can be written as

∑
k Akpk,

where Ak is the indicator function of A. Every assessment
P(Fi|Gi) ≥ αi can be encoded as

E[Gi(X)(Fi(X) − αi)] ≥ 0, (1)

where Gi(X) and Fi(X) denote indicator functions (if the
ith assessment is unconditional, Gi(X) = 1 for every X).
From now on we drop the argument X whenever possible
inside expectations.

Hence we can write P(D) as max
∑

k Dkpk, where Dk

is the indicator function of event D, subject to the linear
constraints P(Fi|Gi) ≥ αi (also expressed in terms of the
pk). Note that we are only enforcing E[Fi|Gi] ≥ αi, not
that E[Fi|Gi] = αi; if the assessments are not coherent, it
may be impossible to enforce equality. Thus the flexibility
of Expression (1) seems appropriate in practice.

At this point we have encoded assessments (conditional or
not) into a linear program, as usually done in probabilistic
logic [19] — note that the “variables” of the linear pro-
gram are the atomic probabilities pk. We emphasize: to
avoid any confusion between random variables and these
“variables” we refer to the latter as optimization variables.

Now consider that r judgements of epistemic irrelevance
are given as EIR(Aj , Bj |Cj). These judgements are
harder to express, as each EIR(Aj , Bj |Cj) introduces
constraints such as min P(Bj |Aj , Cj) = min P(Bj |Cj),

where both minima are taken with respect to the under-
lying credal set. As we now show, it is possible to ex-
press irrelevance relations through multilinear constraints.
To do so, introduce new optimization variables νj and µj ,
and generate the following inequalities (note that inequal-
ity symbols are numbered, as their order is used later):

νj ≤1 P(Bj |Aj , Cj) ≤4 µj ,

νj ≤2 P(Bj |A
{
j , Cj) ≤5 µj , (2)

νj ≤3 P(Bj |Cj) ≤6 µj .

By clearing the denominators, these inequalities become
multilinear expressions on the pk, νj and µj . Note that
we can clear the denominators given our assumption of
positive conditioning events.

Denote by C0 the set of assessments E[Gi(Fi − αi)] ≥ 0,
plus the constraints pk ≥ 0 and the 6r inequalities (2).
Now construct 6r additional sets of N optimization vari-
ables. Denote by qj,l each one of these 6r sets of opti-
mization variables — there is one set for each judgement
of irrelevance (where j = 1, . . . , r) and for each inequal-
ity in (2) (where l = 1, . . . , 6 indicates which inequality is
used, following the numbering in (2)).

The idea is simple. For each judgement of irrelevance and
each inequality, there must be a measure on the underly-
ing joint credal that satisfies the inequality with equality.
As each inequality may be satisfied with equality by a dif-
ferent measure, we must create as many measures as there
are inequalities. For example, optimization variables q3,4

will have to satisfy P(B3|A3, C3) = µ3, or rather

P(A3, B3, C3) = µ3P(A3, C3). (3)

Thus we construct 6r sets of constraints. The set of con-
straints Cj,l only refers to optimization variables in qj,l.
The constraints are identical to the ones in C0, except that:
(1) instead of optimization variable pk we have qj,l,k; (2)
the lth inequality is replaced by equality. We obtain a set of
6r + 1 loosely coupled systems of multilinear constraints;
the connection between these systems is given by the νj

and µj . By construction, we have:

Theorem 1 The value of P(D) is given by maxP(D) (as
a linear expression of pk) subject to C0,

∑
k pk = 1, Cj,l,

and
∑

k qj,l,k = 1 for j = 1, . . . , r and l = 1, . . . , 6.

To illustrate this result, we revisit Example 1:

Example 2 Consider the same assessments described
in Example 1, but replace the strong independence
judgement with the epistemic independence judgement
EIN (1, 2). To compute P(3) we must deal with 13 groups
of 8 optimization variables and approximately 300 con-
straints, many of which are multilinear. Our implemen-
tation of Sherali and Adams’ method readily produces
P(3) ∈ [0.3, 0.85]. 2



The previous discussion can be adapted to produce condi-
tional upper expectations of the form P(D|E). We start
with a fractional multilinear program where the objective
function is maxP(D, E)/P(E). Now define t = P(E);
the objective function then is max t−1

∑
k DkEkpk.

Given our assumption that t > 0, we can multiply by t−1

both sides of constraints (1), (2) or (3). If we distribute
t−1 and replace every product t−1pk by a new optimiza-
tion variable p′k, and every product t−1qj,l,k by a new op-
timization variable q′j,l,k, we obtain a multilinear program
that is essentially identical to the original fractional multi-
linear program. There are a few differences; most notably,
the objective function becomes max

∑
k DkEkp′k, where

Ek denotes the indicator function of E. Also, the defini-
tion t = P(E) leads to the constraint

∑
k Ekp′k = 1. Fi-

nally, the unitary constraint
∑

k pk = 1 becomes
∑

k p′k =
t−1, and in fact this is the only constraint that contains t
— thus it can be suppressed in the presence of the other
constraints. Note that this technique mimics the Charnes-
Cooper transformation used in linear fractional program-
ming [6].

The techniques outlined in this section remain essentially
untouched if we consider assessments with functions of
random variables such as E[fi(X)|Gi(X)] = αi; we
must then handle constraints E[Gi(X)(fi(X) − αi)] ≥ 0.
Note again that we translate the assessments into inequali-
ties (not equalities) as we admit assessements that may not
be coherent.

Section 6 briefly compares our multilinear programming
approach with Walley’s iterative algorithm (presented in
Appendix A).

4 Epistemic independence for random
variables: credal networks

While judgements of epistemic independence between
events imply a fixed number of equalities among lower
and upper probabilities, epistemic independence between
random variables requires that credal sets have identical
convex hulls — and these convex hulls can be rather com-
plex objects. In Appendix A we derive a generalization
of Walley’s algorithm that deals with arbitrary judgments
of independence between random variables, but the result-
ing method faces steep computational difficulties. Instead
of dealing with arbitrary judgements of independence, in
this section we focus on judgements that can be organized
using graph-theoretical tools. We explore compact rep-
resentations for credal sets that are inspired by Bayesian
networks and other graphical models [25].

We thus consider credal networks as our representation for
judgements of epistemic irrelevance and independence [1,
2, 8, 15]. A credal network consists of a directed acyclic
graph where each node is associated with a random vari-

able Xi and with local credal sets. The local credal sets for
Xi contains probability measures for random variable Xi

conditional on the values of random variables that are par-
ents of Xi in the directed acyclic graph. We denote parents
of Xi by pa(Xi) and local credal sets by K(Xi|pa(Xi)).
We assume that local credal sets are separately specified,
that is, K(Xi|pa(Xi) = πi) and K(Xi|pa(Xi) = πj) im-
pose no constraints on each other for πi 6= πj .

Here we are interested in semantics for credal networks
that are based on epistemic irrelevance; we thus consider
two possible interpretations for a credal network [7]:

• The epistemic extension based on irrelevance is the
largest joint credal set such that nondescendants non-
parents of a random variable Xi are epistemically ir-
relevant to Xi given the parents of Xi.

• The epistemic extension based on independence, or
simply epistemic extension, is the largest joint credal
set such that nondescendants nonparents of a ran-
dom variable Xi are epistemically independent of Xi

given the parents of Xi.

These extensions are clearly based on different Markov
conditions.

Suppose a credal network is given and we must compute
the upper probability P(Q|E), where Q and E denote
events defined by (possibly several) Xi. For the epistemic
extension based on irrelevance, this computation can be
reduced to a linear program [7]. To understand this reduc-
tion, consider the judgement:

K(Xi|pa(Xi), Yi) ∼= K(Xi|pa(Xi)) , (4)

where Yi represents the nondescendants nonparents of Xi,
and the symbol ∼= indicates that credal sets must have iden-
tical convex hulls. The right hand side of expression (4)
is known, as it is part of the network definition. So we
can express constraints in the epistemic extension based on
irrelevance by taking the constraints over K(Xi|pa(Xi))
and replicating them for all sets K(Xi|pa(Xi), Yi = yi),
for every value yi. Constraints must be expressed over pk,
the probabilities of atomic events; as the number of atomic
events is exponential on the number of random variables
Xi, we obtain a potentially large linear program.

Handling epistemic extensions based on independence
raises more difficulties. Such extensions must satisfy con-
straints (4) and the “backward” judgements

K(Yi|pa(Xi), Xi) ∼= K(Yi|pa(Xi)) , (5)

where again we denote the nondescendants nonparents of
Xi by Yi. Neither side of these constraints is directly spec-
ified by the network. This difficulty is circumvented in a
“brute-force” manner by the only existing algorithm for



MULTILINEAREXTENSION(X,pk)
X is a set of random variables Xi that constitute a network,
pk is a set of variables representing atomic probabilities over X.

(1) Generate pk ≥ 0 for all k and
∑

k pk = 1.
(2) For every “forward” irrelevance judgement (4), generate constraints that enforce P(Xi|pa(Xi), Yi) ∈
K(Xi|pa(Xi)) for every value of Yi, using the constraints for K(Xi|pa(Xi)) in the network description.
(3) For every random variable Xi, and for every value xij :

(3.1) Introduce variables qij(Yi, pa(Xi)), indexed by {Yi, pa(Xi)}, and generate
constraints (one per value of {Yi, pa(Xi)})

qij(Yi, pa(Xi)) × P(pa(Xi), Xi = xij) = P(Yi, pa(Xi), Xi = xij) ×
∑

Yi

qij(Yi, pa(Xi)).

(3.2) Recursively call MULTILINEAREXTENSION({Yi, pa(Xi)}, qij(Yi, pa(Xi))) if the network
represented by {Yi, pa(Xi)} has more than one node and contains irrelevance relations; otherwise
just impose the (linear) constraints on this network over qij(Yi, pa(Xi)).

Figure 1: The procedure MULTILINEAREXTENSION.

epistemic extensions [7], which we call the E3 algorithm
(for Extensive Epistemic Extension algorithm). This al-
gorithm explicitly builds each set appearing on the right
hand side of expression (5). This construction is exponen-
tial on the number of variables; even worse, the number
of constraints grows extremely fast as it requires exponen-
tially many projections of polyhedra (each one of which
with worst-case exponential complexity). Such complex-
ity level has prevented networks with more than four vari-
ables to be dealt with in practice. Alas, the E3 algorithm
offers no clear path to approximation schemes — a frus-
trating situation as it seems that approximation algorithms
are a necessary route to follow.

In the remainder of this section we offer a multilinear pro-
gramming formulation for epistemic extensions. The al-
gorithm we derive is significantly simpler to implement
than the E3 algorithm, and it does not require an explicit
construction of the epistemic extension.

Given a credal network, we start by defining the optimiza-
tion variables pk as in Section 2; that is, these optimization
variables represent atomic probabilities. We now formu-
late the question: what are the constraints over pk such
that these optimization variables do represent a measure in
the epistemic extension? Clearly we must have pk ≥ 0
for all pk, the unitary constraint

∑
k pk = 1, and the “for-

ward” judgements of irrelevance in Expression (4). These
latter constraints can be written following the replication
technique already discussed.

Consider now a “backward” constraint (5). We must
guarantee that P(Yi|pa(Xi), Xi = xij) belongs to
K(Yi|pa(Xi)) for each value xij . First we treat
each value of P(Yi|pa(Xi), Xi = xij) as an op-
timization variable that is related to the pk through
the multilinear constraint P(Yi|pa(Xi), Xi = xij) ×

P(pa(Xi), Xi = xij) = P(Yi, pa(Xi), Xi = xij). Note
that P(Yi|pa(Xi), Xi = xij) stands for optimization vari-
ables indexed by Yi and pa(Xi), while P(pa(Xi), Xi =
xij) and P(Yi, pa(Xi), Xi = xij) are not optimization
variables; they simply stand for linear functions of the
optimization variables pk. Our next step is to intro-
duce optimization variables qij(Yi, pa(Xi)) that represent
a “fresh” measure over {Yi, pa(Xi)}; these variables are
again indexed by Yi and pa(Xi). The “backward” con-
straint (5) requires exactly that there must be a marginal
measure over {Yi, pa(Xi)} such that P(Yi|pa(Xi), Xi =
xij) plays the role of a distribution for Yi conditional on
pa(Xi). Thus we introduce the multilinear constraint

qij(Yi, pa(Xi)) = P(Yi|pa(Xi), Xi = xij) ×∑

Yi

qij(Yi, pa(Xi)).

The remaining problem is to constrain the optimization
variables qij(Yi, pa(Xi)) so that they represent a valid
marginal measure over {Yi, pa(Xi)}.

At this point it is reasonable to pause and try to build
some additional intuition for the status of the optimiza-
tion variables qij(Yi, pa(Xi)). There is one such op-
timization variable for each combination of values of
{Yi, pa(Xi)}. This set of optimization variables is intro-
duced to guarantee that, for a given set of optimization
variables P(Yi|pa(Xi), Xi = xij) that are part of the solu-
tion, we have a valid distribution in the set K(Yi|pa(Xi))
— this distribution is exactly represented by the optimiza-
tion variables qij(Yi|pa(Xi)). Now the challenge is to
guarantee that qij(Yi|pa(Xi)) in fact represent a distribu-
tion in K(Yi|pa(Xi)).

To proceed, we must note that {Yi, pa(Xi)} form a top
sub-network — that is, a sub-network such that if Wi is in
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(a)

pk ≥ 0 for all k∑
k pk = 1

P(1) ≤ P(1) ≤ P(1)
P(2|1) ≤ P(2|1) ≤ P(2|1)
P(2|1̂) ≤ P(2|1̂) ≤ P(2|1̂)
P(3|2) ≤ P(3|2, 1) ≤ P(3|2)
P(3|2̂) ≤ P(3|2̂, 1) ≤ P(3|2̂)
P(3|2) ≤ P(3|2, 1̂) ≤ P(3|2)
P(3|2̂) ≤ P(3|2̂, 1̂) ≤ P(3|2̂)

(b)

P(2, 3) × q3,3(1, 2) = P(1, 2, 3) × (q3,3(1, 2) + q3,3(1̂, 2))
P(2̂, 3) × q3,3(1, 2̂) = P(1, 2̂, 3) × (q3,3(1, 2̂) + q3,3(1̂, 2̂))
P(2, 3) × q3,3(1̂, 2) = P(1̂, 2, 3) × (q3,3(1, 2) + q3,3(1̂, 2))
P(2̂, 3) × q3,3(1̂, 2̂) = P(1̂, 2̂, 3) × (q3,3(1, 2̂) + q3,3(1̂, 2̂))

(c)

q3,3(X1, X2) ≥ 0, all X1, X2∑
X1,X2

q3,3(X1, X2) = 1, P(1) ≤ q3,3(1) ≤ P(1)

P(2|1) ≤ q3,3(2|1) ≤ P(2|1), P(2|1̂) ≤ q3,3(2|1̂) ≤ P(2|1̂)

(d)
Figure 2: Example 3.

the sub-network then all ascendants of Wi are in the sub-
network. We now use the following property [7]: the nat-
ural extension of a top sub-network, taking into account
independence relations in the top sub-network, is always
equal to the marginal credal set obtained by marginaliz-
ing the complete epistemic extension. That is, if we “cut”
a top sub-network out of a credal network, and compute
the epistemic extension for this sub-network, we obtain
the same credal set we would obtain if we started with the
whole network and then marginalized the whole epistemic
extension. Consequently, we can force qij(Yi, pa(Xi)) to
be a valid marginal measure by recursively calling the al-
gorithm on the top sub-network with {Yi, pa(Xi)}. Note
that no recursive call is needed when a network with a sin-
gle node is processed (or a network with no independence
relation). Each recursive call is applied to a smaller net-
work; thus the procedure must terminate. The whole algo-
rithm is described in Figure 1.

Example 3 Consider a Markov chain with three binary
random variables X1, X2 and X3 (Figure 2.a). As in Ex-
ample 1, random variable Xi takes values i and î. Suppose
we have separately specified sets K(X1) (specified by
P(1) and P(1)), K(X2|X1) (specified by P(2|1), P(2|1),
P(2|1̂), P(2|1̂)), and K(X3|X2) (specified by P(3|2),
P(3|2), P(3|2̂), P(3|2̂)). The epistemic extension must sat-
isfy EIN (X1, X3|X2). We have 8 variables pk defined as
in Example 1. Figure 2.b shows some basic constraints on
pk, implied directly by the local credal sets and the “for-
ward” irrelevance judgement EIR(X1, X3|X2). To sat-
isfy the judgement EIR(X3, X1|X2), introduce variables
q3,3(X1, X2), related to the pk by multilinear constraints
in Figure 2.c. These new variables are subject to con-
straints in Figure 2.d. We must also introduce variables
q3,3̂(X1, X2), subject to constraints that are identical to
those in Figures 2.c and 2.d. — except that 3 is every-
where replaced by 3̂. 2

The previous example can be easily extended to binary
Markov chains with n nodes.3 The number of multilinear

3A Markov chain with n nodes has root node X1 and terminal node
Xn, such that every node Xi between them has a single parent Xi−1 and
a single child Xi+1; X1 has a single child and Xn has a single parent.

constraints generated by the procedure at random variable
Xi, which we denote by T (i), is recursively expressed as
T (i) = O(2i) + 2T (i − 1), thus we have T (i) = O(i2i)
(the number of linear constraints follows a similar pat-
tern). The total number of multilinear constraints is of
order

∑n

i=1 O(i2i), and thus of order O(n2n). Given the
inherent complexity of epistemic independence, this ex-
ponential growth is not surprising in exact calculations.
However we can be more positive about the MULTILIN-
EAREXTENSION algorithm.

First, even if the algorithm cannot deal with large net-
works, it does allow us to address non-trivial networks —
certainly larger networks than the ones handled by the E3

algorithm. Consider a Markov chain with 5 nodes, X1 to
X5. The MULTILINEAREXTENSION algorithm leads to
152 multilinear constraints, a number that can be easily
handled by existing multilinear programming algorithms
[13]. On the other hand the E3 algorithm cannot go beyond
a Markov chain with 4 nodes — because the algorithm re-
quires explicit manipulation of epistemic extensions, and
the extension of a Markov chain with 4 binary nodes typi-
cally contains millions of extreme points.

Second, the MULTILINEAREXTENSION algorithm gener-
ates a program with a rather modular structure that can be
explored by approximation techniques. Standard approx-
imations from multilinear programming can be used [20,
29], or approximations that are specific to epistemic exten-
sions can be investigated. The E3 algorithm offers no such
path.

Third, depending on the independence relations expressed
in a network, several simplifications may be possible — as
illustrated by the next example.

Example 4 Consider the network in Figure 3,
taken from [7]. To process X1, we must enforce
EIN (X1, (X2, X3, X4)): we need 16 constraints and we
must then enforce EIN (X2, X3) — however this second
judgement can be directly enforced without any multilin-
ear constraint. Likewise, we can enforce EIN (X1, X3)
without any multilinear constraint. When we process X4,
we must enforce EIN (X4, (X1, X5)|X2, X3); to do so,
we need 32 multilinear constraints and then we must en-



force (among other things) EIN (X3, (X1, X2, X5)) and
EIN (X3, X5|X1, X2) — however the latter judgement is
redundant as it is implied by the former. 2

Our experience indicates that multilinear programs with a
few thousand variables can be solved with existing hard-
ware, thus indicating that a (not too dense) network con-
taining about 10 to 12 nodes can be processed in reason-
able time. The limits of the algorithm depend on the net-
work topology (the density of connections in the network)
but also on the number of values of variables and the com-
plexity of the local credal sets. Even though the viable
networks are still small, they can serve as testing ground
for approximate algorithms to be developed in the future.

Finally, consider the following question: given a joint
probability P(X1, . . . , Xn), does this measure belong to
the epistemic extension of a network or not? With the E3

algorithm, the only way to answer this question is to con-
struct the whole extension and then test for inclusion. The
multilinear formulation offers a more viable route, as we
can test whether a sequence of multilinear programs are
satisfied or not. The existence of an “inclusion test” may
lead to algorithms that generate distributions and test for
inclusion, detecting possible problems and modifying dis-
tributions gradually — we leave this path for the future.
We close this section by noting that the algorithm is “in-
cremental” in the sense that constraints are built in blocks,
and a new irrelevance judgement can be added with rela-
tively “local” changes on existing constraints already built
by the algorithm4

5 Separation properties

In a Bayesian network, the computation of a conditional
probability P(Q|E) typically does not require manipula-
tion of all nodes in the network [16]. Call evidence the
set of random variables Xi that have their values fixed by
the event E. There are two kinds of nodes that can be dis-
carded given Q and E: barren nodes and “top” nodes that
are separated from Q by the evidence in the moral graph
[27].5 In a Bayesian network, the value of P(Q|E) can be
obtained in the sub-network without barren and separated
nodes and without nodes that define E. These separation
properties have been elegantly condensed into the crite-
rion of d-separation, an algorithmically simple (polyno-
mial) test that detects independence in Bayesian networks
[25]. However, the proof of soundness of d-separation de-
pends on the semi-graphoid properties of stochastic inde-
pendence [12, 16, 25, 28]. The problem here is that one

4We thank a reviewer for bringing this property of the algorithm to
our attention.

5A node Xi is a barren node if it is not used to define events Q and
E, and either it has no descendants, or its descendants are also barren
nodes. The moral graph of a Bayesian network is obtained by connecting
all parents of nodes and then removing the direction of all edges.
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Figure 3: Example 4.

of the semi-graphoid properties, the contraction property,
fails for epistemic independence [11].

Can separation properties of Bayesian networks be
extended to epistemic extensions based on irrele-
vance/independence? Some results are known: barren
nodes can be removed from a credal network to compute
epistemic extensions based on irrelevance/independence
[7]. In the next theorem we focus on separation in Markov
chains — the theorem shows that evidence in a node Xj

makes “upstream” nodes independent of “downstream”
nodes.

Theorem 2 Consider a Markov chain with n nodes,
with separately specified local credal sets K(X1) and
K(Xi|pa(Xi)) for i > 1, such that no conditioning
event has zero lower probability. For i < j < k,
EIN (Xi, Xk|Xj) in the epistemic extension based on in-
dependence.

Proof. Consider first EIR(Xk, Xi|Xj) and the fol-
lowing inductive argument. If k = j + 1, the ir-
relevance is trivial: the Markov condition leads to
EIR(Xk, (X1, . . . , Xj−1)|Xj), and the direct decom-
position property (a graphoid property [11]) can be
used to remove X1 to Xj−1, except Xi. Now con-
sider j + l for l > 0; assume EIR(Xj+l, Xi|Xj).
The Markov condition and direct decomposition im-
ply EIR(Xj+l+1, (Xi, Xj)|Xj+l); by direct weak union,
EIR(Xj+l+1, Xi|(Xj+l, Xj)). By reverse contraction,
EIR(Xj+l, Xi|Xj) and EIR(Xj+l+1, Xi|(Xj+l, Xj))
imply EIR((Xj+l, Xj+l+1), Xi|Xj), and Xj+l can be re-
moved by reverse decomposition. The result is obtained
when j + l + 1 = k.

Now consider EIR(Xi, Xk|Xj). Again the result is triv-
ial for k = j + 1. We follow the same inductive ar-
gument: we assume EIR(Xi, Xj+l|Xj) and we want
EIR(Xi, (Xj+l, Xj+l+1)|Xj). However we cannot use
contraction here [11], so we must take a different route.
Take an arbitrary function f(Xj+l, Xj+l+1); to simplify
notation, we use r for j + l. By selecting the following
distribution, clearly independent of Xi and Xj :

P(Xr+1|X1, . . . , Xr) = arg min E[f(Xr+1, Xr)|Xr] ,
(6)



we have:

E[f(Xr, Xr+1)|Xi, Xj ]

= min E[E[f(Xr, Xr+1)|Xi, Xj , Xr] |Xi, Xj ]

= min E[E[f(Xr, Xr+1)|Xr] |Xi, Xj ]

= E[E[f(Xr, Xr+1)|Xr] |Xi, Xj ] .

By assumption EIR(Xi, Xr|Xj), thus the
previous iterated lower expectation is equal
to E[E[f(Xr, Xr+1)|Xr] |Xj ], and then
E[f(Xr, Xr+1)|Xi, Xj ] = E[E[f(Xr, Xr+1)|Xr] |Xj ].
Note that E[f(Xr, Xr+1)|Xi, Xj ] cannot be smaller than
this last iterated lower expectation [33]. Likewise,

E[f(Xr, Xr+1)|Xj ] = min E[E[f(Xr, Xr+1)|Xr] |Xj ]

= E[E[f(Xr, Xr+1)|Xr] |Xj ]

= E[f(Xr, Xr+1)|Xi, Xj ] .

This argument requires that minimizing distributions be
actually available in the epistemic extension. To see
that this is the case, consider the auxiliary extension
generated by multiplying every distribution in the epis-
temic extension K(X1, . . . , Xr) by the distribution in
Expression (6). The resulting extension does satisfies
the Markov condition for X1, . . . , Xr and also for Xr+1

(because Expression (6) defines the conditional of Xr+1

given X1, . . . , Xr, and this distribution is independent
of X1, . . . , Xr−1). Thus the auxiliary extension belongs
to the epistemic extension, and it contains an appropri-
ate minimizing probability distribution. As f(Xr, Xr+1)
is arbitrary, we obtain EIR(Xi, (Xj+l+1, Xj+l)|Xj) and
then EIR(Xi, Xj+l+1|Xj) by direct decomposition. 2

The theorem only considered extensions based on epis-
temic independence, and focused on a relatively simple
independence relation on chains. It is possible that the
proof can be extended to much more complex networks
and more general relations without much change; how-
ever it seems that a substantially new approach would be
needed to prove full d-separation in case it is valid in the
present context. It is possible that, even though full d-
separation is not valid, some simpler (possibly asymmet-
ric) separation property is valid.6

6 Conclusion

Epistemic irrelevance and independence arguably offer the
“right” way to define a behavioral notion of independence
for credal sets. However, these concepts are difficult to
manipulate computationally. On the one hand, judgements
of epistemic irrelevance and independence lead to very
complex joint credal sets; on the other hand, little is known

6We thank a reviewer for bringing this possibility to our attention, as
well as for pointing out the relevant references [23] and [30].

about their separation properties and other simplifications
that are routinely applied with stochastic independence. In
this paper we have contributed with techniques and results
that increase the current understanding about epistemic ir-
relevance and independence.

First, we have presented multilinear programming meth-
ods that handle general judgements about events, and
judgements about random variables expressed through
credal networks. These techniques open the possibility
that approximation methods from multilinear program-
ming can be profitably adapted, something that cannot be
easily done with existing methods. Also, algorithms in-
herit convergence guarantees from multilinear program-
ming — it is an open question whether such guarantees
can be given for Walley’s algorithm and its generaliza-
tions. Moreover, our algorithms are more efficient than
existing methods, particularly for manipulation of random
variables, because they do not require explicit construction
of extensions. The multilinear formulation even opens the
possibility of mixing judgements of epistemic and strong
independence in the same algorithmic framework. Cer-
tainly we leave many avenues for further work; for ex-
ample, a precise characterization of computational com-
plexity for epistemic irrelevance and independence is still
open.

Second, we have shown that usual separation properties
employed in Bayesian networks hold for Markov chains.
Many important properties of stochastic independence
have no known analogues for epistemic irrelevance and in-
dependence; an interesting avenue for further is exactly to
find such analogues.
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A Walley’s iterative algorithm

The iterative procedure described in Figure 4 produces in-
ferences for an event D conditional on another event E,
under judgements of epistemic irrelevance. The method
has been conceived by Walley (personal communication);
we present a very brief summary so as to compare it to
our multilinear programming approach. The idea of Wal-
ley’s algorithm is to check, at each iteration, whether irrel-
evance assessments are satisfied by a pool of constraints;
if not, then the smallest change in assessments that can
lead to satisfaction of irrelevance judgements is computed
and the current constraints are modified accordingly. Each
iteration modifies at least one of current assessments (or
stops). The algorithm gradually converges to a set of con-



straints that represent the whole natural extension. Obvi-
ous changes to Walley’s algorithm can account for assess-
ments containing random variables and for judgements of
conditional irrelevance among events.

It is also possible to conceive an extension of the algorithm
so as to handle judgements of irrelevance among random
variables, even though its practical feasibility is unclear
at the moment. So as to facilitate comparison with our
methods, we outline one such extension here. Consider
judgements of the form EIR(Xj , Yj |C). We start by col-
lecting all assessments (other than judgements of indepen-
dence). For each judgement EIR(Xj , Yj |C), we obtain an
explicit description of K(Yj |C) and of K(Yj |Xj = x, C);
this has the same purpose of step (2.2) in Walley’s algo-
rithm. To generate an explicit description of K(Yj |C)
or K(Yj |Xj = x, C), we must resort either to Fourier-
Motzkin elimination or to an enumeration procedure [19].
If K(Yj |C) and K(Yj |Xj = x, C) have the same con-
vex hull for every value of Xj , for every j, then we stop
(as in the “first half” of step (2.3)). Suppose that, for
a given j, K(Yj |C) and K(Yj |Xj = x, C) have differ-
ent convex hulls. Now we simply enforce that each one
of these sets must satisfy all constraints in their current
intersection (take the union of constraints defining these
sets) — this is similar to the “second half” of step (2.3)
in Walley’s algorithm. The procedure just outlined grad-
ually constructs the whole natural extension. A computer
implementation would have to struggle with several diffi-
culties: first, the explicit description of sets K(Yj |C) and
K(Yj |Xj = x, C) may require an exponential growth in
the number of constraints; second, it is not easy to de-
tect when sets have identical convex hulls; finally, it is not
clear that this extended algorithm is always convergent, let
alone finitely convergent.
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(1) Set νj = 0 and µj = 1 for all j.
(2) Repeat:

(2.1) Form the constraints C0 as in Section 3, add the unitary constraint
∑

k pk = 1.
(2.2) With the constraints in the previous step, update (using fractional linear programming):
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j = P(Bj |A
{
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j = P(Bj |A
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j , Cj), µ∗

j = P(Bj |Cj) for all j.
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j = µ′′

j = µ∗

j ) for all j, stop;
Otherwise, take νj = max(ν′

j , ν
′′

j , ν∗

j ) and µj = min(µ′

j , µ
′′

j , µ∗

j ) for all j, and return to (2.1).
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programming.

Figure 4: Walley’s method for inferences with epistemic irrelevance among events.

[19] P. Hansen and B. Jaumard. Probabilistic satisfiability.
Technical Report G-96-31, Les Cahiers du GERAD,
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