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Abstract

A credal network associates a directed acyclic graph
with a collection of sets of probability measures; it of-
fers a compact representation for sets of multivariate
distributions. In this paper we present a new algo-
rithm for inference in credal networks based on an in-
teger programming reformulation. We are concerned
with computation of lower/upper probabilities for a
variable in a given credal network. Experiments re-
ported in this paper indicate that this new algorithm
has better performance than existing ones for some
important classes of networks.

Keywords. Credal networks, Integer program-
ming.

1 Introduction

This paper presents novel techniques for marginal in-
ference in credal networks. The goal is to provide an
algorithm that can handle graphical models for pre-
cise and imprecise probabilistic assessments based on
integer programming.

Credal networks represent a set of joint probability
measures through a directed acyclic graph and a col-
lection of local sets of probability measures [3, 5, 13].
The structure of the graph indicates relations of in-
dependence between variables; the “size” of the sets
of probabilities encodes the imprecision in the prob-
ability values. Section 2 reviews basic properties of
credal networks and Section 3 addresses the inference
problem we are interested in. Basically, a belief up-
dating inference in the context of credal networks is
a computation of upper/lower probability for some
conjunction of events, given observations. Most exist-
ing algorithms for belief updating cannot handle large
networks; when they can, they suffer from numerical
instability [9].

This paper aims at enlarging the class of networks
that can be successfully processed exactly. We focus

on developing a reformulation that is particularly effi-
cient for polytree-shaped networks. Section 4 reviews
a multilinear reformulation and presents a new infer-
ence algorithm based on bilinear and integer program-
ming. Section 5 shows through experiments that the
algorithm can process large polytree networks, sur-
passing existing algorithms [8, 9]. Section 6 concludes
the paper.

2 Credal sets and credal networks

A few preliminary definitions are important. A con-
vex set of probability distributions is called a credal
set [18]. A credal set for X is denoted by K(X); we
assume that every random variable is categorical and
that every credal set has a finite number of vertices.
A conditional credal set is a set of conditional dis-
tributions, obtained by applying Bayes rule to each
distribution in a credal set of joint distributions. The
theory of sets of probability distributions adopted in
this paper can be placed in the framework of coherent
behavior by selecting axioms advocated by several au-
thors, for instance by Walley [23]. We emphasize that
our setting is restricted to categorical variables, thus
we can brush away subtle but crucial differences be-
tween proposed frameworks concerning issues of con-
glomerability and countable additivity.

The sets K(X |Y ) are separately specified when there
is no constraint on the conditional set K(X |Y = y1)
that is based on the properties of K(X |Y = y2), for
any y2 6= y1 — that is, the conditional sets bear no
relationship to each other. In this paper we assume
that local credal sets are always separately specified;
justifications for this separability assumption can be
found in [7]. Given a number of marginal and con-
ditional credal sets, an extension of these sets is a
joint credal set with the given marginal and condi-
tional credal sets. In this paper we are exclusively
concerned with the largest possible extension for any
collection of marginal and conditional credal sets.



Given a credal set K(X) and an event A, the upper
and lower probability of A are respectively P (A) =
maxp(X)∈K(X) P (A) and P (A) = minp(X)∈K(X) P (A).

A credal network N = (G, X, K) is composed by a di-
rected acyclic graph G = (V, E) where each node of V

is associated with a random variable Xi ∈ X and with
a collection of conditional credal sets K(Xi|pa(Xi)) ∈
K, where pa(Xi) denotes the parents of the node as-
sociated to Xi in the graph. In the remainder of this
paper, we refer to Xi and its associated node inter-
changeably. Note that we have a conditional credal
set related to Xi for each instantiation of pa(Xi). A
root node is associated with a single marginal credal
set. We take that in a credal network every random
variable is independent of its nondescendants nonpar-
ents given its parents; this is the Markov condition
on the network. In this paper we adopt the con-
cept of strong independence1: two random variables X

and Y are strongly independent when every extreme
point of K(X, Y ) satisfies standard stochastic inde-
pendence of X and Y (that is, p(X |Y ) = p(X) and
p(Y |X) = p(Y )) [5]. Strong independence is the most
commonly adopted concept of independence for credal
sets, probably due to its obvious connection with stan-
dard stochastic independence. There are concepts of
independence that are less precise in the sense that
they admit distributions that do not factorize; an ex-
ample is epistemic independence [11, 23].

Given a credal network, an extension of the network
is any joint credal set that satisfies all constraints en-
coded in the network. The strong extension of a credal
network is the largest joint credal set such that every
variable is strongly independent of its nondescendants
nonparents given its parents. The strong extension of
a credal network is the joint credal set that contains
every possible combination of vertices for all credal
sets in the network [6]; that is, each vertex of a strong
extension factorizes as follows:

p(X1, . . . , Xn) =
∏

i

p(Xi|pa(Xi)) . (1)

3 Inference with strong extensions

A marginal inference in a credal network is the com-
putation of lower/upper probabilities in an extension
of the network. If Xq is a query variable and XE rep-
resents a set of observed variables, then an inference
is the computation of tight bounds for p(Xq|XE) for
one or more values of Xq. For inferences in strong ex-
tensions, it is known that the distributions that mini-
mize/maximize p(Xq|XE) belong to the set of vertices
of the extension [13].

1We note that other concepts of independence are found in
the literature [4, 12].

An inference can be produced by combinatorial op-
timization, as we must find a vertex for each lo-
cal credal set K(Xi|pa(Xi)) so that Expression (1)
leads to a maximum/minimum of p(Xq|XE). In gen-
eral, inference offers tremendous computational chal-
lenges — consider the following example, taken from
Rocha et al. [8]. Take a network with three nodes,
X → Y ← Z, where X , Y and Z have four cate-
gories each, and where all credal sets have four ver-
tices each. There are 418 different joint distributions
factorizing as Expression (1), where local distribu-
tions are vertices of local credal sets. Rocha et al. [8]
discuss branch-and-bound procedures that can han-
dle situations such as this, but that still have difficul-
ties in large networks. The only known polynomial
algorithm for strong extensions is the 2U algorithm,
which only processes polytrees with binary variables
[13]. Other exact inference algorithms based on enu-
meration examine all potential vertices of the strong
extension to produce the required lower/upper values
[2, 3, 5, 7]; these algorithms face serious difficulties in
large networks.

A different way to look at the computation of in-
ferences is to recognize that a lower/upper value for
p(Xq|XE) is obtained by minimization/maximization
of a fraction containing polynomials in probability val-
ues. This is in fact the strategy discussed in Section 4;
our results suggest that this is the most profitable
strategy to take for exact inference with strong ex-
tensions.

4 Inference as a multilinear

programming problem

A marginal inference for a strong extension can be for-
mulated as a multilinear programming problem. The
goal is to minimize/maximize the expression

∑

Xi\Xq

∏

i

p(Xi|pa(Xi)) (2)

subject to constraints on the local probabilities
p(Xi|pa(Xi)). For a query with evidence, we may

use the constraint p(Xq|XE) =
p(Xq ,XE)

p(XE) , that can be

turned into a multilinear constraint.2 In this prob-
lem we must deal with a large number of terms in the
multilinear objective function (the number of terms is
exponential on the size of the network), as shown in
Example 1.

Example 1 Take the network presented in Figure 1.
Suppose that random variables are binary and we want

2We assume that the probability of evidence is strictly
greater than zero, leaving for future work the important case
where lower probabilities equal to zero may happen.
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Figure 1: Simple multi-connected network.

to evaluate the maximum possible value for the proba-
bility of (E = e)∧(F = f); this is obtained by solving:

max
∑

A,B,C,D

p(f |C) · p(e|D) · p(D|B, C) · (3)

·p(B|A) · p(C|A) · p(A) ,

subject to linear constraints (from local credal sets).
We have a multilinear objective function with 16 non-
linear terms of degree six. The probability functions p

are seen as optimization variables in the multilinear
program.

As presented by Campos and Cozman [9], we can run
a symbolic variable elimination algorithm to obtain a
simpler objective function.

Example 2 Take the network and specifications of
Example 1. Instead of optimizing Expression (3), the
symbolic variable elimination procedure transforms it
into a problem with simpler multilinear functions of
degree at most three, by grouping terms and introduc-
ing new optimization variables. The result is a multi-
linear program with 22 nonlinear terms:

max
∑

D

p(e|D) p(D, f) subject to

p(B, C) =
∑

A

p(B|A) p(C|A) p(A) , for all B, C

p(C, D) =
∑

B

p(D|B, C) p(B, C) , for all C, D

p(D, f) =
∑

C

p(f |C) p(C, D) , for all D

plus the linear constraints.

Note that the reformulated problem presented in Ex-
ample 2 contains terms of smaller degree than the
original problem (Example 1). This is important in
multilinear programming, as it is difficult to handle
problems with high degree. Besides that, the trans-
formation usually leads a smaller number of nonlinear
terms than in the direct version given by Expression
(1), although that was not the case in Example 2.

4.1 A bilinear transformation

The new multilinear terms obtained with the sym-
bolic variable elimination procedure just described

have smaller degree than the original ones, but the
maximum degree is at least as large as the tree-width
of network’s moral graph (even if we know an optimal
elimination ordering for the variables) [9].

We present in this section a new transformation proce-
dure, which naturally produces multilinear program-
ming problems with maximum degree of two (that is,
bilinear problems) regardless of network’s topology,
and where the following property holds: each bilinear
term has at least one variable that is defined (even
though by a credal set) in the input (that is, each bi-
linear term has at most one auxiliary variable). This
property will be essential for obtaining an integer pro-
gram in Section 4.2, and it is specially efficient for
polytree networks, which are defined by graph with-
out any cycles (directed or not).

Prior to the algorithm itself, we must present some
useful definitions.

Definition 3 An ordering for the network variables
is said a precedence ordering if, for each variable in
the ordering, all its ancestors in the network’s graph
appear before it in the ordering.

Definition 4 (Robertson and Seymour [20,
21]). Given a graph G = (V, E), a sequence
V1, . . . , Vr of subsets of V is a path-decomposition of
G if the following conditions are satisfied:

• ⋃

i Vi = V .

• For every edge e ∈ E, some Vi contains both end-
points of e.

• For 1 ≤ i ≤ j ≤ k ≤ r, Vi ∩ Vk ⊆ Vj .

Definition 5 (Robertson and Seymour [20,
21]). The path-width of G, denoted by pw(G), is
the minimum value h ≥ 0 such that G has a path-
decomposition V1, . . . , Vr with |Vi| ≤ h + 1 for i =
1, . . . , r.

Definition 6 The path-width of a credal network
N = (G, X, K), or just pw(N), is the path-width of
its graph G.

The idea of Bilinear-Transformation algorithm is
to process the network variables top-down, using a
precedence ordering. At each step we construct a con-
straint that defines the relationship between the query
and the current variable being processed. A variable
may be processed only if all its ancestors have already
been processed. The active nodes at each step form
a path-decomposition of the network’s graph. Note
that we cannot use other decompositions such as joint
trees, because we would get multilinear terms with



more than one auxiliary variable, that is, the result
would not be a bilinear programming problem with
that described property. We proceed with the idea of
the transformation using an example.

Example 7 Suppose we want to query the probability
of e, f in the network presented in Figure 1. The first
step of the Bilinear-Transformation algorithm is to
choose a precedence ordering for the network variables
(when there is evidence, all the process must be re-
peated for the queries and for the observed variables).
We will use the ordering A, C, B, D, E, F . The first
variable to be processed is A (it is the only variable
without parents). We have the queries e, f and will
write their joint probability using p(A) (which is de-
fined in the network specification) and inserting A in
the conditional part. So we create the constraint

p(e, f) =
∑

A∈{a,a}

p(A) · p(e, f |A).

Functions p(e, f |A) are auxiliary (they do not appear
in the network), and we must create constraints to
define them (for all possible instantiations of A). The
current variable to be processed is C. Thus, for all
A ∈ {a, a}:

p(e, f |A) =
∑

C∈{c,c}

p(C|A) · p(e, f |A, C).

At this stage, our queries are conditioned on A and
C. Following the idea, we process B, obtaining

p(e, f |A, C) =
∑

B∈{b,b}

p(B|A) · p(e, f |B, C),

which must be written for all A ∈ {a, a}, C ∈ {c, c}.
Note that at this point A disappeared from the con-
ditioning side, because B and C together separate the
query variables from A. Now the current variable to be
treated is D, and our queries are conditioned on B, C,
that is, we must define how to evaluate p(e, f |B, C).
We have, for all B ∈ {b, b}, C ∈ {c, c}, that

p(e, f |B, C) =
∑

D∈{d,d}

p(D|B, C) · p(e, f |C, D).

At this moment, e, f are conditioned on C, D (again,
B is not present anymore as C, D separate the queries
from B). Now we will process E, but because the only
two remaining variables are E and F and they are
not parent of each other, their order in fact does not
matter. Thus,

p(e, f |C, D) = p(e|D) · p(f |C),

for all C ∈ {c, c}, D ∈ {d, d}. Note that, as p(f |C) is
specified in the network, we can stop. We have com-
pleted the procedure as both p(e|D) and p(f |C) appear

A,C,E,F

A,E,F

C,D,E,F

B,C,D,E,F

A,B,C,E,F

Figure 2: Path-decomposition of Example 7.

in the network. Note that, if we had chosen another
ordering such as A, B, C, D, E, F or A, B, C, F, D, E,
more constraints might be needed.

Figure 2 shows the path-decomposition induced by
the ordering of Example 7. Note that there is an one-
to-one relation between decomposition components
and constraints in the example. The elements in a
given component appear together in some constraint
of the reformulation, either in the conditioned (includ-
ing queries) or in the conditioning sides.

The algorithm is presented using pseudo-code in Fig-
ure 3. Functions g appearing in line 24 of the algo-
rithm are just conditioned probability functions. We
use the letter g instead of p because of another trans-
formation presented in next section, where functions g

have special meaning. If we just want a bilinear trans-
formation, g should be simply replaced by p, even
though we note that names of optimization variables
are not an issue (they just need to be coherent among
each other). Regarding the complexity of the algo-
rithm, we define the path-width of a precedence order-
ing as the width of the path-decomposition induced
by that ordering, and present the following theorem.

Theorem 8 Let N = (G, X, K) be a credal net-
work where the maximum number of categories
of a random variable is O(|V |). Suppose o′

is a precedence ordering for the variables in
X. Then Bilinear-Transformation runs in time
O(|V |pw(o′)+k), for k constant.

Proof: All non-loop lines of the algorithm can clearly
be executed in polynomial time in the number of
nodes, that is, O(|V |K), for K constant.

The loop of line 4 is executed twice if we have evi-
dence, and only once if we do not have evidence. Line
12 loop is executed |U | times, that is, O(|V |). The
loop of line 26 is executed O(c) times, where c is the



Bilinear-Transformation(N, Q, E)

N = (G, X, K) is the network, G = (V, E) its graph, X its variables and K its local credal sets.
Q is an instantiation for a set of queried variables.
E is an instantiation for a set of observed variables.
The result of this procedure is a bilinear programming problem
(bilinear objective function of line 1 and a set of bilinear constraints from lines 2 and 24).

1 � The program will maximize or minimize t, which will be the objective function.
2 Insert the following constraint into the bilinear program:

p(Q, E) = t · p(E)
3 � Now we create constraints to evaluate p(Q, E) and p(E).
4 for W = Q ∪ E and W = E

5 do
6 � U is the set of all relevant variables.
7 U ← {X ∈ V \W such that X is an ancestor of some w ∈ W}.
8 � There are many ways to choose a precedence ordering. Do it polynomially.
9 Rename the variables of U as X1, X2, . . . , X|U| according to a precedence ordering.

10 � Initially, functions are not conditioned. L is a list of sets of conditioning variables.
11 Let L be an empty queue of sets. Insert ∅ in the end of L.
12 for i← 1 to |U |
13 do
14 � L′ will have the conditioning sets to be considered on the next loop step.
15 Let L′ be an empty queue of sets.
16 � Conditioning sets from the previous step are processed.
17 while L is not empty
18 do
19 S ← first element of L (remove S from L).
20 � S′ are separated variables (with respect to the query variables) when

inserting Xi in the conditioning part. The separation is based on
the graph structure (known as d-separation [19]).

21 S′ ← {s ∈ S such that {Xi} ∪ S \ {s} separates W from s}.
22 � The variables in S′ are no more relevant.
23 R← S \ S′.
24 Depending on W , insert the following constraint into the bilinear program:

if W = Q ∪ E then p(W |S) =
∑

xij
p(xij |pa(Xi)) · p(W |R, xij).

if W = E then g(W |S) =
∑

xij
p(xij |pa(Xi)) · g(W |R, xij).

� xij is a category of Xi.
� pa(Xi) is an instantiation complying with W , R and S.

25 � Now we insert into L′ the conditioning sets for the next step.
26 for each xij of Xi

27 do
28 R′ ← R ∪ {xij}.
29 Insert R′ in the end of L′.
30 � End of for
31 � End of while
32 L← L′

33 � End of for
34 � End of for

Figure 3: Reformulation algorithm for inferences in credal networks.



maximum number of categories of a random variable.

Line 17 loop executes |L| times. Let u be the maxi-
mum size of a set stored in L. Then the number of
elements in L at each round is O(cu), because at most
cu unequal instantiations for u variables are possible.
Note that the sizes of sets stored in L are exactly
the sizes of components in the path-decomposition in-
duced by o′. So the bottleneck is the size of the ele-
ments in L, which is equal (in worst case) to pw(o′).
Thus the complexity of Bilinear-Transformation is
(k = K + 2):

2 ·O(|V |)·O(|V |K)·O(c)·O(cpw(o′)) = O(|V |pw(o′)+k).

Note that, with recent results of Feige et al. [14], it is
possible to approximate the optimum path-width of
the network by log |V |

√

log pw(N). So, the algorithm

runs in time O(|V |log c·pw(N)·
√

log pw(N)+k). 2

Corollary 9 When restricted to polytrees, the algo-
rithm Bilinear-Transformation runs in polynomial
time in the size of input.

Proof: In a polytree, each variable separates its par-
ents from its descendants. The path-width is bounded
by d, the maximum degree of network’s graph, and
it is easy to find an ordering with such width (a
greedy algorithm will succeed). So the complexity is
O(|V |d · |V |k), k constant. As the input size needed to
specify the local credal sets of the network is already
exponential on d, the corollary follows. 2

4.2 An integer programming version

We show in this section how to obtain an integer
program from that bilinear program generated by
Bilinear-Transformation. We must note some use-
ful properties:

1. A multiplication of a rational optimization vari-
able x ∈ [0, 1] by a boolean variable b ∈ {0, 1}
can be encoded by linear constraints: replace the
nonlinear term x · b by a new variable yxb and
insert the constraints:

0 ≤ yxb ≤ b

x− 1 + b ≤ yxb ≤ x

2. We can represent each local credal set as a
combination of its vertices. Suppose X is a
network variable with parents Y1, . . . , Yr, and
that vertices α1, . . . , αs define the credal set for
p(X |y1, . . . , yr) (the dimension of each αi equals
the number of categories of X). For each instan-

tiation of X, Y1, . . . , Yr we have

p(x|y1, . . . , yr) =

s
∑

i=1

αi(x) · b(i)
y1,...,yr

, (4)

where αi(x) are known values (specified in the

network) and b
(i)
y1,...,yr are boolean variables such

that
s

∑

i=1

b(i)
y1,...,yr

= 1,

that is, only one of these b
(i)
y1,...,yr variables is one,

thus selecting a vertex.

3. Each nonlinear term appearing in the constraints
created by Bilinear-Transformation is a mul-
tiplication of a rational variable and a variable
appearing in the network specification (defined
by the local credal sets).

These observations lead us to the following procedure
to replace each product r ·p(x|y1, . . . , yr) of each con-
straint created by Bilinear-Transformation:

r · p(x|y1, . . . , yr) :=

s
∑

i=1

αi(x) · y(i)
rby1,...,yr

,

y
(i)
rby1,...,yr

≥ 0,

y
(i)
rby1,...,yr

≤ b(i)
y1,...,yr

,

y
(i)
rby1,...,yr

≥ r − 1 + b(i)
y1,...,yr

,

y
(i)
rby1,...,yr

≤ r,

s
∑

i=1

b(i)
y1,...,yr

= 1,

where A := B means to replace A by B. Although we
need to work with all vertices of credal sets and it may
be hard to enumerate all of them, many important
models can easily be translated into lists of vertices.
For example, capacities of infinite order (also known
as belief functions) can be expressed by mass assign-
ments that are attached to sets of categories; vertices
are simply obtained by combining the ways in which
mass assignments are to be distributed [22, 23].

There is still a problem to address to get an integer
version. The constraint inserted during line 2 of al-
gorithm Bilinear-Transformation is nonlinear and
the variables involved in its product are not in the
network specification and thus cannot be directly re-
placed by some linear constraints and integer vari-
ables. We solve this problem by calling the loop of line
4 twice: in the first time, we evaluate p(Q, E) (using
functions named p); in the second time, we evaluate
g(E) = t ·p(E), that is, functions g do not mean prob-
ability functions but t times probability functions.



For example, the constraint in line 2 becomes sim-
ply p(Q|E) = g(E). Each constraint inserted in line
24 of the algorithm

g(W |S) =
∑

xij

p(xij |pa(Xi)) · g(W |R, xij)

in fact means

t · p(W |S) =
∑

xij

p(xij |pa(Xi)) · t · p(W |R, xij),

with the t variable hidden inside the g functions,
whose are seen as optimization variables. So, on the
last step of the inner loop, the constraint g(W |S) =
t · p(W |S) must be included to pull t out of g, trans-
forming it into p again. Because the p(W |S) of the
last step is certainly specified in the credal network
input, this product can now be linearized using those
ideas described on items from 1 to 3.

Example 10 Suppose we want to evaluate p(a|d) in
the network of Figure 1. First, we symbolically eval-
uate p(a, d) using p functions:

p(a, d) = p(a) · p(d|a)

p(d|a) = p(b|a) · p(d|a, b) + p(b|a) · p(d|a, b)

p(d|a, b) = p(c|a) · p(d|b, c) + p(c|a) · p(d|b, c)
p(d|a, b) = p(c|a) · p(d|b, c) + p(c|a) · p(d|b, c)

Note that we have both p functions defined in the net-
work and auxiliary p functions. Now we evaluate g(d),
using g functions that hide t until the last step:

g(d) = p(a) · g(d|a) + p(a) · g(d|a)

g(d|a) = p(b|a) · g(d|a, b) + p(b|a) · g(d|a, b)

g(d|a) = p(b|a) · g(d|a, b) + p(b|a) · g(d|a, b)

g(d|a, b) = p(c|a) · g(d|b, c) + p(c|a) · g(d|b, c)
g(d|a, b) = p(c|a) · g(d|b, c) + p(c|a) · g(d|b, c)
g(d|a, b) = p(c|a) · g(d|b, c) + p(c|a) · g(d|b, c)
g(d|a, b) = p(c|a) · g(d|b, c) + p(c|a) · g(d|b, c)
g(d|b, c) = t · p(d|b, c)
g(d|b, c) = t · p(d|b, c)
g(d|b, c) = t · p(d|b, c)
g(d|b, c) = t · p(d|b, c)

To force t as the variable to maximize/minimize, we
impose that p(a, d) = g(d) (remember that g(d) means
t · p(d)). Now take the last constraint (g(d|b, c) =
t · p(d|b, c)) to illustrate the linearization of a product
(the same idea must be applied to all products in all
constraints). Suppose that p(d|b, c) ∈ [l, u], with l and
u known. The constraint becomes

g(d|b, c) = l · y(1)

tp(d|b,c)
+ u · y(2)

tp(d|b,c)

and we include

y
(1)

tp(d|b,c)
≥ 0,

y
(1)

tp(d|b,c)
≤ b

(1)

d|b,c
,

y
(1)

tp(d|b,c)
≥ t− 1 + b

(1)

d|b,c
,

y
(1)

tp(d|b,c)
≤ t,

y
(2)

tp(d|b,c)
≥ 0,

y
(2)

tp(d|b,c)
≤ b

(2)

d|b,c
,

y
(2)

tp(d|b,c)
≥ t− 1 + b

(2)

d|b,c
,

y
(2)

tp(d|b,c)
≤ t,

b
(1)

d|b,c
+ b

(2)

d|b,c
= 1,

where the new created boolean variables b
(i)

d|b,c
indicate

which vertex to use: l or u. The variable p(d|b, c) has
disappeared (its possible values l and u still remain),

and t and new variables b
(i)

d|b,c
appear linearly in the

constraints.

Because only one vertex of each local credal set will be
chosen, we can go further in the reformulation, obtain-
ing a smaller number of boolean optimization vari-
ables. According to the linearization just described,
we represent each local credal set as a combination of
its vertices and create one boolean optimization vari-
able for each vertex of each local credal set. Instead
of this transformation, we can use another idea, in-
terpreting the boolean optimization variables as the
binary representation of a vertex index. Suppose
α0, . . . , αs−1 are the vertices and that s is a power
of two (we do not loose generality because, if s is not
a power of two, we can always repeat several times
one of the already existent vertices to reach the next
power of two; these additional vertices do not change
the result as they are equal to some old vertex). Now
let 1 ≤ j ≤ log2 s be an integer indexing a bit of the
number i, and for each instantiation of variable X

with parents Y1, . . . , Yr we define

p(x|y1, . . . , yr) =

s−1
∑

i=0

αi(x) ×
∏

bit j of i

bj
y1,...,yr

×

∏

not bit j of i

(1− bj
y1,...,yr

), (5)

where (not) bit j of i means that the jth bit of i is
(not) one. That is, instead of a boolean variable that
indicates (with a zero or one) if a given vertex should
be used (and only one of them actually should), we
multiply a collection of boolean variables according



to the binary representation of i (the vertex index).
This product guarantees that the result is one if and
only if all b variables of its binary representation are
set to one.

Example 11 Let X be a random variable with three
categories (x0, x1, x2) and one parent, named Z. Let
Z have two categories (z, z). Suppose the credal set
for p(X |z) has four vertices (α0, . . . , α3) with three
dimensions each. Then we define the boolean opti-

mization variables b
(1)
z , b

(2)
z and the constraints:

p(x0|z) = α0(x0) · (1− b(1)
z ) · (1− b(2)

z ) +

α1(x0) · b(1)
z · (1− b(2)

z ) +

α2(x0) · (1− b(1)
z ) · b(2)

z +

α3(x0) · b(1)
z · b(2)

z

p(x1|z) = α0(x1) · (1− b(1)
z ) · (1− b(2)

z ) +

α1(x1) · b(1)
z · (1− b(2)

z ) +

α2(x1) · (1− b(1)
z ) · b(2)

z +

α3(x1) · b(1)
z · b(2)

z

p(x2|z) = α0(x2) · (1− b(1)
z ) · (1− b(2)

z ) +

α1(x2) · b(1)
z · (1− b(2)

z ) +

α2(x2) · (1− b(1)
z ) · b(2)

z +

α3(x2) · b(1)
z · b(2)

z

After some simple algebraic manipulation of Equa-
tions (5), we still have to deal with products of
boolean variables. The procedure is straightforward:
If b1, b2, . . . , br are boolean variables, then the prod-
uct

∏

i bi can be replaced by the continuous variable
y, with additional constraints:

0 ≤ y ≤ 1

y ≤ bi, for all i (6)
∑

i

bi − r + 1 ≤ y

The number of boolean optimization variables in
the integer programming version is O(log2

∏

X∈V cX),
where cX is the number of categories of the random
variable associated to node X . Thus, the reformu-
lation to an integer programming problem is per-
formed by running the Bilinear-Transformation

algorithm together with the linearization step.
The linearization inserts a logarithmic number of
new constraints for each constraint generated by
Bilinear-Transformation (when using the ideas of
Expressions (5) and (6)). The number of new boolean
optimization variables is small and does not increase
the overall complexity of the reformulation. For poly-
trees, we still have a polynomial time procedure.

5 Computational results

To illustrate the behavior of our methods, we present
two sets of experiments. First we deal with test sets
containing multi-connected networks (randomly gen-
erated using the BNGenerator software [17] or using
the topology of the Alarm network [1]). Latter we
treat randomly generated polytrees. In each network
we perform a belief updating inference with a pre-
defined variable (we have chosen the most challenging
variables).

Table 1 shows results of Bilinear-Transformation
followed by the linearization step for four different
network. Rows present type of the network, to-
tal number of nodes, number of nodes involved in
the inference, number of vertices in the credal sets,
resulting continuous optimization variables, result-
ing boolean variables and resulting optimization con-
straints. All the tests were done by transforming in-
ferences in multi-connected credal networks into in-
teger programming problems. The chosen inferences
represent the most challenging inference for each net-
work. We processed networks with different variables
(binary and ternary), and different sizes of credal sets
per node of the network. Note that the size of result-
ing problems (specially the number of boolean vari-
ables to optimize) is large. Existing exact optimiza-
tion solvers usually can not handle such large number
of boolean variables, but approximation ideas are still
possible. As we can see, the number of integer vari-
ables is too high for processing such networks.

Restricting our attention to polytrees, Table 2
presents twenty polytree-shaped credal networks.
They have ternary variables and at most three ver-
tices by locally and separately specified credal set.
Rows present name of network, total number of nodes,
number of nodes involved in the inference, generated
continuous optimization variables, generated boolean
variables, generated constraints, time for solving the
integer programming problem and number of branch-
and-bound nodes evaluated by the solver.

Analyzing Table 1 (multi-connected networks) and
Table 2 (polytree networks), we see that the algorithm
could generate much smaller problems in the latter
case. That happens because of the relationship be-
tween tree-width and path-width of a polytrees: they
are almost the same.

Because the integer programming reformulation is
usually less dependant on some convergence criteria
and numerical problems than nonlinear programming
techniques (such as multilinear programming [8, 9]),
the integer programming reformulation achieves good
performance together with reliable results. All tests



Network Nodes Active Vertices by Continuous Boolean Constraints
topology Nodes credal set variables variables

Dense binary 10 10 2 1523 120 1523
Dense ternary 10 10 3 3954 202 3954
Alarm network 37 24 2 34537 161 34351
Alarm network 37 24 4 51293 322 65075

Table 1: Size of integer programming problems generated from some multi-connected credal networks.

were performed on a Intel Xeon 2.8Ghz (4MB of
L2 cache) with 4GB of RAM memory. The integer
programming problems were solved using the AMPL
modeling language [15, 16] and the CPLEX solver.

6 Conclusion

We have discussed in this paper a new idea for in-
ferences in credal networks. The main contribution
is the use of bilinear and integer programming tech-
niques. Although many authors have suggested and
worked with multilinear programming as a possible
approach to inference, as far as we know no investi-
gation or implementation of bilinear and/or integer
programming reformulations have been conducted.

Results produced in our experiments seem promis-
ing and surpass existing exact algorithms for infer-
ence in polytree-shaped credal networks with respect
to the number of network variables that could be dealt
[5, 9]. Although there is a polynomial time algorithm
for inferences in binary polytrees [13], the problem is
NP-Complete in general polytrees [10]. So our refor-
mulation is a new idea to address this hard problem,
with good empirical performance. Furthermore, inte-
ger programming produces outer bounds based on lin-
ear programming relaxations, which can be used for
approximate procedures. Known approximate tech-
niques, such as cutting planes, can be applied.

Other multilinear programming techniques could cer-
tainly be investigated in future work, perhaps com-
bining some ideas from multilinear programming with
integer programming. As it happens with multilinear
programming, integer programming will fail for large
networks; in this case approximate inference is the
natural solution. The reformulations presented in this
paper also contribute in that direction, as approxima-
tions for bilinear and integer programming problems
are well studied in the literature.
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