
Inference in Credal Networks using
Multilinear Programming

Cassio P. de Campos
Pontificial Catholic University

São Paulo, SP - Brazil - cassio@pucsp.br

Fabio G. Cozman
Escola Polit́ecnica, University of S̃ao Paulo
São Paulo, SP - Brazil - fgcozman@usp.br

Abstract. A credal network is a graphical tool for representation and manipulation of
uncertainty, where probability values may be imprecise or indeterminate. A credal net-
work associates a directed acyclic graph with a collection of sets of probability mea-
sures; in this context, inference is the computation of tight lower and upper bounds
for conditional probabilities. In this paper we present new algorithms for inference in
credal networks based on multilinear programming techniques. Experiments indicate
that these new algorithms have better performance than existing ones, in the sense that
they can produce more accurate results in larger networks.
Keywords: Uncertainty and reasoning, Sets of probability measures, Bayesian net-
works, Multilinear programming.

1 Introduction

This paper presents techniques for marginal inference incredal networks; the goal is to pro-
vide algorithms that can handle graphical models for precise and imprecise probabilistic as-
sessments. Credal networks offer one such graphical representation, as they represent a set
of joint probability measures through a directed acyclic graph and a collection of local sets
of probability measures [8, 11, 20]. The structure of the graph indicates relations of indepen-
dence between variables; the “size” of the sets of probabilities encodes the imprecision in
the probability values. The introduction of imprecision in probability values (through sets of
probabilities) allows one to study robustness of probabilistic models, to investigate the behav-
ior of groups of experts, to represent incomplete or vague knowledge about probabilities [37],
and to represent qualitative probabilistic networks. Overall, credal networks offer a flexible
method for uncertainty handling, as it can deal with precise, imprecise, qualitative and com-
parative beliefs. Section 2 reviews basic properties of credal networks and their application
in knowledge representation.

A marginal inference in the context of credal networks is a computation of upper/lower
probability for some event. Existing algorithms for marginal inference cannot handle large
networks; this paper aims at enlarging the class of networks that can be successfully pro-
cessed. We present an exact inference algorithm based on multilinear programming (Sections
4 and 5), and show through experiments that the algorithm can process larger networks than

currently possible with existing algorithms. We also present an extension of the A/R+ ap-
proximate algorithm of Rocha et al [17]; we essentially extend the A/R+ algorithm using
multilinear programming tools (Section 6). Approximations with this new algorithm, We
show through experiments that approximations generated by the A/R++ algorithm are signif-
icantly better than the ones produced by the A/R+ algorithm. All experiments are discussed in
Section 7. We should note that the algorithms discussed in this paper have been introduced in
summary form elsewhere [14]; this paper presents a more detailed and complete discussion.

2 Credal sets and credal networks

A few preliminary definitions are important. A convex set of probability distributions is called
a credal set[26]. A credal set forX is denoted byK(X); we assume that every variable is
categorical and that every credal set has a finite number of vertices. A conditional credal set is
a set of conditional distributions, obtained applying Bayes rule to each distribution in a credal
set of joint distributions [37]. The setsK(X|Y) areseparately specifiedwhen there is no con-
straint on the conditional setK(X|Y = y1) that is based on the properties ofK(X|Y = y2),
for anyy2 6= y1 — that is, the conditional sets bear no relationship to each other. In this paper
we assume that local credal sets are always separately specified; justifications for this sepa-
rability assumption can be found in [15]. Given a number of marginal and conditional credal
sets, anextensionof these sets is a joint credal set with the given marginal and conditional
credal sets. In this paper we are exclusively concerned with the largest possible extension for
any collection of marginal and conditional credal sets. Given a credal setK(X) and an event
A, theupperand lower probability of A are respectivelyP (A) = maxp(X)∈K(X) P (A) and
P (A) = minp(X)∈K(X) P (A).

A credal networkis a directed acyclic graph where each node of the graph is associated
with a variableXi and with a collection of conditional credal setsK(Xi|pa(Xi)), where
pa(Xi) denotes the parents ofXi in the graph (note that we have a conditional credal set
for each value ofpa(Xi)). A root node is associated with a single marginal credal set. We
take that in a credal network every variable is independent of its nondescendants nonparents
given its parents. In this paper we adopt the concept ofstrong independence1: two variables
X andY are strongly independent when every extreme point ofK(X, Y) satisfies standard
stochastic independence ofX andY (that is,p(X|Y) = p(X) andp(Y |X) = p(Y)) [11].
Strong independence is the most commonly adopted concept of independence for credal sets,
probably due to its obvious connection with standard stochastic independence.

Thestrong extensionof a credal network is the largest joint credal set such that every vari-
able is strongly independent of its nondescendants nonparents given its parents. The strong
extension of a credal network is the joint credal set that contains every possible combination
of vertices for all credal sets in the network [13]; that is, each vertex of a strong extension
factorizes as follows:

p(X1, . . . , Xn) =
∏

i

p(Xi|pa(Xi)) . (1)

1We note that other concepts of independence are found in the literature [9, 18].

3 Inference with strong extensions

A marginal inferencein a credal network is the computation of lower/upper probabilities in
an extension of the network. IfXq is a queryvariable andXE represents a set ofobserved
variables, then an inference is the computation of tight bounds forp(Xq|XE) for one or
more values ofXq. For inferences in strong extensions, it is known that the distributions that
minimize/maximizep(Xq|XE) belong to the set of vertices of the extension [20].

An inference can be produced by combinatorial optimization, as we must find a vertex for
each local credal setK(Xi|pa(Xi)) so that Expression (1) leads to a maximum/minimum
of p(Xq|XE). In general, inference offers tremendous computational challenges — con-
sider the following example, taken from Rocha et al [17]. Take a network with three nodes,
X → Y ← Z, whereX, Y andZ have four values each, and where all credal sets have
four vertices each. There are418 different joint distributions factorizing as Expression (1),
where local distributions are vertices of local credal sets! Rocha et al [17] discuss branch-
and-bound procedures that can handle situations such as this, but that still have difficulties in
large multi-connected networks. The only known polynomial algorithm for strong extensions
is the 2U algorithm, which processes polytrees withbinary variables only [20]. Other exact
inference algorithms based on enumeration examine all potential vertices of the strong exten-
sion to produce the required lower/upper values [5, 8, 11, 15]; these algorithms face serious
difficulties in large networks.

A different way to look at the computation of inferences is to recognize that a lower/upper
value forp(Xq|XE) is obtained by minimization/maximization of a fraction containing poly-
nomials in probability values. This is in fact the strategy discussed in Section 4; our results
suggest that this is the most profitable strategy to take for exact inference with strong exten-
sions.

In Section 6 we discuss approximate algorithms, and discuss the A/R++ algorithm for ap-
proximate inference with multilinear programming. We distinguishouterandinner approx-
imations: the former produces intervals that enclose the correct probability interval between
lower and upper probabilities, while the latter produces intervals that are enclosed by the
correct probability interval. The A/R++ is an outer approximation scheme derived from the
A/R+ algorithm of Rocha et al [17]. Other outer approximations can be found in [7, 22, 35];
inner approximations can be found in [1, 6, 5, 10, 17].

4 Inference as a multilinear programming problem

A marginal inference for a strong extension can be formulated as a multilinear programming
problem. The goal is to minimize/maximize the expression∑

Xi\Xq

∏
i

p(Xi|pa(Xi)) (2)

subject to constraints on the local probabilitiesp(Xi|pa(Xi)). In this problem we must
deal with a large number of terms in the multilinear objective function (the number of terms
is exponential on the size of the network). In this section we reformulate Expression (2) to
transform it into a collection of smaller equalities.

To briefly illustrate the transformation, take a simple credal network with a “chain topol-
ogy” A → B → C → D → E, where the variableX ∈ {A, B, C,D, E} is ternary and

assumes the valuesx0, x1 andx2. Suppose we want to evaluate the maximum possible value
for the probability ofE = e0; this is obtained by solving:

max
∑

h,i,j,k∈{0,1,2}

p(e0|dh) p(dh|ci) p(ci|bj) p(bj|ak) p(ak)

subject to linear constraints. We have a multilinear function with 81 nonlinear terms of degree
four. Instead of dealing with this function, we can transform it into a problem with simpler
multilinear functions of degree at most two, by grouping terms and introducing new variables.
The result is a multilinear program with just 30 nonlinear terms:

max
∑

i∈{0,1,2}

p(e0|di) p(di)

subject to

p(di) =
∑

j∈{0,1,2}

p(di|cj) p(cj) , for i = 0, 1, 2

p(ci) =
∑

j∈{0,1,2}

p(ci|bj) p(bj) , for i = 0, 1, 2

p(bi) =
∑

j∈{0,1,2}

p(bi|aj) p(aj) , for i = 0, 1, 2

plus the linear constraints. The transformation leads to less nonlinear terms than in the direct
version given by Expression (1). Note also that the transformed problem contains terms of
smaller degree than the original problem — this is important in multilinear programming, as
it is difficult to handle problems with high degree.

We now present in detail the algorithm to transform a credal network inference into a
multilinear programming problem.

Translation Algorithm:

1. Build an ordering of theN variables (nodes) of the network. The queried variable must be
left as the last variable in the order (this ordering can be constructed in many ways. See for
example [12, 32]). Use this order to number the variables, obtainingXN , XN−1, . . . , X1.
The queried variable is indicated byX0. Let V denote the set of variablesXi. Denote by
pij the probability of the eventxij, i.e.,p(Xi = xij).

2. Place all network density functions in a pool. These functions can be written asf(A|B),
whereA ⊆ V , B ⊆ V andA ∩B = ∅.

3. Fori from N to 0:

• Create a data structureBucketi containing all the density functions (from the pool)
related toXi, i.e. take allf(A|B) such thatXi ∈ A ∪ B. Name these functions as
f1(A1|B1), f2(A2|B2), . . . , fn(An|Bn).

• For each density functionfq(Aq|Bq) in Bucketi, with q from 1 to n, do

– Suppose thatpaqu|bqv is the probability ofAq = aqu givenBq = bqv (note thataqu

is the event representing a combination of all events of variables inAq andbqv

has the same meaning forBq). For each eventbqv of Bq, generate the function∑
u

paqu|bqv = 1

In words, we sum over each combination of events of variables in the condi-
tioned sideAq with the same (unchanged) combination of events of the con-
ditioning sideBq. Then this process is repeated for each combination of the
conditioning side. Note thatpaqu|bqv are variables for the multilinear program
we are building; their values are not fixed.

There are|aqu| × |bqv| functions generated here, where|aqu| is the number of events
of Aq and|bqv| is the number of events ofBq. Write all these generated functions in
the multilinear problem.

• Multiply all density functions inBucketi and sum outXi from the product, storing
the resulting function in the pool. This operation is precisely

∑
Xi

∏n
q=1 fq(Aq|Bq),

which will generate a new function, called heref0(A0|B0) for convinience. We know
thatXi /∈ A0 ∪ B0. The representation of this process in the multilinear problem is
as follows:

– Suppose thatpa0u|b0v is the probability ofA0 = a0u givenB0 = b0v (note that
a0u is the event representing a combination of all events of variables inA0

andb0v has the same meaning forB0). For each eventa0u and each eventb0v,
generate the function

∑
Xi

(
n∏

q=1

paqu|bqv

)
= pa0u|b0v

wherepaqu|bqv represents the probability of the eventaqu|bqv over the function
fq(Aq|Bq). (Note that while writing these functions in the multilinear problem,
it is necessary to verify whether the combinationAq|Bq, for anyq ∈ {0, . . . , n},
has appeared already. If so, we must use the same variable name in the multi-
linear problem for its probability; otherwise an unused variable name must be
chosen for it.)

Exactly|a0u|× |b0v| functions are generated here. Add them to the multilinear prob-
lem. These functions show the relation between the variables that appear when elim-
inatingXi and the previously existing ones (before multiplying and summing out the
bucket functions). Note that when processingBucket0 the process is sightly differ-
ent as we do not want to eliminateX0.

4. Take each local credal set separately specified byf(A|B) in the network and generate
the linear functions defining it (if the credal sets are defined by their vertices, then it
is necessary to transform them into linear inequalities [2]). Add all these functions to
the multilinear problem. Again it is necessary to verify where the combinationA|B has
appeared in the problem and then the same variable name chosen before for its probability
must be re–used. The number of functions inserted by this step depends on the number of
vertices in the credal sets and the types of the variables (binaries, ternaries, etc).

5. Now it is only necessary to define which probabilityp0j of X0 we wish to minimize /
maximize.

Thus we obtain an optimization problem with multilinear and linear constraints for each
node in the bucket tree generated during variable elimination [12]. Each one of these multi-
linear and linear constraints represents local information in the credal network; that is, con-
straints represent relations between neighbour nodes in the tree. The number of functions in
this new multilinear programming problem is proportional to the parameters of the credal
network. The transformation procedure can be quickly executed as its complexity is on the
order of a Bayesian network inference.

Andersen and Hooker [1] treat a similar problem, but they work with binary variables and
the constraints to represent independence relations generated there are obtained in a differ-
ent manner (they use an extended description of possibleworlds, which implies in extracting
other independence relations from the network). The advantage here is the direct formulation,
in the sense that generation of the multilinear problem follows exactly the same method used
in inference over Bayesian networks. Due to this, it is easy to run specialized approximate al-
gorithms over the problem (like the A/R++ described in section 6), obtaining tighter variable
bounds which improve the multilinear solver performance.

5 Multilinear Programming

In this section we discuss the solution of multilinear programming problems such as the ones
introduced in the previous section. Even though multilinear programming solutions for infer-
ence in credal networks have been mentioned before [1, 11, 38], it seems that no systematic
study of this proposal has been conducted so far, and in particular there has not been any
implementation of multilinear programming geared towards inference in credal networks.
We thus give a relatively detailed account of multilinear programming and its application to
strong extensions.

We look at multilinear programs such as:

MP : {max f0(x) : x ∈ S ∩ Ω}

where

S = {x ∈ Rn : fr(x) ≥ βr, for r = 1, · · · , R}
Ω = {x : 0 ≤ lj ≤ xj ≤ uj ≤ 1, for j = 1, · · · , n}

fr(x) =
∑
t∈Tr

αrt

[∏
j∈Jrt

xj

]
for r = 0, · · · , R

HereTr is an index set defining the terms offr andαrt is the real coefficient for the termt of
the functionfr. Each setJrt defines which variables appear in the termt of fr. LetT be the set
of all terms in the problem, ie,T = ∪rTr. It is clear that any multilinear problem can be stated
in this way. Unlike geometric problems (where allαrt have the same sign and exponents are
arbitrary), MP problems are nonconvex and no known transformation can convexify them;
they may display multiple local minima and nonconvex feasible regions.

Many local optimization approaches are applicable to MP: procedures based on conden-
sation [3, 19], KKT conditions [31], linearization techniques [27], and general purpose non-
linear programming methods [29, 30, 25]. Rocha et al [17] presented an specialized solution

for credal sets based on Lukatskii and Shapot’s work [27], with excellent speed and accu-
racy. A local optimization procedure typically finds local optima and therefore can generate
only inner approximations to inferences. Existingexactalgorithms are based on branch-and-
bound techniques [28, 21, 33] or cutting plane methods [23, 36]. The branch-and-bound ideas
presented by Maranas and Floudas [28], and Gochet and Smeers [21] are based on solving
convex nonlinear subproblems, while Sherali and Tuncbilek’s idea [33] is based on linear
ones. The cutting plane methods proposed by Tuy [36] seem promising but have slow con-
vergence when close to an optimum (although some ideas exist to overcome this problem).

The branch-and-bound algorithm described in Sherali and Tuncbilek [33] is based on a
Reformulation-Linearization (RL) technique. The central idea is to substitute each product
of variables

∏
j∈Jrt

xj with a new artificial variableXJrt , for all termst ∈ T , obtaining a
linearized LP sub-problem. The solution of the LP problem gives an upper bound to the so-
lution of the corresponding MP problem (since the LP problem is a relaxation of the MP
problem). Just making this substitution does not lead us to a globally convergent method.
Thus some additional restrictions should be incorporated into the LP problem. To achieve a
global optimization method, we iterate over the variables by branching their intervals when-
ever necessary until eachXJrt is close enough to

∏
j∈Jrt

xj, solving LP sub-problems over
each branching node. To guarantee the convergence of the method, some additional artificial
functions must be included in the linear sub-problems. We call them “artificial” because they
are redundant for the original problem but not redundant for the linearized version. These new
artificial functions are created through products of original constraints and/or factors(xj− lj)
and(uj−xj) (called bound-factors by Sherali and Tuncbilek) provided that the degree of the
new functions do not exceed the maxdegreeδ = maxr,t |Jrt| of the original problem (because
this would increase the complexity of the overall procedure). As we can write each original
constraint asfr − βr ≥ 0 (if needed, equalities are written using two inequalities and reverse
inequalities are multiplied by−1) and we know that(xj − lj) ≥ 0 and(uj − xj) ≥ 0, multi-
plying these functions lead us to new redundant functions of the same type. To illustrate the
idea, suppose we have a multilinear termx1x2 in the original problem. Then we create the
artificial functions (whereX12 = x1x2):

(x1 − l1)(x2 − l2) = +X12 −l2x1 −l1x2 +l1l2 ≥ 0
(x1 − l1)(u2 − x2) = −X12 +u2x1 +l1x2 −l1u2 ≥ 0
(u1 − x1)(x2 − l2) = −X12 +l2x1 +u1x2 −u1l2 ≥ 0
(u1 − x1)(u2 − x2) = +X12 −u2x1 −u1x2 +u1u2 ≥ 0

Although these functions are redundant in the original problem (since the boundslj ≤
xj ≤ uj should be already ensured in the MP problem), their linearized versions supply
“barriers” to theX12 variable.

The approximation given by the linearization process improves as we increase the number
of artificial functions, but we have to limit this number — otherwise the linear sub-problems
grow too large. To ensure convergence it is enough to produce every possible product of
bound-factors, without using any original functions for creating the artificial ones.

The method is slow whenδ is large, because the number of artificial functions needed
to guarantee the convergence is exponential onδ. Sherali and Tuncbilek [33] suggested∑δ

k=0

(
m+k−1

k

)(
m+(δ−k)−1

δ−k

)
artificial functions, wherem is the number of variables in the MP

problem (note that the number of variables in the MP problem for solving a credal network
problem is much greater than the number of nodes in the network; see tables 1 and 2). Sherali

and Tuncbilek’s method generates products of bound-factors for all possible combinations of
variables up to terms ofδ degree. Fortunatelyδ is not large due to the transformation from the
credal network to a multilinear problem (previous section). Furthermore, we found out that
creating new artificial functions only when the new terms that appear on them are already
terms of the multilinear problem, and constructing functions that are products of original
constraints by bound-factors (until a maximum degree ofδ is reached) significantly increases
the performance of the algorithm.

The algorithm proceeds by bounding inferences and branching on the range of certain
variables. To choose the branching variable, the algorithm looks for the greatest difference
between the artificial variables and the products that they represent. Branching the range of
a variable may worsen the solution of the corresponding LP sub-problems. Every time a LP
solution is MP-feasible, we verify whether it is the best solution known so far and update the
best known solution; the node is then discarded, because no optimal solution can be found
from it.

The algorithm can use an inner bound to prune branches that cannot lead to the optimum.
In our implementation, we employ the local search algorithm presented by Rocha et al [17]
as the initial best solution for the MP. The global best known solution at each step imposes a
branching limit to the branch tree; if the LP solution of a node is worse than the best known
so far, then this node is discarded. Note that such an initial solution allows the algorithm to
“bracket” the result of the inference, and to stop at any time with an enclosing interval —
hence the algorithm can be easily used as an approximation method.

6 A/R++

The performance of the RL-based algorithm presented in the previous section is greatly en-
hanced if approximate ranges for some or all variables are known [33]. One way to obtain ap-
proximate ranges for the variables is to use the A/R+ algorithm [17]. The A/R+ algorithm (and
the original A/R proposed by Tessem [35]) produces local approximations for the messages
sent between nodes during inference. A node sends/receives approximate probability intervals
from/to its parents and children; these approximations are quickly computed and transmitted.
Note that the A/R and the A/R+ algorithms were designed to work only for polytree-shaped
networks; to deal with non-polytree networks, we apply the same procedure on the variable
elimination tree instead of the original network (which can be multi-connected).

The important point here is that messages in the A/R+ algorithm (and in its generalization
for multi-connected networks) are obtained by local optimization procedures; in fact, the
local optimization problems are multilinear programs themselves. Thus it is possible to solve
small multilinear problems “inside” the A/R+ algorithm, shrinking the intervals whenever
branching is performed.

To process multi-connected networks, the A/R+ algorithm is executed over the elimina-
tion tree in the same manner as done by the translation algorithm described in section 4. The
nonlinear functions generated in step 4 of that algorithm represent the probabilities of the
elimination tree variable. They can be minimized/maximized locally by multilinear program-
ming.

The information passed by the A/R+ algorithm is a collection of upper and lower proba-
bilities for the values of each variable. Once we have multilinear programming, it is possible
to pass even more information: we can perform several local optimizations, obtaining upper

Test Network # nodes # vertices by
set topology credal set
A dense binary 10 2
B binary Alarm 37 2
C dense ternary 10 3
D ternary Alarm 37 3
E dense quaternary 10 4

Table 1: The test sets

and lower probabilities for several events, and transmit this extended information as in the
A/R+ algorithm. We call the resulting algorithm A/R++. In short, the idea of A/R++ is to
evaluate not just intervals for values of the variables at each node, but the intervals of other
events defined in the node. We pass all these intervals (including those of the A/R+) to the
node’s neighbourhood; as in the A/R+ algorithm, only local information is processed. In our
implementation we chose to evaluatemin / max α + β, for every combination of atomic
valuesα andβ at each node, although any other linear function based on the local variables
could be used. These new bounds are not redundant since all we know without them is that
min (α+β) ≥ min α+min β (similarly for maximization). Note that the intervals computed
by A/R++ are always better (more precise) than or equal the intervals of the A/R+. The new
information that should be propagated does not pose a computational difficulty, since it can
be represented by linear functions and is suitable for the RL-based algorithm described in the
previous section.

On top of the improvement obtained by the A/R++ over the initial intervals of the MP
problem, it is possible to run it for range reduction at every step of the branch-and-bound
method. Sherali and Adams [34] suggested that such a technique could be used to reduce the
ranges of variable intervals; we have implemented the range reduction using the A/R++ at
every new node created by the branching procedure, which tends to reduce the number of
branches required to reach the optimum.

7 Computational results

To illustrate the behavior of our methods, we present two sets of experiments. First we deal
with test sets containing either a dense ten-variable network topology (randomly generated
using the BNGenerator software [24]) or the topology of the Alarm network [4]. We then
discuss a few different examples, including some very large ones.

Tables 1 and 2 show results for five different types of networks. Each row in Table 2
averages results for ten random generated multi-connected credal networks. All the tests are
maximizations of probabilities and were done by transforming inferences in multi-connected
credal networks into multilinear programming problems. The chosen inferences represent the
most challenging inference for each network. We processed networks with different variables
(binary, ternary and quaternary), and different sizes of credal sets per node of the network.
Table 2 shows the size of the multilinear and linearized problems; note that the problem size
grows substantially with the number of vertices by credal set and the number of variables of
the original network. Computational difficulties for solving the linear sub-problems were met
in the last two lines (in the last line most sub-problems, which have more than thirty thousand

Test RL-based RL-based Linearized Linearized A/R++ RL-based # RL
set # vars # funcs # vars # funcs error error nodes
A 105 172 665 3996 2.8684% 0.0484% 301
B 363 576 1395 6876 5.5706% 1.076% 765
C 412 576 5920 40181 10.4304% 0.3290% 1
D 1657 2214 13780 70612 22.3293% 2.5954% 3
E 1145 1474 30073 213376 13.4146% 0.6071% 1

Table 2: Average size of the multilinear problems and their corresponding linearized versions. The errors in-
duced by intervals containing the optimum value (average of the best value found divided by the farthest value
that possibly is the optimum for each test), and the average evaluated nodes in the branch-and-bound tree.

Network Multilinear Multilinear RL-based
nodes # variables # functions solution Error

8 53 65 [0.6376, 0.6376] 0.0%
13 223 351 [0.2590, 0.2595] 0.2%
37 2042 777 [0.5605, 0.5645] 0.7%
84 441 781 [0.7803, 0.7811] 0.1%
96 437 772 [0.6794, 0.6885] 1.3%
126 1117 1751 [0.8531, 0.9985] 14.5%
126 8211 9291 [0.9199, 1.0000] 8.0%

Table 3: Tests with random networks.

variables and two hundred thousand restrictions, could not be solved).
Moreover, Table 2 shows the average size of the error induced by the intervals containing

the optimum value generated by the A/R++ algorithm and by the branch-and-bound (RL-
based) with the linearization technique (which internally uses the A/R++). To illustrate the
effort required by the RL procedure, the last column shows the number of evaluated nodes
in the branch-and-bound tree. Note that in the test set D only eighty percent of the networks
could be solved and in the test set E less than fifty percent could be solved. All tests were
performed on a Pentium IV 1.7Ghz with 1GB of RAM, with a time-limit of ten minutes for
the test sets A, B and C, and one hour for the test sets D and E.

Table 3 shows the solutions produced for test cases from eight to one hundred and twenty
six variables, with random generated topologies. As far as we know, no other existing algo-
rithm can handle networks with this size. All tests were executed with a time-limit of five
minutes each (in the last two lines the limit imposed was 30 minutes). Since each global so-
lution lies inside the interval shown, the error was evaluated dividing the interval’s medium
value by the interval’s minimum value. If we restrict our attention just for polytrees, then the
method can handle even larger networks with smaller error.

8 Conclusion

We discussed in this paper a new idea for inference over credal networks. The main contribu-
tion is the use of multilinear programming techniques for inference. Although many authors
have suggested the multilinear programming as a possible approach to inference, as far as we

know no deeper investigation or implementation have been conducted before.
Results produced in our experiments seem promising and surpass existing algorithms for

inference with credal networks. Other multilinear programming techniques could certainly
be investigated in future work, perhaps combining some multilinear programming techniques
(like cutting plane methods and local search procedures) to achieve better performance and
accurancy.

Multilinear programming techniques may fail for very large networks; in this case approx-
imate inference seems the natural solution. As shown by the A/R++ algorithm, multilinear
programming can be quite helpful for approximation procedures as well.

Acknowledgements

We thank Jaime S. Ide and José Carlos F. da Rocha for generating the random networks used
in experiments.

This work was (partially) developed in collaboration with HP Brazil R&D. The work has
also been partially supported by CNPq (through grant 3000183/98-4).

References

[1] K. A. Andersen and J. N. Hooker. Bayesian logic.Decision Support Systems, 11:191–210, 1994.
[2] D. Avis, lrs: A Revised Implementation of the Reverse Search Vertex Enumeration Algorithm,Polytopes

- Combinatorics and Computation, G. Kalai & G. Ziegler eds., Birkhauser-Verlag, DMV Seminar Band
29, pp. 177-198, 2000.

[3] M. Avriel, R. Dembo and U. Passy, Solution of generalized geometric programs,International Journal for
Numerical Methods in Engineering, 9 (149), 1975.

[4] I. Beinlich, H. J. Suermondt, R. M. Chavez, and G. F. Cooper. The ALARM monitoring system: A case
study with two probabilistic inference techniques for belief networks.2nd European Conf. on Artificial
Intelligence in Medicine, pages 247–256, 1989.

[5] A. Cano, J. E. Cano, and S. Moral. Convex sets of probabilities propagation by simulated annealing.In-
ternational Conference on Information Processing and Management of Uncertainty in Knowledge-Based
Systems, pages 4–8, Paris, 1994.

[6] A. Cano and S. Moral. A genetic algorithm to approximate convex sets of probabilities.International
Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems,
2:859–864, 1996.

[7] A. Cano and S. Moral. Using probability trees to compute marginals with imprecise probabilities.Inter-
national Journal of Approximate Reasoning, 29:1–46, 2002.

[8] J. Cano, M. Delgado, and S. Moral. An axiomatic framework for propagating uncertainty in directed
acyclic networks.International Journal of Approximate Reasoning, 8:253–280, 1993.

[9] I. Couso, S. Moral, and P. Walley. A survey of concepts of independence for imprecise probabilities.Risk,
Decision and Policy, 5:165–181, 2000.

[10] F. G. Cozman. Robustness analysis of Bayesian networks with local convex sets of distributions.XIII
Conference on Uncertainty in Artificial Intelligence, pages 108–115, San Francisco, California, 1997.
Morgan Kaufmann.

[11] F. G. Cozman. Credal networks.Artificial Intelligence, 120:199–233, 2000.
[12] F. G. Cozman. Generalizing variable elimination in Bayesian networks.Workshop on Probabilistic Rea-

soning in Artificial Intelligence, pages 27–32, S̃ao Paulo, Brazil 2000.
[13] F. G. Cozman. Separation properties of sets of probabilities.XVI Conference on Uncertainty in Artificial

Intelligence, pages 107-115, San Francisco, 2000. Morgan Kaufmann.
[14] F. G. Cozman, C. P. de Campos, J. S. Ide, J. C. F. da Rocha. Propositional and Relational Bayesian Net-

works Associated with Imprecise and Qualitative Probabilistic Assessments,Conference on Uncertainty
in Artificial Intelligence, to appear.

[15] J. C. F. da Rocha and F. G. Cozman. Inference with separately specified sets of probabilities in credal
networks. XVIII Conference on Uncertainty in Artificial Intelligence, pages 430–437, San Francisco,
2002. Morgan Kaufmann.

[16] J. C. F. da Rocha and F. G. Cozman. Inference in credal networks with branch-and-bound algorithms.
Third International Symposium on Imprecise Probability and Their Applications, 2003.

[17] J. C. F. da Rocha, F. G. Cozman and C. P. de Campos, Inference in polytrees with sets of probabilities,
Conference on Uncertainty in Artificial Intelligence, pp.217–224, Morgan Kaufmann, 2003.

[18] L. de Campos and S. Moral. Independence concepts for convex sets of probabilities.XI Conference on
Uncertainty in Artificial Intelligence, pages 108–115, San Francisco, 1995. Morgan Kaufmann.

[19] R. J. Duffin, Linearizing geometric problems,SIAM Review, 12(211), 1970.
[20] E. Fagiuoli and M. Zaffalon. 2U: An exact interval propagation algorithm for polytrees with binary

variables.Artificial Intelligence, 106(1):77–107, 1998.
[21] W. Gochet and Y. Smeers, A branch-and-bound method for reversed geometric programming,Operations

Research, 27(5): 983–996, 1979.
[22] V. A. Ha. Geometric foundations for interval-based probabilities.Annals of Mathematics and Artificial

Intelligence, 24(1-4):1–21, 1998.
[23] R. Horst and H. Tuy,Global Optimization: Deterministic Approaches, Springer–Verlag, 1995.
[24] J. S. Ide and F. G. Cozman. Random generation of Bayesian networks.Brazilian Symposium on Artificial

Intelligence, pages 366–375, 2002.
[25] P. C. Haarhoff and J. D. Buys, A new method for the optimization of a nonlinear function subject to

nonlinear constraints,Comp. J., 13 (178), 1970.
[26] I. Levi. The Enterprise of Knowledge. MIT Press, Cambridge, Massachusetts, 1980.
[27] A. M. Lukatskii and D. V. Shapot. Problems in multilinear programming.Computational Mathematics

and Mathematical Physics, 41(5):638-648, 2000.
[28] C. D. Maranas and C. A. Floudas, Global optimization in generalized geometric programming,Computers

and Chemical Engineering, 21(4):351–370, 1997.
[29] P. M. Pardalos and J. B. Rosen, Constrained Global Optimization: Algorithms and Applications,Lecture

Notes in Computer Science, 268, Springer–Verlag, 1987.
[30] M. Ratner, L. S. Lasdon and A. Jain, Solving geometric problems using GRG: Results and Comparisons,

JOTA, 26, (253), 1978.
[31] M. J. Rijckaert and X. M. Martens, Comparison of generalized geometric programming algorithms,JOTA,

26 (205), 1978.
[32] G. Shafer,Probabilistic Expert Systems. CBMS-NSF regional conference series in applied mathematics

67, SIAM, 1996.
[33] H. D. Sherali and C. H. Tuncbilek, A global optimization algorithm for polynomial programming problems

using a Reformulation-Linearization technique,Journal of Global Optimization, 2, pages 101–112, 1992.
[34] H. D. Sherali and W. P. Adams,A Reformulation-Linearization Technique for Solving Discrete and Con-

tinuous Nonconvex Problems, Kluwer Academic Publishers, 1999.
[35] B. Tessem. Interval probability propagation.International Journal of Approximate Reasoning, 7:95–120,

1992.
[36] H. Tuy, Convex Analysis and Global Optimization, Nonconvex Optimization and Its Applications, 22,

Kluwer Academic Publishers, 1998.
[37] P. Walley.Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London, 1991.
[38] M. Zaffalon. Inferenze e Decisioni in Condizioni di Incertezza con Modelli Grafici Orientati. PhD thesis,

Universit̀a di Milano, February 1997.

