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Abstract

Understanding human emotions is one of the necessary
skills for the computer to interact intelligently with human
users. The most expressive way humans display emotions
is through facial expressions. In this paper, we report on
several advances we have made in building a system for
classification of facial expressions from continuous video
input. We use Bayesian network classifiers for classifying
expressions from video. One of the motivating factor in us-
ing the Bayesian network classifiers is their ability to han-
dle missing data, both during inference and training. In
particular, we are interested in the problem of learning with
both labeled and unlabeled data. We show that when us-
ing unlabeled data to learn classifiers, using correct model-
ing assumptions is critical for achieving improved classifi-
cation performance. Motivated by this, we introduce a clas-
sification driven stochastic structure search algorithm for
learning the structure of Bayesian network classifiers. We
show that with moderate size labeled training sets and large
amount of unlabeled data, our method can utilize unlabeled
data to improve classification performance. We also provide
results using the Naive Bayes (NB) and the Tree-Augmented
Naive Bayes (TAN) classifiers, showing that the two can
achieve good performance with labeled training sets, but
perform poorly when unlabeled data are added to the train-
ing set.

1. Introduction
Since the early 1970s, Ekman has performed extensive stud-
ies of human facial expressions [10, 11] and found evidence
to support universality in facial expressions. These “uni-
versal facial expressions” are those representing happiness,
sadness, anger, fear, surprise, and disgust. Ekman’s work in-
spired many researchers to analyze facial expressions using
image and video processing. By tracking facial features and
measuring the amount of facial movement, they attempt to
categorize different facial expressions. Recent work on fa-
cial expression analysis has used these “basic expressions”
or a subset of them (see Pantic and Rothkrantz’s [19] de-

tailed review of many of the research done in recent years).
All these methods are similar in that they first extract some
features from the images or video, then these features are
used as inputs into a classification system, and the outcome
is one of the preselected emotion categories. They differ
mainly in the features extracted and in the classifiers used to
distinguish between the different emotions.

We have developed a real time facial expression recogni-
tion system. The system uses a model based non-rigid face
tracking algorithm to extract motion features that serve as
input to a Bayesian network classifier used for recognizing
facial expressions [5]. In our system, as with all other past
research in facial expression recognition, learning the classi-
fiers was done using labeled data and supervised learning al-
gorithms. One of the challenges facing researchers attempt-
ing to design facial expression recognition systems is the
relatively small amount of available labeled data. Construc-
tion and labeling of a good database of images or videos of
facial expressions requires expertise, time, and training of
subjects. Only a few such databases are available, such as
the Cohn-Kanade database [14]. However, collecting, with-
out labeling, data of humans displaying expressions is not as
difficult. Such data is called unlabeled data. It is beneficial
to use classifiers that are learnt with a combination of some
labeled data and a large amount of unlabeled data. This pa-
per is focused at describing how to learn to classify facial
expressions with labeled and unlabeled data, also known as
semi-supervised learning.

Bayesian networks, the classifiers used in our system,
can be learned with labeled and unlabeled data using max-
imum likelihood estimation. One of the main questions is
whether adding the unlabeled data to the training set im-
proves the classifier’s recognition performance on unseen
data. In Section 3 we briefly discuss our recent results
demonstrating that, counter to statistical intuition, when the
assumed model of the classifier does not match the true data
generating distribution, classification performance could de-
grade as more and more unlabeled data are added to the
training set. Motivated by this, we propose in Section 4 a
classification driven stochastic structure search (SSS) algo-



rithm for learning the structure of Bayesian network clas-
sifiers. We demonstrate the algorithm’s performance using
commonly used databases from the UCI repository [2]. In
Section 5 we perform experiments with our facial expres-
sion recognition system using two databases and show the
ability to use unlabeled data to enhance the classification
performance, even with a small labeled training set.We have
concluding remarks in Section 6.

2. Facial Expression Recognition Sys-
tem

We start with a brief description of our real time facial ex-
pression recognition system. The system is composed of a
face tracking algorithm which outputs a vector of motion
features of certain regions of the face. The features are used
as inputs to a Bayesian network classifier.

The face tracking we use in our system is based on a
system developed by Tao and Huang [22] called the Piece-
wise Bézier Volume Deformation (PBVD) tracker. This face
tracker uses a model-based approach where an explicit 3D
wireframe model of the face is constructed. Once the model
is constructed and fitted, head motion and local deforma-
tions of the facial features such as the eyebrows, eyelids,
and mouth can be tracked. The recovered motions are rep-
resented in terms of magnitudes of some predefined motion
of various facial features. Each feature motion corresponds
to a simple deformation on the face, defined in terms of the
Bézier volume control parameters. We refer to these mo-
tions vectors as Motion-Units (MU’s). The MU’s used in
the face tracker are shown in Figure 1(a). The MU’s are
used as the basic features for the classification scheme de-
scribed in the next sections.
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Figure 1: The facial motion measurements

2.1. Bayesian network classifiers
We start with a few conventions that are adopted through-
out. The goal here is to label an incoming vector of features
(MUs) � . Each instantiation of � is a record. We assume
that there is a class variable � ; the values of � are the la-
bels, one of the facial expressions. The classifier receives
a record � and generates a label ���� ��� . An optimal clas-
sification rule can be obtained from the exact distribution	
� ������ . However, if the distribution is not known, we have
to learn it from expert knowledge or data.

For recognizing facial expression using the features ex-
tracted from the face tracking system, we consider proba-
bilistic classifiers that represent the a-posteriori probability
of the class given the features, 	
� ������ , using Bayesian net-
works [20]. A Bayesian network is composed of a directed
acyclic graph in which every node is associated with a vari-
able ��� and with a conditional distribution 	
� ���� ����� , where
��� denotes the parents of ��� in the graph. The directed
acyclic graph is the structure, and the distributions 	
� ���� �����
represent the parameters of the network. We say that the
assumed structure for a network, ��� , is correct when it is
possible to find a distribution, 	
� ������ ����� , that matches the
distribution that generates data; otherwise, the structure is
incorrect. We use maximum likelihood estimation to learn
the parameters of the network. When there are missing data
in our training set, we use the EM algorithm [9] to maximize
the likelihood.

A Bayesian network having the correct structure and pa-
rameters is also optimal for classification because the a-
posteriori distribution of the class variable is accurately rep-
resented. A Bayesian network classifier is a generative clas-
sifier when the class variable is an ancestor (e.g., parent) of
some or all features. A Bayesian network classifier is di-
agnostic, when the class variable has non of the features as
descendants. As we are interested in using unlabeled data
in learning the Bayesian network classifier, we restrict our-
selves to generative classifiers and exclude structures that
are diagnostic, which cannot be trained using maximum
likelihood approaches with unlabeled data [23, 21].

Two examples of generative Bayesian network classi-
fiers are the Naive Bayes (NB) classifier, in which the fea-
tures are assumed independent given the class, and the Tree-
Augmented Naive Bayes classifier (TAN). The NB classifier
makes the assumption that all features are conditionally in-
dependent given the class label. Although this assumption
is typically violated in practice, NB have been used success-
fully in many classification applications. One of the reasons
for the NB success is attributed to the small number of pa-
rameters needed to be learnt.

In the structure of the TAN classifier, the class variable
is the parent of all the features and each feature has at most
one other feature as a parent, such that the resultant graph
of the features forms a tree. Using the algorithm presented
by Friedman et al. [12], the most likely TAN classifier can
be estimated efficiently. When unlabeled data are available,
estimating the parameters of the Naive Bayes classifier can
be done using the EM algorithm. As for learning the TAN
classifier, we learn the structure and parameters using the
EM-TAN algorithm, derived from [16].

We have previously used both the NB and TAN clas-
sifiers to perform facial expression recognition [6, 5] with
good success. However, we used only labeled data for clas-
sification. With unlabeled data we show in our experiments



that the limited expressive power of Naive Bayes and TAN
causes the use of unlabeled data to degrade the performance
of our recognition system. This statement will become clear
as we describe the properties of learning with labeled and
unlabeled data in the next section.

3. Learning a classifier from labeled
and unlabeled training data

In this section we discuss properties of classifiers learned
with labeled and unlabeled data. In particular, we dis-
cuss the possibility that unlabeled data degrade classifica-
tion performance.

Early work proved that unlabeled data lead to improved
classification performance, provided that the modeling as-
sumptions of the classifier are correct [3, 23]. These have
advanced an optimistic view of the labeled-unlabeled prob-
lem, where unlabeled data can be profitably used whenever
available. However, unlabeled data can also lead to signif-
icant degradation in classification performance. A few re-
sults in the literature illustrate this possibility. Nigam et
al [18] use Naive Bayes classifiers and a large number of
features, and report that, when modeling assumptions “are
not satisfied, EM may actually degrade rather than improve
classifier accuracy” and suggest giving a smaller weight to
the unlabeled data. Baluja [1] use unlabeled data to help
learn how to determine face orientation. He observed that
with Naive Bayes classifiers, unlabeled data sometimes de-
graded the performance, and proceeded to model the depen-
dencies among the features, finding that such models use
better the unlabeled data.

We have conducted an investigation on the effect of unla-
beled data and showed that unlabeled data can have deleteri-
ous effect when the modeling assumptions are incorrect [8];
here we summarize the main points. We have observed
that degradation is not just caused by numerical problems,
such as local convergence of the EM algorithm; nor is it
just caused by differences between the distribution of la-
beled data and the distribution of unlabeled data; nor is
it just caused by outliers. These explanations do not suf-
fice to clarify why is it that labeled records are routinely
seen to improve classification, even in the presence of out-
liers or incorrect clusters of features, while the same model-
ing problems lead unlabeled data to degrade classification.
This degradation occurs because the asymptotic classifica-
tion performance of a classifier with incorrect structure can
be different when this classifier is learned with fully labeled
data and when the classifier is learned with labeled and un-
labeled data. Moreover, we proved that there is a funda-
mental lack of robustness of maximum likelihood estimators
when trained with labeled and unlabeled data under incor-
rect modeling assumptions.

Consider Figure 2 which illustrates the differences in
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Figure 2: Histogram of classification error bias from the
Bayes error rate under incorrect independence assumptions
for training with labeled data (left) and training with unla-
beled data (right).

classification bias of classifiers learned from labeled and un-
labeled data, where the bias is measured from the Bayes er-
ror rate. We simulate the asymptotic case of infinite data.1

We generated 100 different binary classifiers, each with
4 Gaussian distributed features given the class, and not inde-
pendent of each other. The parameters of each classifier are:
the class prior, ��� 	
� ����� � , the mean vectors, ��� �	��
����

, and a common covariance matrix ��� �������
. The Bayes

error rate of the classifiers ranged from ��� ��������� , with most
being around � �!� (the Bayes error was computed analyti-
cally using the true parameters of the classifiers).

For each classifier we looked at different combinations of
making incorrect independence assumptions, by assuming
that features are independent of each other (from one to all
features being independent of each other; overall �"� com-
binations). For example, if we assume that #$
 and #&% are
independent of the rest of the features, the covariance ma-
trix we estimate under this assumption must have the form:

'(*)
+,,
-

. � �0/ / // . � �1/ . �32/ / . � �4// . 2 �1/ . 252
6577
8 (1)

thus some elements of the covariance matrix are incorrectly
forced to be zero.

For each combination we computed the classification er-
ror of two classifiers (trained under the independence as-
sumptions): one simulating training with infinite labeled
data and a second trained with infinite unlabeled data. For
the labeled data case, since the ML estimation is unbiased,
the learned parameters are the true priors, the means, and
the elements of the covariance matrix that were not forced to
be zero. For unlabeled data, we approximated infinity with� �"� �9�"�"� training records (which is very large compared to: � , the largest number of parameters estimated in the ex-
periments). We used EM to learn with unlabeled data, with
the starting point being the parameter set of the labeled only

1Care should be taken when using only unlabeled data in training. As
noted by Castelli [3], with unlabeled data it is possible to recover all the pa-
rameters of the classifier (under some restrictions, such as identifiability),
but a decision on the actual labeling is not possible since we do not know
what are the class labels. In the following we assume that we are given this
knowledge and therefore are able to perform classification.



classifier, therefore assuring that the difference in the results
of the two estimated classifiers do not depend on the starting
point of EM. The essential idea of EM when using unlabeled
data is to guess pseudo-labels for the unlabeled data based
on a previously estimation of the model. These new pseudo-
labeled data are then used to create a new classifier, and the
process is repeated until a stable solution maximizing the
likelihood is found.

Over all, we computed 1100 classification errors for the
completely labeled case and 1100 for the unlabeled case.
From the errors we generated the classification error bias
histograms in Figure 2. The histograms show that the clas-
sification bias of the labeled based classifiers tends to be
more highly concentrated closer to � compared to the un-
labeled based classifiers. We also observed that using unla-
beled data always resulted in a higher error rate compared to
using labeled data. The only exception was when we did not
make any incorrect independence assumptions, in which the
classifiers trained with unlabeled data achieved the Bayes
error rate, as expected. What we understand from these his-
tograms is that when training with labeled data, many clas-
sifiers will perform well (although never achieve the opti-
mal Bayes rate). However, classifiers trained with unlabeled
data need to be more accurate in their modeling assumptions
to achieve good performance and they are a great deal more
sensitive to such inaccuracies.

4. Learning the structure of Bayesian
network classifiers

The conclusion of the previous section indicates the impor-
tance of obtaining the correct structure when using unla-
beled data in learning the classifier. If the correct struc-
ture is obtained, unlabeled data improve a classifier; oth-
erwise, unlabeled data can actually degrade performance.
Somewhat surprisingly, the option of searching for better
structures was not proposed by researchers that previously
witnessed the performance degradation. Apparently, perfor-
mance degradation was attributed to unpredictable, stochas-
tic disturbances in modeling assumptions, and not to mis-
takes in the underlying structure – something that can be
detected and fixed.

One attempt to overcome the performance degradation
from unlabeled data could be to switch models as soon as
degradation is detected. Suppose that we learn a classifier
with labeled data only and we observe a degradation in per-
formance when the classifier is learned with labeled and un-
labeled data. We can switch to a more complex structure at
that point. An interesting idea is to start with a Naive Bayes
classifier and, if performance degrades with unlabeled data,
switch to a different type of Bayesian network classifier,
namely the TAN classifier. If the correct structure can be
represented using a TAN structure, this approach will indeed
work. However, even the TAN structure is only a small set

of all possible structures. Moreover, as the experiments in
the next sections show, switching from NB to TAN does not
guarantee that the performance degradation will not occur.

A different approach to overcome performance degrada-
tion is to use some standard structure learning algorithm, as
there are many such algorithms in the Bayesian network lit-
erature [12, 7]. A common goal of many existing methods
is to find a structure that best fits the joint distribution of
all the variables given the data. Because learning is done
with finite datasets, most methods penalize very complex
structures that might overfit the data, using for example the
minimum description length (MDL) score. The difficulty of
structure search is the size of the space of possible struc-
tures. With finite amounts of data, algorithms that search
through the space of structures maximizing the likelihood,
can lead to poor classifiers because the a-posteriori proba-
bility of the class variable could have a small effect on the
score [12]. Therefore, a network with a higher score is not
necessarily a better classifier. Friedman et al [12] further
suggest changing the scoring function to focus only on the
posterior probability of the class variable, but show that it is
not computationally feasible.

The drawbacks of likelihood based structure learning al-
gorithms could be magnified when learning with unlabeled
data; the posterior probability of the class has a smaller ef-
fect during the search, while the marginal of the features
would dominate.

4.1. Classification driven stochastic structure
search

In this section we propose a method that can effectively
search for better structures with an explicit focus on clas-
sification. We essentially need to find a search strategy that
can efficiently search through the space of structures. As we
have no simple closed-form expression that relates structure
with classification error, it would be difficult to design a gra-
dient descent algorithm or a similar iterative method. Even
if we did that, a gradient search algorithm would be likely
to find a local minimum because of the size of the search
space.

First we define a measure over the space of structures
which we want to maximize:
Definition 1 The inverse error measure for structure ��� is

���������
	����� ������������� ��� �!#" �$&% �� � ������ ��� �!#" ��' (2)

where the summation is over the space of possible structures
and 	�(�� �� � ���*)� � � is the probability of error of the best
classifier learned with structure � .

We use Metropolis-Hastings sampling [17] to generate
samples from the inverse error measure, without having to
ever compute it for all possible structures. For construct-
ing the Metropolis-Hastings sampling, we define a neigh-
borhood of a structure as the set of directed acyclic graphs



Training records
Dataset # labeled # unlabeled # Test NB-L NB-LUL TAN-L TAN-LUL SSS-LUL

TAN artificial 300 30000 50000 83.41% 59.21% 90.89% 91.94% 91.05%
Shuttle 500 43000 14500 82.44% 76.10% 81.19% 90.22% 96.26%

Satimage 600 3835 2000 81.65% 77.45% 83.54% 81.05% 83.35%
Adult 6000 24862 15060 83.86% 73.11% 84.72% 80.00% 85.04%

Table 1: Classification accuracy for Naive Bayes, TAN, and stochastic structure search: Naive Bayes classifier learned with labeled data
only (NB-L), Naive Bayes classifier learned with labeled and unlabeled data (NB-LUL), TAN classifier learned with labeled data only
(TAN-L), TAN classifier learned with labeled and unlabeled data (TAN-LUL), stochastic structure search with labeled and unlabeled data
(SSS-LUL).

to which we can transit in the next step. Transition is done
using a predefined set of possible changes to the structure; at
each transition a change consists of a single edge addition,
removal, or reversal. We define the acceptance probability
of a candidate structure, ������� , to replace a previous struc-
ture, ��� as follows:�
	 � � ���������� ��� (�� ���������� ��� (�� ���! "$# � (��&% (�� �����# � (�� ��� % (�� � ' ) �
	 � � ����)( ���*+*�,-*( � �����*+*�,-* �  "�. �. � ����' (3)

where / � � ��� ��� is the transition probability from � to ��� , 0
is a temperature factor, and 12� and 12����� are the sizes of
the neighborhoods of �!� and �!����� respectively; this choice
corresponds to equal probability of transition to each mem-
ber in the neighborhood of a structure. This further cre-
ates a Markov chain which is aperiodic and irreducible, thus
satisfying the Markov chain Monte Carlo (MCMC) condi-
tions [15]. We summarize our algorithm in Figure 3.

1. Fix the network structure to some initial structure,
	43

.
2. Estimate the parameters of the structure

	43
and compute

the probability of error 5 3��*+*�,-* .
3. Set 6 ��7

.
4. Repeat, until a maximum number of iterations is reached

( 8�9;:=<>6�?�@ )A Sample a new structure
	 � ���

, from the neighborhood of	 �
uniformly, with probability B�C&D � .A Learn the parameters of the new structure using maxi-

mum likelihood estimation. Compute the probability of
error of the new classifier, 5 � �����*+*�,-*

.A Accept
	 � ���

with probability given in Eq. (3).A If
	 � ���

is accepted, set
	 �FE � � 	 � ���

and5 �FE ���*+*�,-* � 5 � �����*+*�,-*
and change G according to the

temperature decrease schedule. Otherwise
	 �FE � �&	 �

.A 6 � 6IHJB .
5. return the structure

	�K
, such that L � 9;@�M;N ���3&O;K�OQPSR�T�U � ��* � 5 K ��*+*�,-*  .

Figure 3: Stochastic structure search algorithm (SSS)

Roughly speaking, 0 close to � would allow acceptance
of more structures with higher probability of error than pre-
vious structures. 0 close to � mostly allows acceptance
of structures that improve probability of error. A fixed 0
amounts to changing the distribution being sampled by the
MCMC, while a decreasing 0 is a simulated annealing run,
aimed at finding the maximum of the inverse error distribu-
tion. The rate of decrease of the temperature determines the
rate of convergence. Asymptotically in the number of data,

a logarithmic decrease of 0 will guarantee convergence to a
global maximum with probability that tends to one [13].

There are two caveats though; first, the logarithmic cool-
ing schedule is very slow and we do not have infinite number
of data, second, we never have access to the true probabil-
ity of error for each structure - we calculate the classifica-
tion error from a limited pool of training data (denoted by
�	
(��V&VXW-V ). To avoid the problem of overfitting we can take

several approaches. Cross-validation can be performed by
splitting the labeled training set to smaller sets. However,
this approach can significantly slow down the search, and is
suitable only if the labeled training set is moderately large.
Instead, we use the multiplicative penalty term derived from
structural risk minimization to define a modified error term:

��Y5 %��*+*�,-* �Z ,+[ � Y5 %��*+*�,-*B]\_^a`cb d � � e ,+f � � �>g d � � E � �ih)e ,+f � j g 2 �� ' (4)

where k ( is the Vapnik-Chervonenkis (VC) dimension of
the classifier with structure � , l is the number of training
records, � and � are between � and � . To approximate the
VC dimension, we use k (nm 1 ( , with 1 ( the number of
(free) parameters in the Markov blanket of the class variable
in the network, assuming that all variables are discrete.

To illustrate the performance of SSS algorithm, we per-
formed experiments with some of the UCI machinel learn-
ing datasets and an artificially generated data set (a Bayesian
network with TAN structure), using relatively small labeled
sets and large unlabeled sets (Table 1). The results using the
UCI datasets show, to varying degrees, the ability of SSS
to utilize unlabeled data. The most dramatic improvement
is seen with the Shuttle dataset. The results with the arti-
ficially generated data show that SSS was able to achieve
almost the same performance as TAN, which had the ad-
vantage of a-priori knowledge of the correct structure. We
also see that for both NB and TAN, using unlabeled data
can cause performance degradation, therefore the idea of
switching between these simple models is not guaranteed
to work.

5. Facial Expression Recognition Ex-
periments

We test the algorithms for the facial expression recognition
system. We initially consider experiments where all the data



is labeled. Then we investigate the effect of using both la-
beled and unlabeled data.

We use two different databases, one collected by Chen
and Huang [4] and the Cohn-Kanade database [14]. The
first consists of subjects that were instructed to display fa-
cial expressions corresponding to six types of emotions.
In the Chen-Huang database there are five subjects. For
each subjects there are six video sequences per expression,
each sequence starting and ending in the Neutral expression.
There are on average 60 frames per expression sequence.
The Cohn-Kanade database [14] consists of expression se-
quences of subjects, starting from a Neutral expression and
ending in the peak of the facial expression. There are 104
subjects in the database. Because for some of the subjects,
not all of the six facial expressions sequences were available
to us, we used a subset of 53 subjects, for which at least four
of the sequences were available. For each person there are
on average 8 frames for each expression.

We measure the accuracy with respect to the classifica-
tion result of each frame, where each frame in the video se-
quence was manually labeled to one of the expressions (in-
cluding Neutral). This manual labeling can introduce some
’noise’ in our classification because the boundary between
Neutral and the expression of a sequence is not necessarily
optimal, and frames near this boundary might cause confu-
sion between the expression and the Neutral.

5.1. Experimental results with labeled data

We start with a person-independent experiment using all the
labeled data. For this test we use the sequences of some
subjects as test sequences and the sequences of the remain-
ing subjects as training sequences (we leave out one subject
in the Chen-Huang database and 10 subjects for the Cohn-
Kanade database). This test is repeated five times, each time
leaving different subjects out (leave one out cross valida-
tion). Table 2 shows the recognition rate of the test for all
classifiers. We see that the Naive Bayes classifier performs
poorly. However, a significant improvement for both the
TAN and the SSS algorithm is obtained, with SSS being
significantly better. It should be noted that with a smaller
training set, SSS would not have been able to explore many
structure and its performance would have probably be the
same or worse than NB and TAN.

5.2. Experiments with labeled and unlabeled
data

We consider now both labeled and unlabeled data in a
person-independent experiment. We first partition the data
to a training set and a test set and randomly choose a portion
of the training set and remove the labels. This procedure
ensures that the distribution of the labeled and the unlabeled
sets are the same.

Table 2: Recognition rates (%) for person-independent test

NB TAN SSS
Chen-Huang
Database 71.78 80.31 83.62

Cohn-Kandade
Database 77.70 80.40 81.80

We train Naive Bayes and TAN classifiers, using just the
labeled part of the training data and the combination of la-
beled and unlabeled data. We use the SSS algorithm to train
a classifier using both labeled and unlabeled data (we do not
search for the structure with just the labeled part because it
is too small for performing a full structure search).

We see in Table 3 that with NB and TAN, even when
using only 200 and 300 labeled samples, adding the unla-
beled data degrades the performance of the classifiers, and
we would have been better off not using the unlabeled data.
Using the SSS algorithm, we are able to improve the results
and use the unlabeled data to achieve performance which is
higher than using just the labeled data with NB and TAN.
The fact that the performance is lower than in the case when
all the training set was labeled (see Table 2) implies that
the relative value of labeled data is higher than of unlabeled
data, as was shown by Castelli [3]. However, had there been
more unlabeled data, the performance would be expected to
improve.

6. Summary and Discussion
In this work, we presented several advances we made in
building a real-time system for classification of facial ex-
pressions from continuous video input. The facial expres-
sion recognition was done using Bayesian networks clas-
sifiers. Collecting labeled data of humans displaying ex-
pressions is a difficult task and therefore, we were inter-
ested in learning the classifiers with both labeled and unla-
beled data. One question we asked was whether adding the
unlabeled data to the training set improves the classifier’s
recognition performance on unseen data. We showed that
when incorrect modeling assumptions are used, the unla-
beled data could have deleterious effect on the classification
performance, while the same unlabeled data, under correct
modeling assumptions, are theoretically guaranteed to im-
prove the classification performance. With this result we
proposed a classification driven stochastic structure search
algorithm for learning the structure of the Bayesian network
classifiers. We demonstrated the algorithm’s performance
using standard databases from the UCI repository. Using
moderate size labeled training sets and large amount of un-
labeled data, our method was able to utilize unlabeled data
to improve classification performance.

We tested our classifiers for facial expression recogni-
tion using two databases. We compared the results with two



Table 3: Classification results for facial expression recognition with labeled and unlabeled data.

Training records
Dataset # labeled # unlabeled # Test NB-L NB-LUL TAN-L TAN-LUL SSS-LUL

Cohn-Kanade 200 2980 1000 72.50% 69.10% 72.90% 69.30% 74.80%
Chen-Huang 300 11982 3555 71.25% 58.54% 72.45% 62.87% 74.99%

other Bayesian network classifiers that have been used in
our system: Naive Bayes and TAN networks and we showed
that the two can achieve good performance with labeled
training sets, but perform poorly when unlabeled data are
added to the training set. We showed that by searching for
the structure driven by the classification error enables us to
use the unlabeled data to improve the classification perfor-
mance.

In conclusion, our main contributions are as follows. We
applied Bayesian network classifiers to the problem of facial
expression recognition and we proposed a method that can
effectively search for the correct Bayesian network structure
focusing on classification. We also stressed the importance
of obtaining such a structure when using unlabeled data in
learning the classifier. If correct structure is used, the un-
labeled data improve the classification, otherwise they can
actually degrade the performance. Finally, we integrated the
classifiers and the face tracking system to build a real time
facial expression recognition system.
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